Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
PLoS One ; 19(5): e0303428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743735

RESUMEN

Differentiation therapy using all-trans retinoic acid (ATRA) for acute promyelocytic leukemia (APL) is well established. However, because the narrow application and tolerance development of ATRA need to be improved, we searched for another efficient myeloid differentiation inducer. Kinase activation is involved in leukemia biology and differentiation block. To identify novel myeloid differentiation inducers, we used a Kinase Inhibitor Screening Library. Using a nitroblue tetrazolium dye reduction assay and real-time quantitative PCR using NB4 APL cells, we revealed that, PD169316, SB203580, SB202190 (p38 MAPK inhibitor), and triciribine (TCN) (Akt inhibitor) potently increased the expression of CD11b. We focused on TCN because it was reported to be well tolerated by patients with advanced hematological malignancies. Nuclear/cytoplasmic (N/C) ratio was significantly decreased, and myelomonocytic markers (CD11b and CD11c) were potently induced by TCN in both NB4 and acute myeloid leukemia (AML) M2 derived HL-60 cells. Western blot analysis using NB4 cells demonstrated that TCN promoted ERK1/2 phosphorylation, whereas p38 MAPK phosphorylation was not affected, suggesting that activation of the ERK pathway is involved in TCN-induced differentiation. We further examined that whether ATRA may affect phosphorylation of ERK and p38, and found that there was no obvious effect, suggesting that ATRA induced differentiation is different from TCN effect. To reveal the molecular mechanisms involved in TCN-induced differentiation, we performed microarray analysis. Pathway analysis using DAVID software indicated that "hematopoietic cell lineage" and "cytokine-cytokine receptor interaction" pathways were enriched with high significance. Real-time PCR analysis demonstrated that components of these pathways including IL1ß, CD3D, IL5RA, ITGA6, CD44, ITGA2B, CD37, CD9, CSF2RA, and IL3RA, were upregulated by TCN-induced differentiation. Collectively, we identified TCN as a novel myeloid cell differentiation inducer, and trials of TCN for APL and non-APL leukemia are worthy of exploration in the future.


Asunto(s)
Diferenciación Celular , Leucemia Promielocítica Aguda , Células Mieloides , Humanos , Diferenciación Celular/efectos de los fármacos , Leucemia Promielocítica Aguda/patología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11b/genética , Línea Celular Tumoral , Células HL-60 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Imidazoles/farmacología , Tretinoina/farmacología , Piridinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Clin Exp Med ; 24(1): 106, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771542

RESUMEN

Typical BCR::ABL1-negative myeloproliferative neoplasms (MPN) are mainly referred to as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofbrosis (PMF). Granulocytes in MPN patients are involved in their inflammation and form an important part of the pathophysiology of MPN patients. It has been shown that the immunophenotype of granulocytes in MPN patients is altered. We used flow cytometry to explore the immunophenotype of MPN patients and correlate it with clinical parameters. The results showed that PMF patients and PV patients had higher CD15+CD11b+ granulocytes than ET patients and normal controls. When grouped by gene mutation, changes in the granulocyte immunophenotype of MPN patients were independent of the JAK2V617F and CALR mutations. There was no significant heterogeneity in immunophenotype between ET patients and Pre-PMF, and between Overt-PMF and Pre-PMF patients. Granulocytes from some MPN patients showed an abnormal CD13/CD16 phenotype with a significant increase in mature granulocytes on molecular and cytomorphological grounds, and this abnormal pattern occurred significantly more frequently in PMF patients than in ET patients. CD15-CD11b- was negatively correlated with WBC and Hb and positively correlated with DIPSS score, whereas high CD10+ granulocytes were significantly and negatively associated with prognostic system IPSS and DIPSS scores in PMF patients. In conclusion, this study demonstrates the landscape of bone marrow granulocyte immunophenotypes in MPN patients. MPN patients, especially those with PMF, have a significant granulocyte developmental overmaturation phenotype. CD10+ granulocytes may be involved in the prognosis of PMF patients.


Asunto(s)
Citometría de Flujo , Proteínas de Fusión bcr-abl , Granulocitos , Inmunofenotipificación , Trastornos Mieloproliferativos , Humanos , Masculino , Persona de Mediana Edad , Femenino , Granulocitos/patología , Adulto , Anciano , Proteínas de Fusión bcr-abl/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/inmunología , Trastornos Mieloproliferativos/patología , Janus Quinasa 2/genética , Trombocitemia Esencial/genética , Trombocitemia Esencial/patología , Anciano de 80 o más Años , China , Adulto Joven , Calreticulina/genética , Antígeno CD11b/genética , Policitemia Vera/genética , Policitemia Vera/patología , Policitemia Vera/inmunología , Mutación , Pueblo Asiatico/genética , Pueblos del Este de Asia
3.
Aging (Albany NY) ; 16(10): 8599-8610, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38752873

RESUMEN

Higher intensity exercise, despite causing more tissue damage, improved aging conditions. We previously observed decreased p16INK4a mRNA in human skeletal muscle after high-intensity interval exercise (HIIE), with no change following equivalent work in moderate-intensity continuous exercise. This raises the question of whether the observed senolytic effect of exercise is mediated by inflammation, an immune response induced by muscle damage. In this study, inflammation was blocked using a multiple dose of ibuprofen (total dose: 1200 mg), a commonly consumed nonsteroidal anti-inflammatory drug (NSAID), in a placebo-controlled, counterbalanced crossover trial. Twelve men aged 20-26 consumed ibuprofen or placebo before and after HIIE at 120% maximum aerobic power. Multiple muscle biopsies were taken for tissue analysis before and after HIIE. p16INK4a+ cells were located surrounding myofibers in muscle tissues. The maximum decrease in p16INK4a mRNA levels within muscle tissues occurred at 3 h post-exercise (-82%, p < 0.01), gradually recovering over the next 3-24 h. A concurrent reduction pattern in CD11b mRNA (-87%, p < 0.01) was also found within the same time frame. Ibuprofen treatment attenuated the post-exercise reduction in both p16INK4a mRNA and CD11b mRNA. The strong correlation (r = 0.88, p < 0.01) between p16INK4a mRNA and CD11b mRNA in muscle tissues suggests a connection between the markers of tissue aging and pro-inflammatory myeloid differentiation. In conclusion, our results suggest that the senolytic effect of high-intensity exercise on human skeletal muscle is mediated by acute inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos , Estudios Cruzados , Ibuprofeno , Inflamación , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Adulto , Ibuprofeno/farmacología , Inflamación/metabolismo , Adulto Joven , Antiinflamatorios no Esteroideos/farmacología , Ejercicio Físico/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Antígeno CD11b/metabolismo , Antígeno CD11b/genética , ARN Mensajero/metabolismo , Entrenamiento de Intervalos de Alta Intensidad
4.
Mol Ther ; 32(6): 1643-1657, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582963

RESUMEN

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Intrones , Células Mieloides , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Transgenes , Animales , Edición Génica/métodos , Ratones , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Mieloides/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Diferenciación Celular/genética , Terapia Genética/métodos , Iduronidasa/genética , Iduronidasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Expresión Génica , Linaje de la Célula/genética , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Mucopolisacaridosis I/terapia , Mucopolisacaridosis I/genética
5.
J Leukoc Biol ; 115(5): 958-984, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38236200

RESUMEN

Myeloid-derived suppressor cells are heterogenous immature myeloid lineage cells that can differentiate into neutrophils, monocytes, and dendritic cells as well. These cells have been characterized to have potent immunosuppressive capacity in neoplasia and a neoplastic chronic inflammatory microenvironment. Increased accumulation of myeloid-derived suppressor cells was reported with poor clinical outcomes in patients. They support neoplastic progression by abrogating antitumor immunity through inhibition of lymphocyte functions and directly by facilitating tumor development. Yet the shifting genetic signatures of this myeloid lineage cell toward immunosuppressive functionality in progressive tumor development remain elusive. We have attempted to identify the gene expression profile using lineage-specific markers of these unique myeloid lineage cells in a tumor microenvironment and bone marrow using a liquid transplantable mice tumor model to trace the changing influence of the tumor microenvironment on myeloid-derived suppressor cells. We analyzed the phenotype, functional shift, suppressive activity, differentiation status, and microarray-based gene expression profile of CD11b+Gr1+ lineage-specific cells isolated from the tumor microenvironment and bone marrow of 4 stages of tumor-bearing mice and compared them with control counterparts. Our analysis of differentially expressed genes of myeloid-derived suppressor cells isolated from bone marrow and the tumor microenvironment reveals unique gene expression patterns in the bone marrow and tumor microenvironment-derived myeloid-derived suppressor cells. It also suggests T-cell suppressive activity of myeloid-derived suppressor cells progressively increases toward the mid-to-late phase of the tumor and a significant differentiation bias of tumor site myeloid-derived suppressor cells toward macrophages, even in the presence of differentiating agents, indicating potential molecular characteristics of myeloid-derived suppressor cells in different stages of the tumor that can emerge as an intervention target.


Asunto(s)
Diferenciación Celular , Progresión de la Enfermedad , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Animales , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Microambiente Tumoral/inmunología , Ratones , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Células de la Médula Ósea/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11b/genética , Médula Ósea/patología , Médula Ósea/metabolismo
6.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298730

RESUMEN

Pathological cartilage calcification is a hallmark feature of osteoarthritis, a common degenerative joint disease, characterized by cartilage damage, progressively causing pain and loss of movement. The integrin subunit CD11b was shown to play a protective role against cartilage calcification in a mouse model of surgery-induced OA. Here, we investigated the possible mechanism by which CD11b deficiency could favor cartilage calcification by using naïve mice. First, we found by transmission electron microscopy (TEM) that CD11b KO cartilage from young mice presented early calcification spots compared with WT. CD11b KO cartilage from old mice showed progression of calcification areas. Mechanistically, we found more calcification-competent matrix vesicles and more apoptosis in both cartilage and chondrocytes isolated from CD11b-deficient mice. Additionally, the extracellular matrix from cartilage lacking the integrin was dysregulated with increased collagen fibrils with smaller diameters. Moreover, we revealed by TEM that CD11b KO cartilage had increased expression of lysyl oxidase (LOX), the enzyme that catalyzes matrix crosslinks. We confirmed this in murine primary CD11b KO chondrocytes, where Lox gene expression and crosslinking activity were increased. Overall, our results suggest that CD11b integrin regulates cartilage calcification through reduced MV release, apoptosis, LOX activity, and matrix crosslinking. As such, CD11b activation might be a key pathway for maintaining cartilage integrity.


Asunto(s)
Calcinosis , Cartílago Articular , Animales , Ratones , Apoptosis , Calcinosis/patología , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Matriz Extracelular/patología , Integrinas/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Antígeno CD11b/genética
7.
Genes (Basel) ; 14(5)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37239465

RESUMEN

OBJECTIVES: CD11B/ITGAM (Integrin Subunit α M) mediates the adhesion of monocytes, macrophages, and granulocytes and promotes the phagocytosis of complement-coated particles. Variants of the ITGAM gene are candidates for genetic susceptibility to systemic lupus erythematosus (SLE). SNP rs1143679 (R77H) of CD11B particularly increases the risk of developing SLE. Deficiency of CD11B is linked to premature extra-osseous calcification, as seen in the cartilage of animals with osteoarthritis. Serum calcification propensity measured by the T50 test is a surrogate marker for systemic calcification and reflects increased cardiovascular (CV) risk. We aimed to assess whether the CD11B R77H gene variant is associated with a higher serum calcification propensity (i.e., a lower T50 value) in SLE patients compared to the wild-type allele (WT). METHODS: Cross-sectional study incorporating adults with SLE genotyped for the CD11B variant R77H and assessed for serum calcification propensity with the T50 method. Participants were included in a multicenter trans-disciplinary cohort and fulfilled the 1997 revised American College of Rheumatology (ACR) criteria for SLE. We used descriptive statistics for comparing baseline characteristics and sequential T50 measurements in subjects with the R77H variant vs. WT CD11B. RESULTS: Of the 167 patients, 108 (65%) were G/G (WT), 53 (32%) were G/A heterozygous, and 6 (3%) were A/A homozygous for the R77H variant. A/A patients cumulated more ACR criteria upon inclusion (7 ± 2 vs. 5 ± 1 in G/G and G/A; p = 0.02). There were no differences between the groups in terms of global disease activity, kidney involvement, and chronic renal failure. Complement C3 levels were lower in A/A individuals compared to others (0.6 ± 0.08 vs. 0.9 ± 0.25 g/L; p = 0.02). Baseline T50 did not differ between the groups (A/A 278 ± 42' vs. 297 ± 50' in G/G and G/A; p = 0.28). Considering all sequential T50 test results, serum calcification propensity was significantly increased in A/A individuals compared to others (253 ± 50 vs. 290 ± 54; p = 0.008). CONCLUSIONS: SLE patients with homozygosity for the R77H variant and repeated T50 assessment displayed an increased serum calcification propensity (i.e., a lower T50) and lower C3 levels compared to heterozygous and WT CD11B, without differing with respect to global disease activity and kidney involvement. This suggests an increased CV risk in SLE patients homozygous for the R77H variant of CD11B.


Asunto(s)
Antígeno CD11b , Calcinosis , Lupus Eritematoso Sistémico , Calcinosis/genética , Estudios Transversales , Predisposición Genética a la Enfermedad , Genotipo , Lupus Eritematoso Sistémico/genética , Macrófagos , Humanos , Antígeno CD11b/genética
8.
Cell Mol Neurobiol ; 43(3): 1369-1384, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35864429

RESUMEN

Seasonal changes in peripheral inflammation are well documented in both humans and animal models, but seasonal changes in neuroinflammation, especially the impact of seasonal lighting environment on neuroinflammation remain unclear. To address this question, the present study examined the effects of environmental lighting conditions on neuroinflammation in a diurnal rodent model, Nile grass rats (Arvicanthis niloticus). Male and female grass rats were housed in either bright (brLD) or dim (dimLD) light during the day to simulate a summer or winter light condition, respectively. After 4 weeks, microglia markers Iba-1 and CD11b, as well as pro-inflammatory cytokines TNF-α and IL-6, were examined in the anterior cingulate cortex (ACC), basolateral amygdala (BLA), and dorsal hippocampus (dHipp). The results revealed that winter-like dim light during the day leads to indicators of increased neuroinflammation in a brain site- and sex-specific manner. Specifically, relatively few changes in the neuroinflammatory markers were observed in the ACC, while numerous changes were found in the BLA and dHipp. In the BLA, winter-like dimLD resulted in hyper-ramified microglia morphology and increased expression of the pro-inflammatory cytokine IL-6, but only in males. In the dHipp, dimLD led to a higher number and hyper-ramified morphology of microglia as well as increased expression of CD11b and TNF-α, but only in females. Neuroinflammatory state is thus influenced by environmental light, differently in males and females, and could play a role in sex differences in the prevalence and symptoms of psychiatric or neurological disorders that are influenced by season or other environmental light conditions. Diurnal Nile grass rats were housed under bright or dim light during the day for 4 weeks, simulating seasonal fluctuations in daytime lighting environment. Dim light housing resulted in hyper-ramified morphology of microglia (scale bar, 15 µm) and altered expression of pro-inflammatory cytokines (TNF-α) in a sex- and brain region-specific manner.


Asunto(s)
Encéfalo , Iluminación , Microglía , Enfermedades Neuroinflamatorias , Enfermedades Neuroinflamatorias/etiología , Murinae , Modelos Animales , Masculino , Femenino , Animales , Encéfalo/fisiopatología , Encéfalo/efectos de la radiación , Antígeno CD11b/análisis , Antígeno CD11b/genética , Biomarcadores/análisis , Regulación de la Expresión Génica/efectos de la radiación , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/genética , Interleucina-6/análisis , Interleucina-6/genética , Factores Sexuales , Microglía/metabolismo , Microglía/efectos de la radiación
9.
Immunol Cell Biol ; 100(9): 691-704, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35849045

RESUMEN

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) is an efficient tool for establishing genetic models including cellular models, and has facilitated unprecedented advancements in biomedical research. In both patients and cancer animal models, immune cells infiltrate the tumor microenvironment and some of them migrate to draining lymph nodes to exert antitumor effects. Among these immune cells, phagocytes such as macrophages and dendritic cells engulf tumor antigens prior to their crosstalk with T cells and elicit adaptive immune response against tumors. Melanoma cells are frequently used as a tumor model because of their relatively high level of somatic mutations and antigenicity. However, few genetic models have been developed using melanoma cell lines to track tumor cell phagocytosis, which is essential for understanding protective immune response in vivo. In this study, we used CRISPR/Cas9-mediated DNA cleavage and homologous recombination to develop a novel knock-in tool which expresses the ultra-bright fluorescent probe ZsGreen in YUMM1.7 melanoma cells. Using this novel tool, we measured the macrophagic engulfment of melanoma cells inside the tumor microenvironment. We also found that in tumor-grafted mice, a subset of dendritic cells efficiently engulfed YUMM1.7 cells and was preferentially trafficking tumor antigens to draining lymph nodes. In addition, we used this knock-in tool to assess the impact of a point mutation of CD11b on phagocytosis in the tumor microenvironment. Our results demonstrate that the ZsGreen-expressing YUMM1.7 melanoma model provides a valuable tool for the study of phagocytosis in vivo.


Asunto(s)
Antígeno CD11b , Melanoma , Fagocitosis , Animales , Antígenos de Neoplasias , Antígeno CD11b/genética , Línea Celular , Línea Celular Tumoral , Colorantes Fluorescentes , Melanoma/genética , Ratones , Mutación Puntual , Microambiente Tumoral
10.
Cells ; 10(12)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34943953

RESUMEN

Carbon monoxide (CO) is generated by heme oxygenase (HO), and HO-1 is highly induced in monocytes and macrophages upon stimulation. Monocytes differentiate into macrophages, including pro-inflammatory (M1) and anti-inflammatory (M2) cells, in response to environmental signals. The present study investigated whether CO modulates macrophage differentiation and polarization, by applying the CO-releasing molecule-3 (CORM-3). Results showed that murine bone marrow cells are differentiated into macrophages by CORM-3 in the presence of macrophage colony-stimulating factor. CORM-3 increases expressions of macrophage markers, including F4/80 and CD11b, and alters the cell morphology into elongated spindle-shaped cells, which is a typical morphology of M2 cells. CORM-3 upregulates the expressions of genes and molecules involved in M2 polarization and M2 phenotype markers, such as STAT6, PPARγ, Ym1, Fizz1, arginase-1, and IL-10. However, exposure to CORM-3 inhibits the iNOS expression, suggesting that CO enhances macrophage differentiation and polarization toward M2. Increased HO-1 expression is observed in differentiated macrophages, and CORM-3 further increases this expression. Hemin, an HO-1 inducer, results in increased macrophage differentiation, whereas the HO-1 inhibitor zinc protoporphyrin IX inhibits differentiation. In addition, CORM-3 increases the proportion of macrophages in peritoneal exudate cells and enhances the expression of HO-1 and arginase-1 but inhibits iNOS. Taken together, these results suggest that the abundantly produced CO in activated macrophages enhances proliferation, differentiation, and polarization toward M2. It will probably help clear apoptotic cells, resolve inflammation, and promote wound healing and tissue remodeling.


Asunto(s)
Arginasa/genética , Monóxido de Carbono/metabolismo , Diferenciación Celular/genética , Hemo-Oxigenasa 1/genética , Macrófagos/efectos de los fármacos , Animales , Antígeno CD11b/genética , Monóxido de Carbono/efectos adversos , Polaridad Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Macrófagos/metabolismo , Ratones , Monocitos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Compuestos Organometálicos/farmacología , PPAR gamma/genética , Fenotipo , Factor de Transcripción STAT6/genética
11.
Sci Rep ; 11(1): 20145, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635743

RESUMEN

Cardiac cachexia (CC) is an unfavorable metabolic syndrome leading to exacerbation of chronic heart failure (CHF) and a higher risk of death. The main factor contributing to the development of cachexia is the ongoing inflammatory process mediated by genes (e.g. Integrin Subunit Alpha M-ITGAM). The study aimed to assess the relationship between a single nucleotide polymorphism (SNP) -323G > A of the ITGAM and the occurrence of nutritional disorders in patients with CHF. 157 CHF patients underwent clinical and nutritional screening. Body composition was evaluated by bioelectrical impedance analysis (BIA). Patients with cachexia were characterized by significantly lower weight, body mass index (BMI), lower fat mass (FM), albumin, and hemoglobin. Lower values of BIA parameters: capacitance of membrane (Cm), phase angle (PA), and impedance ratio (Z200/Z5) were noted in women. Those patients demonstrated significantly higher values of creatinine, c-reactive protein (CRP), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and pulmonary artery systolic pressure (PASP). A significantly higher risk of cachexia was reported in patients: aged ≥ 74 years (OR 3.55), with renal failure (OR 3.75), New York Heart Association classification (NYHA) III-IV (OR 2.83), with moderate or severe malnutrition according to the score of subjective global assessment (SGA) (OR 19.01) and AA genotype of ITGAM gene (OR 2.03). Determination of the -323G > A SNP in the ITGAM may prove to be a useful marker (after confirmation in further studies and appropriate validation) in the assessment of the risk of nutritional disorders in patients with CHF.


Asunto(s)
Biomarcadores/análisis , Antígeno CD11b/genética , Caquexia/diagnóstico , Impedancia Eléctrica , Insuficiencia Cardíaca/complicaciones , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Composición Corporal , Índice de Masa Corporal , Caquexia/etiología , Caquexia/metabolismo , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/metabolismo
12.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622802

RESUMEN

Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation - but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3- macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation-induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.


Asunto(s)
Enfermedades Fetales/inmunología , Feto/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Nacimiento Prematuro/inmunología , Adulto , Animales , Animales Recién Nacidos , Antígeno CD11b/genética , Citocinas , Decidua/inmunología , Decidua/metabolismo , Femenino , Feto/metabolismo , Homeostasis/inmunología , Humanos , Ratones , Miometrio/inmunología , Miometrio/metabolismo , Trabajo de Parto Prematuro/inmunología , Trabajo de Parto Prematuro/metabolismo , Embarazo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
13.
Sci Rep ; 11(1): 19315, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588497

RESUMEN

We established a relationship among the immune-related genes, tumor-infiltrating immune cells (TIICs), and immune checkpoints in patients with osteosarcoma. The gene expression data for osteosarcoma were downloaded from UCSC Xena and GEO database. Immune-related differentially expressed genes (DEGs) were detected to calculate the risk score. "Estimate" was used for immune infiltrating estimation and "xCell" was used to obtain 64 immune cell subtypes. Furthermore, the relationship among the risk scores, immune cell subtypes, and immune checkpoints was evaluated. The three immune-related genes (TYROBP, TLR4, and ITGAM) were selected to establish a risk scoring system based on their integrated prognostic relevance. The GSEA results for the Hallmark and KEGG pathways revealed that the low-risk score group exhibited the most gene sets that were related to immune-related pathways. The risk score significantly correlated with the xCell score of macrophages, M1 macrophages, and M2 macrophages, which significantly affected the prognosis of osteosarcoma. Thus, patients with low-risk scores showed better results with the immune checkpoints inhibitor therapy. A three immune-related, gene-based risk model can regulate macrophage activation and predict the treatment outcomes the survival rate in osteosarcoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Biomarcadores de Tumor/genética , Neoplasias Óseas/inmunología , Antígeno CD11b/genética , Proteínas de la Membrana/genética , Osteosarcoma/inmunología , Receptor Toll-Like 4/genética , Neoplasias Óseas/genética , Neoplasias Óseas/mortalidad , Neoplasias Óseas/terapia , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Proteínas de Punto de Control Inmunitario/genética , Activación de Macrófagos , Osteosarcoma/genética , Osteosarcoma/mortalidad , Osteosarcoma/terapia , Pronóstico , Medición de Riesgo/métodos , Tasa de Supervivencia
14.
PLoS One ; 16(9): e0256870, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34520454

RESUMEN

Although they represent the cornerstone of analgesic therapy, opioids, such as morphine, are limited in efficacy by drug tolerance, hyperalgesia and other side effects. Activation of microglia and the consequent production of proinflammatory cytokines play a key pathogenic role in morphine tolerance, but the exact mechanisms are not well understood. This study aimed to investigate the regulatory mechanism of epidermal growth factor receptor (EGFR) on microglial activation induced by morphine in mouse microglial BV-2 cells. In this research, BV-2 cells were stimulated with morphine or pretreated with AG1478 (an inhibitor of EGFR). Expression levels of cluster of differentiation molecule 11b (CD11b), EGFR, and phospho-EGFR were detected by immunofluorescence staining. Cell signaling was assayed by Western blot. The migration ability of BV-2 cells was tested by Transwell assay. The production of interleukin-1beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) in the cell supernatant was determined by ELISA. We observed that the expression of CD11b induced by morphine was increased in a dose- and time- dependent manner in BV-2 cells. Phosphorylation levels of EGFR and ERK1/2, migration of BV-2 cells, and production of IL-1ß and TNFα were markedly enhanced by morphine treatment. The activation, migration, and production of proinflammatory cytokines in BV-2 cells were inhibited by blocking the EGFR signaling pathway with AG1478. The present study demonstrated that the EGFR/ERK signaling pathway may represent a novel pharmacological strategy to suppress morphine tolerance through attenuation of microglial activation.


Asunto(s)
Tolerancia a Medicamentos/genética , Receptores ErbB/genética , Microglía/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Morfina/farmacología , Animales , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Regulación de la Expresión Génica , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones , Microglía/citología , Microglía/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Quinazolinas/farmacología , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Tirfostinos/farmacología
15.
Nat Commun ; 12(1): 5446, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521844

RESUMEN

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Asunto(s)
Ciclo Celular/genética , Linaje de la Célula/genética , Células Asesinas Naturales/inmunología , Proteínas de Dominio T Box/genética , Animales , Secuencia de Bases , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/inmunología , Diferenciación Celular , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/inmunología , Epigénesis Genética/inmunología , Interleucina-12/farmacología , Células Asesinas Naturales/citología , Células Asesinas Naturales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica , Bazo/citología , Bazo/inmunología , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/inmunología , Transcripción Genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
16.
Neural Plast ; 2021: 5575090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221002

RESUMEN

The parenchymal microglia possess different morphological characteristics in cerebral physiological and pathological conditions; thus, visualizing these cells is useful as a means of further investigating parenchymal microglial function. Annexin A3 (ANXA3) is expressed in microglia, but it is unknown whether it can be used as a marker protein for microglia and its physiological function. Here, we compared the distribution and morphology of parenchymal microglia labeled by ANXA3, cluster of differentiation 11b (CD11b), and ionized calcium-binding adaptor molecule 1 (Iba1) and measured the expression of ANXA3 in nonparenchymal macrophages (meningeal and perivascular macrophages). We also investigated the spatiotemporal expression of ANXA3, CD11b, and Iba1 in vivo and in vitro and the cellular function of ANXA3 in microglia. We demonstrated that ANXA3-positive cells were abundant and evenly distributed throughout the whole brain tissue and spinal cord of adult rats. The morphology and distribution of ANXA3-labeled microglia were quite similar to those labeled by the microglial-specific markers CD11b and Iba1 in the central nervous system (CNS). ANXA3 was expressed in the cytoplasm of microglia, and its expression was significantly increased in activated microglia. ANXA3 was almost undetectable in the nonparenchymal macrophages. Meanwhile, the protein and mRNA expression levels of ANXA3 in different regions of the CNS were different from those of CD11b and Iba1. Moreover, knockdown of ANXA3 inhibited the proliferation and migration of microglia, while overexpression of ANXA3 enhanced these activities. This study confirms that ANXA3 may be a novel marker for parenchymal microglia in the CNS of adult rats and enriches our understanding of ANXA3 from expression patterns to physiological function.


Asunto(s)
Anexina A3/análisis , Sistema Nervioso Central/citología , Microglía/química , Proteínas del Tejido Nervioso/análisis , Animales , Anexina A3/biosíntesis , Anexina A3/genética , Biomarcadores , Antígeno CD11b/biosíntesis , Antígeno CD11b/genética , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Ciclo Celular , Movimiento Celular , Células Cultivadas , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Infarto de la Arteria Cerebral Media/patología , Lentivirus , Macrófagos/química , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Especificidad de Órganos , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Transfección
17.
Cell Death Dis ; 12(7): 646, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168124

RESUMEN

Although macrophages are recognized as important players in the pathogenesis of chronic liver diseases, their roles in cholestatic liver fibrosis remain incompletely understood. We previously reported that long noncoding RNA-H19 (lncRNA-H19) contributes to cholangiocyte proliferation and cholestatic liver fibrosis of biliary atresia (BA). We here show that monocyte/macrophage CD11B mRNA levels are increased significantly in livers of BA patients and positively correlated with the progression of liver inflammation and fibrosis. The macrophages increasingly infiltrate and accumulate in the fibrotic niche and peribiliary areas in livers of BA patients. Selective depletion of macrophages using the transgenic CD11b-diphtheria toxin receptor (CD11b-DTR) mice halts bile duct ligation (BDL)-induced progression of liver damage and fibrosis. Meanwhile, macrophage depletion significantly reduces the BDL-induced hepatic lncRNA-H19. Overexpression of H19 in livers using adeno-associated virus serotype 9 (AAV9) counteracts the effects of macrophage depletion on liver fibrosis and cholangiocyte proliferation. Additionally, both H19 knockout (H19-/-) and conditional deletion of H19 in macrophage (H19ΔCD11B) significantly depress the macrophage polarization and recruitment. lncRNA-H19 overexpressed in THP-1 macrophages enhance expression of Rho-GTPase CDC42 and RhoA. In conclusions, selectively depletion of macrophages suppresses cholestatic liver injuries and fibrosis via the lncRNA-H19 and represents a potential therapeutic strategy for rapid liver fibrosis in BA patients.


Asunto(s)
Cirrosis Hepática Biliar/prevención & control , Cirrosis Hepática Experimental/prevención & control , Hígado/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Colestasis/complicaciones , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Humanos , Hígado/patología , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Largo no Codificante/genética , Células THP-1 , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Mol Oncol ; 15(9): 2318-2329, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33960108

RESUMEN

The intestine-specific caudal-related homeobox gene-2 (CDX2) homeobox gene, while being a tumor suppressor in the gut, is ectopically expressed in a large proportion of acute leukemia and is associated with poor prognosis. Here, we report that turning on human CDX2 expression in the hematopoietic lineage of mice induces acute monoblastic leukemia, characterized by the decrease in erythroid and lymphoid cells at the benefit of immature monocytic and granulocytic cells. One of the highly stimulated genes in leukemic bone marrow cells was BMP and activin membrane-bound inhibitor (Bambi), an inhibitor of transforming growth factor-ß (TGF-ß) signaling. The CDX2 protein was shown to bind to and activate the transcription of the human BAMBI promoter. Moreover, in a leukemic cell line established from CDX2-expressing mice, reducing the levels of CDX2 or Bambi stimulated the TGF-ß-dependent expression of Cd11b, a marker of monocyte maturation. Taken together, this work demonstrates the strong oncogenic potential of the homeobox gene CDX2 in the hematopoietic lineage, in contrast with its physiological tumor suppressor activity exerted in the gut. It also reveals, through BAMBI and TGF-ß signaling, the involvement of CDX2 in the perturbation of the interactions between leukemia cells and their microenvironment.


Asunto(s)
Factor de Transcripción CDX2/genética , Leucemia Monocítica Aguda/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Antígeno CD11b/genética , Linaje de la Célula , Humanos , Leucemia Monocítica Aguda/patología , Proteínas de la Membrana/genética , Ratones , Transducción de Señal , Microambiente Tumoral
19.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799879

RESUMEN

The development of nanocarriers (NC) for biomedical applications has gained large interest due to their potential to co-deliver drugs in a cell-type-targeting manner. However, depending on their surface characteristics, NC accumulate serum factors, termed protein corona, which may affect their cellular binding. We have previously shown that NC coated with carbohydrates to enable biocompatibility triggered the lectin-dependent complement pathway, resulting in enhanced binding to B cells via complement receptor (CR)1/2. Here we show that such NC also engaged all types of splenic leukocytes known to express CR3 at a high rate when NC were pre-incubated with native mouse serum resulting in complement opsonization. By focusing on dendritic cells (DC) as an important antigen-presenting cell type, we show that CR3 was essential for binding/uptake of complement-opsonized NC, whereas CR4, which in mouse is specifically expressed by DC, played no role. Further, a minor B cell subpopulation (B-1), which is important for first-line pathogen responses, and co-expressed CR1/2 and CR3, in general, engaged NC to a much higher extent than normal B cells. Here, we identified CR-1/2 as necessary for binding of complement-opsonized NC, whereas CR3 was dispensable. Interestingly, the binding of complement-opsonized NC to both DC and B-1 cells affected the expression of activation markers. Our findings may have important implications for the design of nano-vaccines against infectious diseases, which codeliver pathogen-specific protein antigen and adjuvant, aimed to induce a broad adaptive cellular and humoral immune response by inducing cytotoxic T lymphocytes that kill infected cells and pathogen-neutralizing antibodies, respectively. Decoration of nano-vaccines either with carbohydrates to trigger complement activation in vivo or with active complement may result in concomitant targeting of DC and B cells and thereby may strongly enhance the extent of dual cellular/humoral immune responses.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Linfocitos B/inmunología , Antígeno CD11b/inmunología , Proteínas del Sistema Complemento/inmunología , Células Dendríticas/inmunología , Receptores de Complemento/inmunología , Animales , Subgrupos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Células Dendríticas/metabolismo , Dextranos/química , Portadores de Fármacos/química , Humanos , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Nanopartículas/química , Proteínas Opsoninas/inmunología , Proteínas Opsoninas/metabolismo , Fagocitosis/inmunología , Receptores de Complemento/metabolismo
20.
Nat Commun ; 12(1): 2232, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854051

RESUMEN

Post-operative adhesions are a leading cause of abdominal surgery-associated morbidity. Exposed fibrin clots on the damaged peritoneum, in which the mesothelial barrier is disrupted, readily adhere to surrounding tissues, resulting in adhesion formation. Here we show that resident F4/80HighCD206- peritoneal macrophages promptly accumulate on the lesion and form a 'macrophage barrier' to shield fibrin clots in place of the lost mesothelium in mice. Depletion of this macrophage subset or blockage of CD11b impairs the macrophage barrier and exacerbates adhesions. The macrophage barrier is usually insufficient to fully preclude the adhesion formation; however, it could be augmented by IL-4-based treatment or adoptive transfer of this macrophage subset, resulting in robust prevention of adhesions. By contrast, monocyte-derived recruited peritoneal macrophages are not involved in the macrophage barrier. These results highlight a previously unidentified cell barrier function of a specific macrophage subset, also proposing an innovative approach to prevent post-operative adhesions.


Asunto(s)
Macrófagos Peritoneales/inmunología , Peritoneo/inmunología , Complicaciones Posoperatorias/inmunología , Adherencias Tisulares/inmunología , Animales , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Epitelio/inmunología , Epitelio/patología , Humanos , Interleucina-4 , Masculino , Ratones , Ratones Endogámicos C57BL , Peritoneo/patología , Complicaciones Posoperatorias/genética , Complicaciones Posoperatorias/patología , Adherencias Tisulares/genética , Adherencias Tisulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA