Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biomed Pharmacother ; 144: 112309, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34653761

RESUMEN

Anesthetics are extensively used during cancer surgeries. The progression of cancer can be influenced by perioperative events such as exposure to general or local anesthesia. However, whether they inhibit cancer or act as a causative factor for metastasis and exert deleterious effects on cancer growth differs based on the type of cancer and the therapy administration. Recent experimental data suggested that many of the most commonly used anesthetics in surgical oncology, whether general or local agents, can alter gene expression and cause epigenetic changes via modulating miRNAs. miRNAs are single-stranded non-coding RNAs that regulate gene expression at various levels, and their dysregulation contributes to the pathogenesis of cancers. However, anesthetics via regulating miRNAs can concurrently target several effectors of cellular signaling pathways involved in cell differentiation, proliferation, and viability. This review summarized the current research about the effects of different anesthetics in regulating cancer, with a particular emphasis on the role of miRNAs. A significant number of studies conducted in this area of research illuminate the effects of anesthetics on the regulation of miRNA expression; therefore, we hope that a thorough understanding of the underlying mechanisms involved in the regulation of miRNA in the context of anesthesia-induced cancer regulation could help to define optimal anesthetic regimens and provide better perspectives for further studies.


Asunto(s)
Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Anestésicos Locales/farmacología , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Propofol/farmacología , Anestésicos por Inhalación/toxicidad , Anestésicos Intravenosos/toxicidad , Anestésicos Locales/toxicidad , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Vía de Señalización Wnt
2.
Eur J Pharmacol ; 884: 173303, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32681942

RESUMEN

Propofol, most frequently used as a general anesthetic due to its versatility and short-acting characteristics, is thought to exert its anesthetic actions via GABAA receptors; however, the precise mechanisms of its adverse action including angialgia remain unclear. We examined the propofol-induced elevation of intracellular calcium and morphological changes in intracellular organelles using SHSY-5Y neuroblastoma cells, COS-7 cells, HEK293 cells, and HUVECs loaded with fluorescent dyes for live imaging. Although propofol (>50 µM) increased intracellular calcium in a dose-dependent manner in these cells, it was not influenced by the elimination of extracellular calcium. The calcium elevation was abolished when intracellular or intraendoplasmic reticulum (ER) calcium was depleted by BAPTA-AM or thapsigargin, respectively, suggesting that calcium was mobilized from the ER. Studies using U-73122, xestospongin C, and dantrolene revealed that propofol-induced calcium elevation was not mediated by G-protein coupled receptors, IP3 receptors, or ryanodine receptors. We performed live imaging of the ER, mitochondria and Golgi apparatus during propofol stimulation using fluorescent dyes. Concomitant with the calcium elevation, the structure of the ER and mitochondria was fragmented and aggregated, and these changes were not reversed during the observation period, suggesting that propofol-induced calcium elevation occurs due to calcium leakage from these organelles. Although the concentration of propofol used in this experiment was greater than that used clinically (30 µM), it is possible that the concentration exceeds 30 µM at the site where propofol is injected, leading the idea that these phenomena might relate to the various propofol-induced adverse effects including angialgia.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Propofol/toxicidad , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Factores de Tiempo
3.
Neurosci Lett ; 716: 134647, 2020 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-31765729

RESUMEN

BACKGROUND: This study was to investigate the neuroprotective effect of erythropoietin (EPO) on hippocampal neuronal cell injury in developing rats. METHODS: The hippocampal neurons cells were obtained from SD rats aged 10 days and divided into control, propofol, EPO, and propofol + erythropoietin (E + P) groups. Cell proliferation and apoptosis were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Ki-67 immunofluorescence, and flow cytometry, respectively. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-4 and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA). Cellular immunohistochemistry was utilized to detect the expression of proliferating cell nuclear antigen (PCNA), nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3). Quantitative real time polymerase chain reaction (qRT-PCR) and western blot were used to detect the expression of Bax, Bcl-2, Caspase-3, toll-like receptor 4 (TLR4) and p65. Furthermore, TLR4 antagonist (TAK-242) and activator (LPS) were used to study the relationship between EPO and TLR4. RESULTS: Propofol treatment caused morphological and structural damage of hippocampal neurons. However, EPO significantly improved this damage, enhanced cell proliferation, decreased apoptosis and pro-inflammatory factor content, up-regulated the expression of Ki-67, PCNA, Bcl-2, NGF, BDNF and NT-3, as well as decreased the expression of Bax, Caspase-3, TLR4 and p65 (p < 0.05). After TAK-242 or LPS treatment, it showed similar results in propofol + TAK-242 (T + P) group and E + P group. CONCLUSION: Erythropoietin could attenuate propofol-induced hippocampal neuronal cell injury in developing rats, which may be related to inhibit TLR4 expression.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Eritropoyetina/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Propofol/toxicidad , Receptor Toll-Like 4/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4/metabolismo
4.
J Alzheimers Dis ; 67(1): 137-147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30636740

RESUMEN

BACKGROUND: Disruption of intracellular Ca2+ homeostasis and associated autophagy dysfunction contribute to neuropathology in Alzheimer's disease (AD). OBJECTIVE: To study the effects of propofol on cell viability via its effects on intracellular Ca2+ homeostasis, and the impact of autophagy, in a neuronal model of presenilin-mutated familial AD (FAD). METHODS: We treated PC12 cells, stably transfected with either mutated presenilin-1 (L286V) or wild type (WT) controls, with propofol at different doses and durations, in the presence or absence of extracellular Ca2+, antagonists of inositol trisphosphate receptors (InsP3R, xestospongin C) and/or ryanodine receptors (RYR, dantrolene), or an inhibitor of autophagy flux (Bafilomycin). We determined cell viability, cytosolic Ca2+ concentrations ([Ca2+]c), vATPase protein expression, and lysosomal acidification. RESULTS: The propofol dose- and time-dependently decreased cell viability significantly more in L286V than WT cells, especially at the pharmacological dose (>50µM), and together with bafilomycin (40 nM). Clinically used concentrations of propofol (<20µM) tended to increase cell viability. Propofol significantly increased [Ca2+]c more in L286V than in WT cells, which was associated with decrease of vATPase expression and localization to the lysosome. Both toxicity and increased Ca2+ levels were ameliorated by inhibiting InsP3R/RYR. However, the combined inhibition of both receptors paradoxically increased [Ca2+]c, by inducing Ca2+ influx from the extracellular space, causing greater cytotoxicity. CONCLUSION: Impairment in autophagy function acts to deteriorate cell death induced by propofol in FAD neuronal cells. Cell death is ameliorated by either RYR or InsP3R antagonists on their own, but not when both are co-administered.


Asunto(s)
Enfermedad de Alzheimer/genética , Anestésicos Intravenosos/toxicidad , Autofagia/genética , Trastornos del Metabolismo del Calcio/genética , Trastornos del Metabolismo del Calcio/patología , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/patología , Presenilina-1/genética , Propofol/toxicidad , Adenosina Trifosfatasas/biosíntesis , Animales , Trastornos del Metabolismo del Calcio/metabolismo , Humanos , Síndromes de Neurotoxicidad/metabolismo , Células PC12 , Ratas , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos
5.
Anesth Analg ; 129(2): 608-617, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30303867

RESUMEN

BACKGROUND: Propofol can cause degeneration of developing brain cells and subsequent long-term learning or memory impairment. However, at the early stage of embryonic development, the molecular mechanism of propofol-induced inhibition in neural stem cells (NSCs) neurogenesis is still unclear. The aim of this study was to determine the role of propofol in NSCs neurogenesis and, more importantly, to explore the underlying mechanism. METHODS: First, a single intraperitoneal injection of propofol was performed in pregnant mice, and 6 hours after administration of propofol, the hippocampus RNA and the protein of the embryos' brains was extracted to analyze the expression of neuron-specific markers. Second, the primary NSCs were isolated from the hippocampus of mouse embryonic brain and then treated with propofol for cell viability, immunostaining, and transwell assays; more importantly, we performed RNA sequencing (RNA-seq) and q-reverse transcription polymerase chain reaction assays to identify genes regulated by propofol; the Western blot, small interfering RNA (SiRNA), and luciferase reporter assays were used to study the effects of propofol on calmodulin-dependent protein kinase (CaMk) II/5' adenosine monophosphate-activated protein kinase (AMPK)/activating transcription factor 5 (ATF5) signaling pathway. RESULTS: Our results indicated that propofol treatment could inhibit the proliferation, migration, and differentiation of NSCs. The results of RNA-seq assays showed that propofol treatment resulted in downregulation of a group of Ca-dependent genes. The following mechanism studies showed that propofol regulates the proliferation, differentiation, and migration of NSCs through the CaMkII/phosphorylation of serine at amino acid position 485 (pS485)/AMPK/ATF5 signaling pathway. CONCLUSIONS: The results from study demonstrated that propofol inhibits the proliferation, differentiation, and migration of NSCs, and these effects are partially mediated by CaMkII/pS485/AMPK/ATF5 signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Transcripción Activadores/metabolismo , Anestésicos Intravenosos/toxicidad , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proliferación Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Propofol/toxicidad , Proteínas Quinasas Activadas por AMP/genética , Factores de Transcripción Activadores/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica , Hipocampo/enzimología , Hipocampo/patología , Ratones Endogámicos C57BL , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Transducción de Señal
6.
Neurosci Lett ; 675: 152-159, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29578002

RESUMEN

AIM: To investigate the protective effect of microRNA-34a (miR-34a) on propofol-induced neurotoxicity and cognitive dysfunction. METHODS: After SH-SY5Y cells were treated with propofol to induce neurotoxicity, microRNA-34a mimics and inhibitors were transfected into the cells. The expression of apoptosis-related genes and the proteins were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. Sprague-Dawley (SD) rats received intraperitoneal injections of propofol, and were treated with microRNA-34a mimics and lentivirus-mediated microRNA-34a inhibitors. The Morris water maze (MWM) test was used to detect changes in motor function. RESULTS: Propofol anesthesia had an adverse effect on cell survival due to the increased expression of apoptosis-related genes such as cleaved caspase-3/8 and Bax, which was accompanied by reduced expression of ERK1/2, pERK1/2, and phosphorylated NF-kappaB p65 both in vivo and in vitro. Unexpectedly, microRNA-34a was upregulated after propofol treatment, and the inhibitors protected the SH-SY5Y cells from propofol-induced apoptosis. The microRNA-34a inhibitor suppressed the apoptosis-induced effects of propofol. This protection may have been partly diminished by PD98059, a MAPK kinase inhibitor. MicroRNA-34a inhibited or reverted the reduced expression of ERK1/2 and upregulated the expression of p-CREB significantly and specifically. Additionally, the microRNA inhibitors improved the learning and memory functions of animals suffering from neurologic impairment due to propofol treatment and reduced cell apoptosis in the hippocampus. CONCLUSION: microRNA-34a could improve anesthesia-induced cognitive dysfunction by suppressing cell apoptosis and recovering the expression of genes associated with the MAPK/ERK signaling pathway.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Fármacos Neuroprotectores/metabolismo , Propofol/toxicidad , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Actividad Motora , Ratas Sprague-Dawley
7.
PLoS One ; 13(2): e0192796, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447230

RESUMEN

The intravenous anesthetic propofol (2,6-diisopropylphenol) has been used for the induction and maintenance of anesthesia and sedation in critical patient care. However, the rare but severe complication propofol infusion syndrome (PRIS) can occur, especially in patients receiving high doses of propofol for prolonged periods. In vivo and in vitro evidence suggests that the propofol toxicity is related to the impaired mitochondrial function. However, underlying molecular mechanisms remain unknown. Therefore, we investigated effects of propofol on cell metabolism and death using a series of established cell lines of various origins, including neurons, myocytes, and trans-mitochondrial cybrids, with defined mitochondrial DNA deficits. We demonstrated that supraclinical concentrations of propofol in not less than 50 µM disturbed the mitochondrial function and induced a metabolic switch, from oxidative phosphorylation to glycolysis, by targeting mitochondrial complexes I, II and III. This disturbance in mitochondrial electron transport caused the generation of reactive oxygen species, resulting in apoptosis. We also found that a predisposition to mitochondrial dysfunction, caused by a genetic mutation or pharmacological suppression of the electron transport chain by biguanides such as metformin and phenformin, promoted propofol-induced caspase activation and cell death induced by clinical relevant concentrations of propofol in not more than 25 µM. With further experiments with appropriate in vivo model, it is possible that the processes to constitute the molecular basis of PRIS are identified.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Muerte Celular/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Glucólisis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Propofol/toxicidad , Animales , Caspasas/metabolismo , Muerte Celular/fisiología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Transporte de Electrón/fisiología , Glucólisis/fisiología , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Metformina/farmacología , Ratones , Mitocondrias/metabolismo , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
8.
Neurosci Lett ; 655: 95-100, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28676256

RESUMEN

Although propofol is a widely used intravenous general anaesthetic, many studies report its toxic potential, particularly on the developing central nervous system. We investigated its action on hypoglossal motoneurons (HMs) that control two critical functions in neonates, namely tongue muscle activity and airway patency. Thus, clinically relevant concentrations of propofol (1 and 5µM) were applied (4h) to neonatal rat brainstem slices to evaluate the expression of apoptosis-inducing factor (AIF) as biomarker of toxicity. This anaesthetic strongly increased AIF in the cytoplasm and the nucleus, without early loss of HMs. Electrophysiological recordings from HMs showed that propofol (5µM) enhanced GABA- and glycine-evoked current amplitude and lengthened GABAergic current decay time. Propofol also depressed NMDA receptor-mediated responses without affecting AMPA receptors. Since GABA and glycine depolarize neonatal HMs, we propose that the damaging action by propofol on these motoneurons might arise from the facilitated action of these transmitters with subsequent cytoplasmic Ca2+ overload. This phenomenon, in turn, may trigger cell death mechanisms manifested as increased expression of AIF and its translocation into the nucleus. Since propofol is also employed for induction and maintenance of paediatric surgery, caution is needed because its potential neurotoxicity might negatively impact neurodevelopment.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Nervio Hipogloso/citología , Neuronas Motoras/efectos de los fármacos , Propofol/toxicidad , Animales , Animales Recién Nacidos , Factor Inductor de la Apoptosis/metabolismo , Recuento de Células , Glicina/farmacología , Técnicas In Vitro , Neuronas Motoras/citología , Neuronas Motoras/fisiología , N-Metilaspartato/farmacología , Técnicas de Placa-Clamp , Ratas Wistar , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Ácido gamma-Aminobutírico/farmacología
9.
Anesth Analg ; 125(1): 241-254, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28622174

RESUMEN

BACKGROUND: Growing animal evidence demonstrates that prolonged exposure to propofol during brain development induces widespread neuronal cell death, but there is little information on the role of astrocytes. Astrocytes can release neurotrophic growth factors such as brain-derived neurotrophic factor (BDNF), which can exert the protective effect on neurons in paracrine fashion. We hypothesize that during propofol anesthesia, BDNF released from developing astrocytes may not be sufficient to prevent propofol-induced neurotoxicity. METHODS: Hippocampal astrocytes and neurons isolated from neonatal Sprague Dawley rats were exposed to propofol at a clinically relevant dose of 30 µM or dimethyl sulfoxide as control for 6 hours. Propofol-induced cell death was determined by propidium iodide (PI) staining in astrocyte-alone cultures, neuron-alone cultures, or cocultures containing either low or high density of astrocytes (1:9 or 1:1 ratio of astrocytes to neurons ratio [ANR], respectively). The astrocyte-conditioned medium was collected 12 hours after propofol exposure and measured by protein array assay. BDNF concentration in astrocyte-conditioned medium was quantified using enzyme-linked immunosorbent assay. Neuron-alone cultures were treated with BDNF, tyrosine receptor kinase B inhibitor cyclotraxin-B, glycogen synthase kinase 3ß (GSK3ß) inhibitor CHIR99021, or mitochondrial fission inhibitor Mdivi-1 before propofol exposure. Western blot was performed for quantification of the level of protein kinase B and GSK3ß. Mitochondrial shape was visualized through translocase of the outer membrane 20 staining. RESULTS: Propofol increased cell death in neurons by 1.8-fold (% of PI-positive cells [PI%] = 18.6; 95% confidence interval [CI], 15.2-21.9, P < .05) but did not influence astrocyte viability. The neuronal death was attenuated by a high ANR (1:1 cocultures; fold change [FC] = 1.17, 95% CI, 0.96-1.38, P < .05), but not with a low ANR [1:9 cocultures; FC = 1.87, 95% CI, 1.48-2.26, P > .05]). Astrocytes secreted BDNF in a cell density-dependent way and propofol decreased BDNF secretion from astrocytes. Administration of BDNF, CHIR99021, or Mdivi-1 significantly attenuated the propofol-induced neuronal death and aberrant mitochondria in neuron-alone cultures (FC = 0.8, 95% CI, 0.62-0.98; FC = 1.22, 95% CI, 1.11-1.32; FC = 1.35, 95% CI, 1.16-1.54, respectively, P < .05) and the cocultures with a low ANR (1:9; FC = 0.85, 95% CI, 0.74-0.97; FC = 1.08, 95% CI, 0.84-1.32; FC = 1.25, 95% CI, 1.1-1.39, respectively, P < .05). Blocking BDNF receptor or protein kinase B activity abolished astrocyte-induced neuroprotection in the cocultures with a high ANR (1:1). CONCLUSIONS: Astrocytes attenuate propofol-induced neurotoxicity through BDNF-mediated cell survival pathway suggesting multiple neuroprotective strategies such as administration of BDNF, astrocyte-conditioned medium, decreasing mitochondrial fission, or inhibition of GSK3ß.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Astrocitos/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Propofol/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/enzimología , Astrocitos/patología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Relación Dosis-Respuesta a Droga , Hipocampo/enzimología , Hipocampo/patología , Mitocondrias/enzimología , Mitocondrias/patología , Neuronas/enzimología , Neuronas/patología , Proteínas Tirosina Quinasas/metabolismo , Ratas Sprague-Dawley , Receptor trkB , Transducción de Señal/efectos de los fármacos
10.
Environ Toxicol Pharmacol ; 52: 121-128, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28411582

RESUMEN

Recent studies have demonstrated that propofol causes neurodegeneration in developing brains. Evidence has shown that dexmedetomidine has neuroprotective effects. However, whether dexmedetomidine can reduce propofol-induced neuroapoptosis and by what mechanisms it acts remain unclear. We investigated whether dexmedetomidine can attenuate propofol-induced neuroapoptosis by disturbing the PI3K/Akt/GSK3ß pathway during brain development. Seven-day-old rats were randomly exposed to 100mg/kg propofol and 100mg/kg propofol plus different doses of dexmedetomidine or 100mg/kg propofol and 75µg/kg dexmedetomidine plus PI3K inhibitor LY294002 or GSK3ß inhibitor TDZD-8. TEM and TUNEL were used to detect neuronal structure changes and apoptosis. The expression of phospho-Akt, phospho-GSK3ß, Akt and GSK3ß were quantified using western blots and immunofluorescence. Pretreatment with different doses of dexmedetomidine protected against propofol-induced neuroapoptosis. Furthermore, propofol decreased the levels of phospho-Akt and phospho-GSK3ß, whereas dexmedetomidine partially reversed this inhibition. In addition, treatment with LY294002 inhibited the neuroprotection of dexmedetomidine, whereas TDZD-8 enhanced neuroprotection. Our results indicate that dexmedetomidine prevents propofol-induced neuroapoptosis by increasing the levels of phospho-Akt and phospho-GSK3ß.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Dexmedetomidina/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Propofol/toxicidad , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Cromonas/farmacología , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Tiadiazoles/farmacología
11.
Anesthesiology ; 125(2): 333-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27341276

RESUMEN

BACKGROUND: Calabadion 2 is a new drug-encapsulating agent. In this study, the authors aim to assess its utility as an agent to reverse general anesthesia with etomidate and ketamine and facilitate recovery. METHODS: To evaluate the effect of calabadion 2 on anesthesia recovery, the authors studied the response of rats to calabadion 2 after continuous and bolus intravenous etomidate or ketamine and bolus intramuscular ketamine administration. The authors measured electroencephalographic predictors of depth of anesthesia (burst suppression ratio and total electroencephalographic power), functional mobility impairment, blood pressure, and toxicity. RESULTS: Calabadion 2 dose-dependently reverses the effects of ketamine and etomidate on electroencephalographic predictors of depth of anesthesia, as well as drug-induced hypotension, and shortens the time to recovery of righting reflex and functional mobility. Calabadion 2 displayed low cytotoxicity in MTS-3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium-based cell viability and adenylate kinase release cell necrosis assays, did not inhibit the human ether-à-go-go-related channel, and was not mutagenic (Ames test). On the basis of maximum tolerable dose and acceleration of righting reflex recovery, the authors calculated the therapeutic index of calabadion 2 in recovery as 16:1 (95% CI, 10 to 26:1) for the reversal of ketamine and 3:1 (95% CI, 2 to 5:1) for the reversal of etomidate. CONCLUSIONS: Calabadion 2 reverses etomidate and ketamine anesthesia in rats by chemical encapsulation at nontoxic concentrations.


Asunto(s)
Anestesia General/métodos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Ácidos Sulfónicos/farmacología , Anestésicos Disociativos/toxicidad , Anestésicos Intravenosos/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Etomidato/antagonistas & inhibidores , Etomidato/toxicidad , Ketamina/antagonistas & inhibidores , Ketamina/toxicidad , Masculino , Mutágenos/toxicidad , Necrosis/prevención & control , Equilibrio Postural/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos
12.
Neurotox Res ; 30(3): 434-52, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27189477

RESUMEN

A number of experimental studies have reported that exposure to common, clinically used anesthetics induce extensive neuroapoptosis and cognitive impairment when applied to young rodents, up to 2 weeks old, in phase of rapid synaptogenesis. Propofol is the most used general anesthetic in clinical practice whose mechanisms of neurotoxicity on the developing brain remains to be examined in depth. This study investigated effects of different exposures to propofol anesthesia on Fas receptor and Fas ligand expressions, which mediate proapoptotic and proinflammation signaling in the brain. Propofol (20 mg/kg) was administered to 7-day-old rats in multiple doses sufficient to maintain 2-, 4- and 6-h duration of anesthesia. Animals were sacrificed at 0, 4, 16 and 24 h after termination of anesthesia. It was found that propofol anesthesia induced Fas/FasL and downstream caspase-8 expression more prominently in the thalamus than in the cortex. Opposite, Bcl-2 and caspase-9, markers of intrinsic pathway activation, were shown to be more influenced by propofol treatment in the cortex. Further, we have established upregulation of caspase-1 and IL-1ß cytokine transcription as well as subsequent activation of microglia that is potentially associated with brain inflammation. Behavioral analyses revealed that P35 and P60 animals, neonatally exposed to propofol, had significantly higher motor activity during three consecutive days of testing in the open field, though formation of the intersession habituation was not prevented. This data, together with our previous results, contributes to elucidation of complex mechanisms of propofol toxicity in developing brain.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Proteína Ligando Fas/metabolismo , Propofol/toxicidad , Receptor fas/metabolismo , Anestésicos Intravenosos/toxicidad , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Encéfalo/inmunología , Encéfalo/patología , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Interleucina-1beta/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Ratas Wistar , Factores de Tiempo
13.
Neuropeptides ; 58: 53-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27103538

RESUMEN

BACKGROUND: Both hyperinflammation during sepsis and etomidate can suppress adrenal function. In this study, we explored whether treatment with pituitary adenylate cyclase-activating polypeptide (PACAP) relieves adrenal suppression in cecal ligation and puncture (CLP)-induced septic rats. MATERIALS AND METHODS: Female Sprague-Dawley rats were randomly divided into five groups (n=7 per group), including the sham group, sepsis group (CLP group), sepsis and etomidate group (CLP+ETO group), PACAP group, and etomidate alone group (ETO group). Rats were sacrificed on the third day of sepsis, and blood and adrenal gland samples were obtained for further testing. RESULTS: The PACAP reduced the apoptosis rate of adrenal cells and peripheral lymphocytes, improving adrenal function, inhibiting the secretion of interferon gamma (IFN-γ) from peripheral lymphocytes, and slightly relieving the suppression of the adrenal function induced by the injection of etomidate in sepsis. CONCLUSION: In septic conditions, the PACAP protects the adrenal gland by regulating peripheral inflammation, which slightly relieves the toxic effects of etomidate on adrenal function.


Asunto(s)
Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/fisiopatología , Anestésicos Intravenosos/toxicidad , Etomidato/toxicidad , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/administración & dosificación , Sepsis/tratamiento farmacológico , Glándulas Suprarrenales/lesiones , Glándulas Suprarrenales/metabolismo , Hormona Adrenocorticotrópica/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Corticosterona/sangre , Femenino , Interferón gamma/metabolismo , Ligadura , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Sepsis/complicaciones , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Receptor Toll-Like 4/metabolismo
14.
PLoS One ; 10(11): e0139311, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26555702

RESUMEN

BACKGROUND: Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3ß-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. METHODOLOGY: Immature Leydig cells isolated from 35 day-old rats were cultured with 30 µM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3-30 µM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. RESULTS AND CONCLUSIONS: In intact Leydig cells, 30 µM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 µM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 µM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 µM), it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In conclusion, etomidate directly inhibits the activities of CYP11A1 and HSD3B1, and the expression levels of Cyp11a1 and Hsd17b3, leading to the lower production of androgen by Leydig cells.


Asunto(s)
Andrógenos/biosíntesis , Anestésicos Intravenosos/toxicidad , Etomidato/toxicidad , Células Intersticiales del Testículo/efectos de los fármacos , 17-Hidroxiesteroide Deshidrogenasas/biosíntesis , 17-Hidroxiesteroide Deshidrogenasas/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/biosíntesis , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Anestésicos Intravenosos/farmacología , Animales , Células Cultivadas , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/biosíntesis , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Medios de Cultivo/farmacología , Citosol/química , Estradiol Deshidrogenasas/biosíntesis , Estradiol Deshidrogenasas/genética , Etomidato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hormonas Esteroides Gonadales/farmacología , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/ultraestructura , Masculino , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Microsomas/química , Mitocondrias/química , Ratas , Ratas Sprague-Dawley , Testículo/citología , Testículo/crecimiento & desarrollo
15.
Brain Res ; 1622: 321-7, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26168896

RESUMEN

Acute effects of propofol on memory and hippocampal long-term potentiation (LTP) in adult animals were reported. However, long-term effect of early postnatal application of propofol on memory was not totally disclosed. In this study, experiments were designed to verify the mechanisms underlying the long-term detrimental effects of propofol on memory and hippocampal synaptic plasticity. A consecutive propofol protocol from postnatal day 7 was applied to model anesthesia, long term memory and hippocampal synaptic plasticity were detected 2 months later. Our results showed that repeated propofol exposure in early phase affect the memory in the adult phase. Through recording the field excitatory postsynaptic potentials (fEPSPs) at Schaffer colletaral-CA1 synapses, both of basal synaptic transmission and hippocampal LTP were decreased after propofol application. While LTD induced by low frequency stimulation and 3,5-dihydroxyphenylglycine (3,5-DHPG) were not affected. Through analyzing the ultrastructure of dendrite in CA1 region, we found that propofol application decreased the spine density, which was consistent with the decrease of PSD-95 expression. In addition, p-AKT level was reduced after first propofol application. Intracerebroventricular injection of Akt inhibitor could mimic the propofol effects on basal synaptic transmission, hippocampal LTP and memory. Taken together, these results suggested that propofol possibly decreased AKT signaling pathway to restrict the spine development, finally leading to hippocampal LTP impairment and memory deficit.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Propofol/toxicidad , Animales , Animales Recién Nacidos , Cromonas/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Homólogo 4 de la Proteína Discs Large , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Glicina/análogos & derivados , Glicina/farmacología , Guanilato-Quinasas/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Memoria/fisiología , Ratones Endogámicos C57BL , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resorcinoles/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
16.
J Neuroimmune Pharmacol ; 10(1): 179-89, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25649847

RESUMEN

Postoperative cognitive dysfunction (POCD) often occurs in elderly patients and may involve neuroinflammation. This study was to determine whether anesthetic choice (intravenous vs. volatile anesthetics) affects cognitive impairment and neuroinflammation in elderly rat. Total 54 twenty-month old male Fischer 344 rats were assigned randomly to control, right carotid exposure under propofol-buprenorphine or isoflurane-buprenorphine anesthesia groups. They were tested by Barnes maze and fear conditioning from 6 days after the surgery. Their brains were harvested 24 h after the surgery for quantifying interleukin (IL) 1ß, tumor necrosis factor (TNF)α and ionized calcium binding adaptor molecule 1 (Iba-1). We showed that the heart rates and mean arterial blood pressure were similar during surgery under propofol-buprenorphine or isoflurane-buprenorphine anesthesia. There was no difference in the surgery-induced increase of the plasma IL-1ß and TNFα levels under these two types of anesthesia. Rats subjected to surgery took longer than control rats to identify the target hole 8 days after the completion of training sessions in Barnes maze [32 ± 23 s for control, 118 ± 64 s for propofol group (P < 0.05 vs. control), 107 ± 64 s for isoflurane group (P < 0.05 vs. control)] and had less freezing behavior in the fear conditioning test. Surgery and anesthesia increased IL-1ß and Iba-1 but did not affect tau phosphorylated at S199/202 and S396 in the cerebral cortex and hippocampus. Our results suggest that surgery under general anesthesia induces neuroinflammation and cognitive impairment. Anesthetic choice may not be a significant modifiable factor for these effects.


Asunto(s)
Anestésicos Generales/toxicidad , Inflamación/inducido químicamente , Discapacidades para el Aprendizaje/inducido químicamente , Trastornos de la Memoria/inducido químicamente , Complicaciones Posoperatorias/inducido químicamente , Anestésicos por Inhalación/toxicidad , Anestésicos Intravenosos/toxicidad , Animales , Buprenorfina/toxicidad , Proteínas de Unión al Calcio/metabolismo , Miedo/psicología , Inflamación/patología , Interleucina-1beta/metabolismo , Isoflurano/toxicidad , Discapacidades para el Aprendizaje/psicología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/psicología , Proteínas de Microfilamentos/metabolismo , Complicaciones Posoperatorias/patología , Complicaciones Posoperatorias/psicología , Propofol/toxicidad , Ratas , Ratas Endogámicas F344 , Factor de Necrosis Tumoral alfa/metabolismo
17.
Anesth Analg ; 120(5): 1025-1031, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25517195

RESUMEN

BACKGROUND: Alphaxalone is a neuroactive steroid anesthetic that is poorly water soluble. It was formulated in 1972 as Althesin® using Cremophor® EL, a nonionic surfactant additive. The product was a versatile short-acting IV anesthetic used in clinical practice in many countries from 1972 to 1984. It was withdrawn from clinical practice because of hypersensitivity to Cremophor EL. In the investigations reported here, we compared the properties of 3 anesthetics: a new aqueous solution of alphaxalone dissolved in 7-sulfobutyl-ether-ß-cyclodextrin (SBECD, a water-soluble molecule with a lipophilic cavity that enables drug solubilization in water); a Cremophor EL preparation of alphaxalone; and propofol. METHODS: Two solutions of alphaxalone (10 mg/mL) were prepared: one using 13% w/v solution of SBECD in 0.9% saline (PHAX) and the other a solution of alphaxalone prepared as described in the literature using 20% Cremophor EL (ALTH). A solution of propofol (10 mg/mL; PROP) in 10% v/v soya bean oil emulsion was used as a comparator anesthetic. Jugular IV catheters were implanted in male Wistar rats (180-220 g) under halothane anesthesia. Separate groups of 10 implanted rats each were given IV injections of PHAX, ALTH, or PROP from 1.2 mg/kg to lethal doses. Doses of each drug that caused anesthesia (loss of righting reflex and response to tail pinch) and lethality in 50% of rats were calculated by probit analysis. The drugs were also compared for effects on arterial blood pressure and heart rate. RESULTS: IV PHAX, ALTH, and PROP caused dose-related sedation and anesthesia, with 50% effective dose (ED50) values for loss of righting reflex being 2.8, 3.0, and 4.6 mg/kg, respectively. PROP led to death in 10 of 10 rats at doses >30 mg/kg (50% lethal dose (LD50) = 27.7 mg/kg). A dose of alphaxalone 53 mg/kg as ALTH caused 10 of 10 rats to die (LD50 = 43.6 mg/kg), whereas none died when given the same doses of alphaxalone formulated in SBECD. PHAX caused 20% lethality at the maximal dose tested of 84 mg/kg. PHAX caused less cardiovascular depression than PROP. Control experiments with the 3 drug-free vehicles showed no effects. CONCLUSIONS: Alphaxalone caused fast-onset anesthesia at the same dose for both formulations (PHAX and ALTH). The use of SBECD as a drug-solubilizing excipient did not alter the anesthetic effect of alphaxalone, but it did increase the therapeutic index of alphaxalone in PHAX compared with ALTH. PHAX has a higher safety margin than the propofol lipid formulation and also the alphaxalone formulation in Cremophor EL (ALTH).


Asunto(s)
Anestésicos Intravenosos/farmacología , Excipientes/química , Glicerol/análogos & derivados , Pregnanodionas/farmacología , Propofol/farmacología , Agua/química , beta-Ciclodextrinas/química , Anestésicos Intravenosos/química , Anestésicos Intravenosos/toxicidad , Animales , Presión Arterial/efectos de los fármacos , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Glicerol/química , Frecuencia Cardíaca/efectos de los fármacos , Dosificación Letal Mediana , Masculino , Actividad Motora/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Pregnanodionas/química , Pregnanodionas/toxicidad , Propofol/química , Propofol/toxicidad , Ratas Wistar , Reflejo/efectos de los fármacos , Medición de Riesgo , Sueño/efectos de los fármacos , Solubilidad , Aceite de Soja/química , Factores de Tiempo
18.
Anesthesiology ; 122(2): 343-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25296107

RESUMEN

BACKGROUND: Propofol is a short-acting intravenous anesthetic agent. In rare conditions, a life-threatening complication known as propofol infusion syndrome can occur. The pathophysiologic mechanism is still unknown. Some studies suggested that propofol acts as uncoupling agent, others suggested that it inhibits complex I or complex IV, or causes increased oxidation of cytochrome c and cytochrome aa3, or inhibits mitochondrial fatty acid metabolism. Although the exact site of interaction is not known, most hypotheses point to the direction of the mitochondria. METHODS: Eight rats were ventilated and sedated with propofol up to 20 h. Sequential biopsy specimens were taken from liver and skeletal muscle and used for determination of respiratory chain activities and propofol concentration. Activities were also measured in skeletal muscle from a patient who died of propofol infusion syndrome. RESULTS: In rats, authors detected a decrease in complex II+III activity starting at low tissue concentration of propofol (20 to 25 µM), further declining at higher concentrations. Before starting anesthesia, the complex II+III/citrate synthase activity ratio in liver was 0.46 (0.25) and in skeletal muscle 0.23 (0.05) (mean [SD]). After 20 h of anesthesia, the ratios declined to 0.17 (0.03) and 0.12 (0.02), respectively. When measured individually, the activities of complexes II and III remained normal. Skeletal muscle from one patient taken in the acute phase of propofol infusion syndrome also shows a selective decrease in complex II+III activity (z-score: -2.96). CONCLUSION: Propofol impedes the electron flow through the respiratory chain and coenzyme Q is the main site of interaction with propofol.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Propofol/toxicidad , Ubiquinona/metabolismo , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Respiración Artificial , Síndrome
19.
Brain Res Bull ; 110: 30-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25498394

RESUMEN

BACKGROUND: Several studies have demonstrated that intraoperative remifentanil infusions have been associated with opioid-induced hyperalgesia (OIH). Activation of delta opioid receptor (DOR) and augmentation of N-methyl-d-aspartate (NMDA) receptor expression and function may play an important role in the development of OIH. The aim of this study was to investigate whether DOR inhibition could prevent remifentanil-induced hyperalgesia via regulating spinal NMDA receptor expression and function in vivo and in vitro. METHODS: A rat model of remifentanil-induced postoperative hyperalgesia was performed with the DOR agonist deltorphin-deltorphin II or the DOR antagonist naltrindole injected intrathecally 10 min before remifentanil infusion. Mechanical and thermal hyperalgesia were measured at -24h, 2, 6, 24 and 48 h after remifentanil infusion. Western blot was applied to detect the membrane and total expression of DOR and NMDA receptor subunits (NR1, NR2A and NR2B) in spinal cord L4-L6 segments. In addition, whole-cell patch-clamp recording was used to investigate the effect of DOR inhibition on NMDA receptor-induced current in spinal cord slices in vitro. RESULTS: We found that membrane trafficking of DOR, NR1 and NR2B subunits in the spinal cord increased after remifentanil administration and surgery. The DOR antagonist naltrindole could attenuate mechanical and thermal hyperalgesia without affecting baseline nociceptive threshold, reduce membrane expression of DOR and decrease the membrane and total expressions of NR1 and NR2B subunits. Furthermore, the amplitude and the frequency of NMDA receptor-induced current were significantly increased by remifentanil incubation in neurons of the dorsal horn, which was reversed by the application of naltrindole. CONCLUSION: The above results indicate that inhibition of DOR could significantly inhibit remifentanil-induced hyperalgesia via modulating the total protein level, membrane trafficking and function of NMDA receptors in the dorsal horn of spinal cord, suggesting that naltrindole could be a potential anti-hyperalgesic agent for treating OIH.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Hiperalgesia/prevención & control , Dolor Postoperatorio/prevención & control , Piperidinas/toxicidad , Receptores Opioides delta/antagonistas & inhibidores , Médula Espinal/efectos de los fármacos , Anestésicos Intravenosos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Calor , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Vértebras Lumbares , Masculino , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Oligopéptidos/farmacología , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Dolor Postoperatorio/inducido químicamente , Piperidinas/uso terapéutico , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Remifentanilo , Médula Espinal/metabolismo , Técnicas de Cultivo de Tejidos , Tacto
20.
Arch Pharm Res ; 36(6): 775-82, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23543651

RESUMEN

Urethane, which is used as an anesthetic for animal experiments, causes inflammation and cancer in the lung. BALB/c mice received 1 mg/g of urethane once a week for four consecutive weeks via intraperitoneal injections developed interstitial infiltration of inflammatory cells and tumors in the lung. However, the intracellular signaling events which urethane causes inflammation and cancer are largely unknown. Here we show that urethane caused overproduction of reactive oxygen species (ROS) in RAW 264.7 macrophages and A549 lung epithelial cells. Pretreatment of these cells with the antioxidant N-acetylcysteine attenuated the urethane-induced ROS production. Urethane increased heme oxygenase-1 expression to protect these cells from cytotoxicity caused by overproduced ROS. In addition, urethane activated extracellular signal-regulated kinase (ERK) in both cell types. Overall, our data imply that urethane stimulates ROS production and ERK activation in macrophages and lung epithelial cells, and the overproduced ROS and activated ERK may promote tumor formation in the lung.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Pulmón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Uretano/toxicidad , Acetilcisteína/farmacología , Anestésicos Intravenosos/toxicidad , Animales , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Hemo-Oxigenasa 1/metabolismo , Humanos , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA