Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 289(5): 2992-3000, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24338014

RESUMEN

Plasma plasminogen is the precursor of the tumor angiogenesis inhibitor, angiostatin. Generation of angiostatin in blood involves activation of plasminogen to the serine protease plasmin and facilitated cleavage of two disulfide bonds and up to three peptide bonds in the kringle 5 domain of the protein. The mechanism of reduction of the two allosteric disulfides has been explored in this study. Using thiol-alkylating agents, mass spectrometry, and an assay for angiostatin formation, we show that the Cys(462)-Cys(541) disulfide bond is already cleaved in a fraction of plasma plasminogen and that this reduced plasminogen is the precursor for angiostatin formation. From the crystal structure of plasminogen, we propose that plasmin ligands such as phosphoglycerate kinase induce a conformational change in reduced kringle 5 that leads to attack by the Cys(541) thiolate anion on the Cys(536) sulfur atom of the Cys(512)-Cys(536) disulfide bond, resulting in reduction of the bond by thiol/disulfide exchange. Cleavage of the Cys(512)-Cys(536) allosteric disulfide allows further conformational change and exposure of the peptide backbone to proteolysis and angiostatin release. The Cys(462)-Cys(541) and Cys(512)-Cys(536) disulfides have -/+RHHook and -LHHook configurations, respectively, which are two of the 20 different measures of the geometry of a disulfide bond. Analysis of the structures of the known allosteric disulfide bonds identified six other bonds that have these configurations, and they share some functional similarities with the plasminogen disulfides. This suggests that the -/+RHHook and -LHHook disulfides, along with the -RHStaple bond, are potential allosteric configurations.


Asunto(s)
Angiostatinas/metabolismo , Disulfuros/metabolismo , Fibrinolisina/metabolismo , Plasminógeno/metabolismo , Precursores de Proteínas/metabolismo , Regulación Alostérica , Angiostatinas/química , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Fibrinolisina/química , Humanos , Oxidación-Reducción , Plasminógeno/química , Precursores de Proteínas/química , Estructura Terciaria de Proteína , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo
2.
Bioorg Khim ; 40(6): 642-57, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25895360

RESUMEN

The main physiological function of plasmin is a blood clot fibrinolysis and restore normal blood flow. To date, however, it became apparent that in addition to thrombolysis plasminogen/plasmin system plays an important physiological and pathological role in the degradation of extracellular matrix, embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation and tumor cells migration. This review focuses on the structural features of plasminogen, the regulation of its activation by physiological plasminogen activators, inhibitors of plasmin and plasminogen activators, the role of the plasminogen binding to fibrin, cellular receptors and extracellular ligands in performing various functions by formed plasmin.


Asunto(s)
Fibrinolisina/química , Fibrinólisis , Neovascularización Patológica/genética , Plasminógeno/química , Secuencia de Aminoácidos , Angiostatinas/química , Angiostatinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibrinolisina/antagonistas & inhibidores , Fibrinolisina/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Plasminógeno/antagonistas & inhibidores , Plasminógeno/metabolismo , Activadores Plasminogénicos/antagonistas & inhibidores , Activadores Plasminogénicos/química
3.
Biol Chem ; 392(4): 347-56, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21194375

RESUMEN

Many proteins in the fibrinolysis pathway contain antiangiogenic kringle domains. Owing to the high degree of homology between kringle domains, there has been a safety concern that antiangiogenic kringles could interact with common kringle proteins during fibrinolysis leading to adverse effects in vivo. To address this issue, we investigated the effects of several antiangiogenic kringle proteins including angiostatin, apolipoprotein(a) kringles IV(9)-IV(10)-V (LK68), apolipoprotein(a) kringle V (rhLK8) and a derivative of rhLK8 mutated to produce a functional lysine-binding site (Lys-rhLK8) on the entire fibrinolytic process in vitro and analyzed the role of lysine binding. Angiostatin, LK68 and Lys-rhLK8 increased clot lysis time in a dose-dependent manner, inhibited tissue-type plasminogen activator-mediated plasminogen activation on a thrombin-modified fibrinogen (TMF) surface, showed binding to TMF and significantly decreased the amount of plasminogen bound to TMF. The inhibition of fibrinolysis by these proteins appears to be dependent on their functional lysine-binding sites. However, rhLK8 had no effect on these processes owing to an inability to bind lysine. Collectively, these results indicate that antiangiogenic kringles without lysine binding sites might be safer with respect to physiological fibrinolysis than lysine-binding antiangiogenic kringles. However, the clinical significance of these findings will require further validation in vivo.


Asunto(s)
Apolipoproteínas A/química , Apolipoproteínas A/farmacología , Fibrinólisis/efectos de los fármacos , Kringles , Lisina , Plasminógeno/química , Plasminógeno/farmacología , Secuencia de Aminoácidos , Inhibidores de la Angiogénesis/efectos adversos , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/farmacología , Angiostatinas/efectos adversos , Angiostatinas/química , Angiostatinas/metabolismo , Angiostatinas/farmacología , Apolipoproteínas A/efectos adversos , Apolipoproteínas A/metabolismo , Sitios de Unión , Relación Dosis-Respuesta a Droga , Fibrina/metabolismo , Fibrinógeno/química , Fibrinógeno/metabolismo , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Plasminógeno/efectos adversos , Plasminógeno/metabolismo , Trombina/química , Trombina/metabolismo , Activador de Tejido Plasminógeno/metabolismo
4.
Biol Chem ; 391(4): 311-20, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20128685

RESUMEN

A large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific interactions between these two protease families appears to be complex, and much work remains to elucidate it. Complete understanding how this functional network resolves over time, given specific initial conditions, and how it might be controllably manipulated, will probably contribute to the emergence of novel diagnostics and therapeutic agents for major diseases.


Asunto(s)
Calicreínas/metabolismo , Trombosis/metabolismo , Angiostatinas/química , Angiostatinas/metabolismo , Animales , Activación Enzimática , Humanos , Inhibidores de Proteasas/metabolismo , Receptores Proteinasa-Activados/metabolismo
6.
Cancer Biother Radiopharm ; 22(5): 704-12, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17979573

RESUMEN

UNLABELLED: Recent discoveries have identified endothelial cell-surface F(1)F(0) adenosine triphosphate (ATP) synthase as the key target for angiostatin (AST) action. As this enzyme is also present on tumor cells, we investigated whether radiolabeled AST may directly target cancer cell-surface ATP synthase in vitro and in vivo. METHODS: Cell-binding characteristics of (125)I-AST was evaluated on human umbilical vein endothelial (HUVE) and SNU-C5 colon carcinoma cells. The molecular target for binding was investigated with anti-ATP synthase antibodies and RGDyV. Biodistribution and imaging experiments were performed in mice xenografted with carcinoma and sarcoma tumors. Tumor localization of ATP synthase and exogenous AST was compared via double immunostaining. RESULTS: Both HUVE and SNU-C5 cells showed specific (125)I-AST binding that was dose-dependently inhibited by excess AST, with IC(50) values of 3.5 and 0.2 microM, respectively. Both cell types stained positive for ATP synthase and demonstrated an approximately 50% reduction in AST binding by antibodies against the alpha- and beta-subunit of the enzyme. (123)I-AST injected in mice allowed for the clear tumor visualization with significant tumor accumulation and uptake ratios. Immunostaining revealed a localization of exogenous AST to closely correlate to that of tumor-cell ATP synthase. CONCLUSIONS: AST can directly target tumor-cell ATP synthase, and AST imaging may thus be useful for monitoring tumor ATP synthase expression.


Asunto(s)
Angiostatinas/metabolismo , Radioisótopos de Yodo/química , Neoplasias/metabolismo , ATPasas de Translocación de Protón/metabolismo , Ácido Aminocaproico/farmacología , Angiostatinas/química , Angiostatinas/farmacocinética , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Línea Celular , Línea Celular Tumoral , Células Endoteliales/metabolismo , Humanos , Marcaje Isotópico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Unión Proteica/efectos de los fármacos , ATPasas de Translocación de Protón/inmunología , Cintigrafía , Ratas , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Chembiochem ; 7(11): 1774-82, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16991168

RESUMEN

We wish to propose a novel mechanism by which the triggering of a biochemical signal can be controlled by the hierarchical coupling between a protein redox equilibrium and an external mechanical force. We have characterized this mechanochemical mechanism in angiostatin, and we have evidence that it can switch the access to partially unfolded structures of this protein. We have identified a metastable intermediate that is specifically accessible under thioredoxin-rich reducing conditions, like those met by angiostatin on the surface of a tumor cell. The structure of the same intermediate accounts for the unexplained antiangiogenic activity of angiostatin. These findings demonstrate a new link between redox biology and mechanically regulated processes.


Asunto(s)
Angiostatinas/química , Angiostatinas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Simulación por Computador , Disulfuros/química , Disulfuros/metabolismo , Modelos Moleculares , Imitación Molecular , Neoplasias/metabolismo , Oxidación-Reducción , Unión Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Estrés Mecánico
8.
Thromb Haemost ; 95(4): 668-77, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16601838

RESUMEN

The molecular mechanism mediated by multiple forms of angiostatin via acting on proliferating vascular endothelium remains elusive. To address whether three forms of angiostatin, K1-3, K1-4 or K1-4.5, utilized similar or distinct pathways to mediate anti-angiogenesis, we adopted an adenoviral expression system to express secretable angiostatin molecules for CM collection. The anti-angiogenic activity of K1-3, K1-4 or K1-4.5 was confirmed by using proliferation, migration, tube formation and apoptotic assays of human endothelial cells. These angiostatin molecules at comparable expression level inhibited various in vitro angiogenesis assays with some variations. Furthermore, K1-3, K1-4 or K1-4.5 increased the expression of p53 protein and its downstream effectors, enhanced FasL-mediated signaling pathways, and decreased activation of AKT. At least three different receptors, Fas, integrin alpha(v)beta3 and ATP synthase, were involved in the anti-angiogenic action of angiostatin molecules. Besides, the expression of 189 genes at mRNA level was significantly altered by K1-3, K1-4 or K1-4.5. More than 70% of these genes participate in growth, inflammation, apoptosis, migration and extracellular matrix. Taken together, K1-3, K1-4 and K1-4.5, regardless of the number of kringles in the angiostatin molecules, mediated anti-angiogenesis via mostly similar pathways. We are the first to demonstrate the involvement of DAPK1 in the mediation of anti-angiogenesis by angiostatin.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Angiostatinas/biosíntesis , Angiostatinas/química , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Necrosis Tumoral/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adenoviridae/metabolismo , Angiostatinas/metabolismo , Movimiento Celular , Proliferación Celular , Endotelio Vascular/citología , Proteína Ligando Fas , Células HL-60 , Humanos , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Transducción de Señal
10.
J Cell Biochem ; 96(2): 242-61, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16094651

RESUMEN

Tumor growth requires the development of new vessels that sprout from pre-existing normal vessels in a process known as "angiogenesis" [Folkman (1971) N Engl J Med 285:1182-1186]. These new vessels arise from local capillaries, arteries, and veins in response to the release of soluble growth factors from the tumor mass, enabling these tumors to grow beyond the diffusion-limited size of approximately 2 mm diameter. Angiostatin, a naturally occurring inhibitor of angiogenesis, was discovered based on its ability to block tumor growth in vivo by inhibiting the formation of new tumor blood vessels [O'Reilly et al. (1994a) Cold Spring Harb Symp Quant Biol 59:471-482]. Angiostatin is a proteolytically derived internal fragment of plasminogen and may contain various members of the five plasminogen "kringle" domains, depending on the exact sites of proteolysis. Different forms of angiostatin have measurably different activities, suggesting that much remains to be elucidated about angiostatin biology. A number of groups have sought to identify the native cell surface binding site(s) for angiostatin, resulting in at least five different binding sites proposed for angiostatin on the surface of endothelial cells (EC). This review will consider the data supporting all of the various reported angiostatin binding sites and will focus particular attention on the angiostatin binding protein identified by our group: F(1)F(O) ATP synthase. There have been several developments in the quest to elucidate the mechanism of action of angiostatin and the regulation of its receptor. The purpose of this review is to describe the highlights of research on the mechanism of action of angiostatin, its' interaction with ATP synthase on the EC surface, modulators of its activity, and issues that should be explored in future research related to angiostatin and other anti-angiogenic agents.


Asunto(s)
Angiostatinas/metabolismo , Proteínas de la Membrana/metabolismo , Complejos de ATP Sintetasa/metabolismo , Angiostatinas/química , Angiostatinas/genética , Animales , Anexina A2/metabolismo , Antígenos/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Proteoglicanos/metabolismo
11.
J Biol Chem ; 280(41): 34859-69, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16043488

RESUMEN

We have previously identified angiomotin by its ability to bind to and mediate the anti-angiogenic properties of angiostatin. In vivo and in vitro data indicate an essential role of angiomotin in endothelial cell motility. Here we show that angiostatin binds angiomotin on the cell surface and provide evidence for a transmembrane model for the topology of both p80 and p130 angiomotin isoforms. Immunofluorescence analysis shows that angiomotin co-localized with ZO-1 in cell-cell contacts in endothelial cells in vitro and in angiogenic blood vessels of the postnatal mouse retina in vivo. Transfection of p80 as well as p130 angiomotin in Chinese hamster ovary cells resulted in junctional localization of both isoforms. Furthermore, p130 angiomotin could recruit ZO-1 to actin stress fibers. The p130 but not p80 isoform could be coprecipitated with MAGI-1b, a component of endothelial tight junctions. Paracellular permeability, as measured by diffusion of fluorescein isothiocyanate-dextran, was reduced by p80 and p130 angiomotin expression with 70 and 88%, respectively, compared with control. Angiostatin did not have any effect on cell permeability but inhibited the migration of angiomotin-expressing cells in the Boyden chamber assay. We conclude that angiomotin, in addition to controlling cell motility, may play a role in the assembly of endothelial cell-cell junctions.


Asunto(s)
Proteínas Portadoras/fisiología , Células Endoteliales/citología , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/fisiología , Empalme Alternativo , Angiomotinas , Proteína 1 Similar a la Angiopoyetina , Angiostatinas/química , Angiostatinas/metabolismo , Animales , Biotinilación , Western Blotting , Células CHO , Capilares/citología , Bovinos , Comunicación Celular , Membrana Celular/metabolismo , Movimiento Celular , Biología Computacional , Cricetinae , Reactivos de Enlaces Cruzados/farmacología , Difusión , Endotelio Vascular/citología , Fluoresceína-5-Isotiocianato/farmacología , Células HeLa , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos , Microscopía Fluorescente , Octoxinol , Permeabilidad , Fosfoproteínas/metabolismo , Plásmidos/metabolismo , Polietilenglicoles/farmacología , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Proteínas/metabolismo , Retina/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Factores de Tiempo , Tripsina/farmacología , Proteína de la Zonula Occludens-1
12.
Hum Gene Ther ; 15(10): 945-59, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15585110

RESUMEN

An alternative form of gene therapy involves immunoisolation of a nonautologous cell line engineered to secrete a therapeutic product. Encapsulation of these cells in a biocompatible polymer serves to protect these allogeneic cells from host-versus-graft rejection while recombinant products and nutrients are able to pass by diffusion. This strategy was applied to the treatment of cancer with some success by delivering either interleukin 2 or angiostatin. However, as cancer is a complex, multifactorial disease, a multipronged approach is now being developed to attack tumorigenesis via multiple pathways in order to improve treatment efficacy. A combination of immunotherapy with angiostatic therapy was investigated by treating B16-F0/neu melanoma-bearing mice with intraperitoneally implanted, microencapsulated mouse myoblasts (C2C12) genetically modified to deliver angiostatin and an interleukin 2 fusion protein (sFvIL-2). The combination treatment resulted in improved survival, delayed tumor growth, and increased histological indices of antitumor activity (apoptosis and necrosis). In addition to improved efficacy, the combination treatment also ameliorated some of the undesirable side effects from the individual treatments that have led to the previous failure of the single treatments, for example, inflammatory response to IL-2 or vascular mimicry due to angiostatin. In conclusion, the combination of immuno- and antiangiogenic therapies delivered by immunoisolated cells was superior to individual treatments for antitumorigenesis activity, not only because of their known mechanisms of action but also because of unexpected protection against the adverse side effects of the single treatments. Thus, the concept of a "cocktail" strategy, with microencapsulation delivering multiple antitumor recombinant molecules to improve efficacy, is validated.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Inmunoterapia/métodos , Neoplasias/genética , Neoplasias/terapia , Angiostatinas/química , Angiostatinas/genética , Angiostatinas/metabolismo , Animales , Apoptosis , Línea Celular , Supervivencia Celular , Citocinas/metabolismo , Composición de Medicamentos , Endotelio Vascular/citología , Ensayo de Inmunoadsorción Enzimática , Terapia Genética/métodos , Inmunohistoquímica , Interleucina-2/genética , Interleucina-2/metabolismo , Activación de Linfocitos , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Necrosis , Proteínas Recombinantes/química , Bazo/metabolismo , Linfocitos T/metabolismo , Linfocitos T Citotóxicos/metabolismo , Factores de Tiempo , Transgenes , Factor de von Willebrand/metabolismo
13.
J Biochem Mol Biol ; 37(2): 159-66, 2004 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15469691

RESUMEN

Angiostatin is a potent anti-angiogenic protein. To examine the angiostatin-interacting proteins, we used the display-cloning method with a T7 phage library presenting human cDNAs. The specific T7 phage clone that bound to the immobilized angiostatin was isolated, and a novel gene encoding the displayed polypeptide on the isolated T7 phage was identified. The displayed angiostatin-binding sequence was expressed in E. coli as a soluble protein and purified to homogeneity. This novel angiostatin-binding region interacted specifically to angiostatin with a dissociation constant of 3.4 x 10(-7) M. A sequence analysis showed that the identified sequence was a part of the large ORF of 1,998 amino acids, whose function has not yet been characterized. A Northern analysis indicated that the gene containing the angiostatin-binding sequence was expressed differentially in the developmental stages or cell types.


Asunto(s)
Angiostatinas/metabolismo , Proteínas Portadoras/metabolismo , Clonación Molecular , Secuencia de Aminoácidos , Angiostatinas/química , Anticuerpos Monoclonales/metabolismo , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Northern Blotting , Western Blotting , Proteínas Portadoras/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Kringles , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Biblioteca de Péptidos , Fosforilación , Pruebas de Precipitina , Unión Proteica , ARN Mensajero/metabolismo , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Solubilidad , Resonancia por Plasmón de Superficie
14.
J Biol Chem ; 279(37): 38267-76, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15220341

RESUMEN

Plasminogen has been implicated in extracellular matrix degradation by invading cells, but few high affinity cell surface receptors for the molecule have been identified. Previous studies have reported that the plasma protein, histidine-rich glycoprotein (HRG), interacts with plasminogen and cell surfaces, raising the possibility that HRG may immobilize plasminogen/plasmin to cell surfaces. Here we show, based on optical biosensor analyses, that immobilized HRG interacts with soluble plasminogen with high affinity and with an extremely slow dissociation rate. Furthermore, the HRG-plasminogen interaction is lysine-dissociable and involves predominately the amino-terminal domain of HRG, and the fifth kringle domain of plasminogen, but not the carboxyl-terminal lysine of HRG. HRG was also shown to tether plasminogen to cell surfaces, with this interaction being potentiated by elevated Zn(2+) levels and low pH, conditions that prevail at sites of tissue injury, tumor growth, and angiogenesis. Based on these data we propose that HRG acts as a soluble adaptor molecule that binds to cells at sites of tissue injury, tumor growth, and angiogenesis, providing a high affinity receptor for tethering plasminogen to the cell surface and thereby enhancing the migratory potential of cells.


Asunto(s)
Plasminógeno/química , Proteínas/química , Receptores de Superficie Celular/química , Angiostatinas/química , Animales , Baculoviridae/genética , Técnicas Biosensibles , Western Blotting , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno , Insectos , Cinética , Lisina/química , Ratones , Microscopía Fluorescente , Plásmidos/metabolismo , Plasminógeno/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie , Factores de Tiempo , Transfección , Zinc/química
15.
Semin Thromb Hemost ; 30(1): 83-93, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15034800

RESUMEN

The quiescent vascular system in the adult body represents the imbalanced net outcome of overproduction of endogenous angiogenesis inhibitors and reduced levels of angiogenic factors. While some endogenous inhibitors are expressed under physiological conditions, they can also be generated in association with tumor growth. Angiostatin is such a specific angiogenesis inhibitor produced by tumors. It inhibits primary and metastatic tumor growth by blocking tumor angiogenesis. Having demonstrated potent antitumor activity in animal studies, angiostatin is now in clinical trials for human cancer therapy. Angiostatin is not a novel protein molecule coded by novel DNA sequences. Instead, it is an internal proteolytic fragment of a known protein, plasminogen. Surprisingly, most kringle domains of plasminogen only inhibit angiogenesis when cleaved as fragments from their parent protein that lacks antiangiogenic activity. These findings suggest that they are cryptic fragments hidden in large protein molecules. Thus, proteolytic processing plays a critical role in down-regulation of angiogenesis. Despite proteolytic processing, the antiangiogenic mechanism of angiostatin remains an enigma. Without knowing the mechanisms, it is difficult to predict the ultimate outcome of ongoing clinical trials. In this article, we discuss what is known about angiostatin and how this molecule specifically inhibits angiogenesis. We hope that the information will be useful for further development of angiostatin and its related inhibitors as therapeutic agents.


Asunto(s)
Angiostatinas/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/uso terapéutico , Angiostatinas/química , Humanos , Neoplasias/patología , Neovascularización Patológica/prevención & control
16.
Semin Cancer Biol ; 14(2): 139-45, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15018898

RESUMEN

Like most embryonic tissues, tumors have the ability to build up their own blood vessel networks. However, the architecture of tumor vessels is fundamentally different from that found in healthy tissues. Tumor vessels are usually irregular, heterogeneous, leaky, and poorly associated with mural cells. Endothelial cells in tumor vessels are also disorganized and express imbalanced surface molecules. These unusual features may provide some molecular and structural basis for selective inhibition or even destruction of tumor vessels by angiogenesis inhibitors. In animal tumor models, several angiogenesis inhibitors seem to inhibit tumor angiogenesis specifically without obvious effects on the normal vasculature. As a result, these inhibitors produced potent antitumor effects in mice. Excited by these preclinical studies, more than 60 angiogenesis inhibitors are being evaluated for their anticancer effects in human patients. Although the ultimate outcome of antiangiogenic clinical trials remains to be seen, several early observations have reported some disappointing results. These early clinical data have raised several important questions. Can we cure human cancers with angiogenesis inhibitors? Have we found the ideal angiogenesis inhibitors for therapy? What is the difference between angiogenesis in an implanted mouse tumor and in a spontaneous human tumor? What are the molecular mechanisms of these angiogenesis inhibitors? Should angiogenesis inhibitors be used alone or in combinations with other existing anticancer drugs? In this review, we will discuss these important issues in relation to ongoing antiangiogenic clinical trials.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Administración Oral , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacología , Angiostatinas/química , Angiostatinas/farmacología , Animales , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Ratones , Neoplasias/irrigación sanguínea , Neovascularización Patológica/metabolismo , Timidina Fosforilasa/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Eur J Biochem ; 271(4): 809-20, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14764098

RESUMEN

We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3-10 microg.mL(-1). These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation.


Asunto(s)
Angiostatinas/química , Activadores Plasminogénicos/farmacología , Plasminógeno/metabolismo , Aminoácidos/análisis , Ácido Aminocaproico/farmacología , Angiostatinas/farmacología , Animales , Benzopiranos/química , Benzopiranos/farmacología , Sitios de Unión , Células CHO , Bovinos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Clorofenoles/química , Clorofenoles/farmacología , Cricetinae , Endotelio Vascular/citología , Fibrinolisina/metabolismo , Humanos , Espectrometría de Masas/métodos , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Plasminógeno/química , Activadores Plasminogénicos/química , Pirrolidinonas/química , Pirrolidinonas/farmacología , Análisis de Secuencia de Proteína/métodos , Venas Umbilicales
18.
Recent Prog Horm Res ; 59: 73-104, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14749498

RESUMEN

Many diseases have abnormal quality and/or quantity of vascularization as a characteristic feature. Cancer cells elicit the growth of new capillaries during neovascularization in a process termed angiogenesis. In diabetics, pathologic angiogenesis in various tissues is a clinical feature of many common complications. Therefore, the diabetic cancer patient warrants special consideration and extra care in the design of anti-angiogenic treatments without adverse side effects. Some treatment regimens that look promising in vitro, in animal models, or in early clinical trials may be contra-indicated for diabetics. This chapter will review the common complications of diabetes, with emphasis on the angiogenic pathology. Recent research related to the mechanism of action and basis for specificity of the anti-angiogenic peptide, angiostatin, will be the focus. The aim is to shed light on areas in which more research is needed with respect to angiostatin and other anti-angiogenic agents and the microenvironmental conditions that affect their activities, in order to develop improved therapeutic strategies for diabetic cancer patients.


Asunto(s)
Angiostatinas/uso terapéutico , Complicaciones de la Diabetes , Neoplasias/irrigación sanguínea , Neoplasias/complicaciones , Neovascularización Patológica/tratamiento farmacológico , Angiostatinas/química , Angiostatinas/metabolismo , Animales , Retinopatía Diabética , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Humanos , Neovascularización Patológica/fisiopatología
19.
J Thromb Haemost ; 2(1): 23-34, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14717962

RESUMEN

Originally discovered in 1994 by Folkman and coworkers, angiostatin was identified through its antitumor effects in mice and later shown to be a potent inhibitor of angiogenesis. An internal fragment of plasminogen, angiostatin consists of kringle domains that are known to be lysine-binding. The crystal structure of angiostatin was the first multikringle domain-containing structure to be published. This review will focus on what is known about the structure of angiostatin and its implications in function from the current literature.


Asunto(s)
Angiostatinas/química , Angiostatinas/fisiología , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/fisiología , Animales , Sitios de Unión , Humanos , Kringles , Modelos Moleculares , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA