Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.102
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biochem Pharmacol ; 224: 116240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679210

RESUMEN

Hepatic steatosis is a critical factor in the development of nonalcoholic steatohepatitis (NASH). Sesamin (Ses), a functional lignan isolated from Sesamum indicum, possesses hypolipidemic, liver-protective, anti-hypertensive, and anti-tumor properties. Ses has been found to improve hepatic steatosis, but the exact mechanisms through which Ses achieves this are not well understood. In this study, we observed the anti-hepatic steatosis effects of Ses in palmitate/oleate (PA/OA)-incubated primary mouse hepatocytes, AML12 hepatocytes, and HepG2 cells, as well as in high-fat, high-cholesterol diet-induced NASH mice. RNA sequencing analysis revealed that cluster of differentiation 36 (CD36), a free fatty acid (FA) transport protein, was involved in the Ses-mediated inhibition of hepatic fat accumulation. Moreover, the overexpression of CD36 significantly increased hepatic steatosis in both Ses-treated PA/OA-incubated HepG2 cells and NASH mice. Furthermore, Ses treatment suppressed insulin-induced de novo lipogenesis in HepG2 cells, which was reversed by CD36 overexpression. Mechanistically, we found that Ses ameliorated NASH by inhibiting CD36-mediated FA uptake and upregulation of lipogenic genes, including FA synthase, stearoyl-CoA desaturase 1, and sterol regulatory element-binding protein 1. The findings of our study provide novel insights into the potential therapeutic applications of Ses in the treatment of NASH.


Asunto(s)
Antígenos CD36 , Dioxoles , Hepatocitos , Lignanos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Lignanos/farmacología , Lignanos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones , Humanos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Hep G2 , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Dioxoles/farmacología , Dioxoles/uso terapéutico , Dieta Alta en Grasa/efectos adversos
2.
Cell Mol Life Sci ; 81(1): 176, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598021

RESUMEN

Inflammation is a mediator of a number of chronic pathologies. We synthesized the diethyl (9Z,12Z)-octadeca-9,12-dien-1-ylphosphonate, called NKS3, which decreased lipopolysaccharide (LPS)-induced mRNA upregulation of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) not only in primary intraperitoneal and lung alveolar macrophages, but also in freshly isolated mice lung slices. The in-silico studies suggested that NKS3, being CD36 agonist, will bind to GPR120. Co-immunoprecipitation and proximity ligation assays demonstrated that NKS3 induced protein-protein interaction of CD36 with GPR120in RAW 264.7 macrophage cell line. Furthermore, NKS3, via GPR120, decreased LPS-induced activation of TAB1/TAK1/JNK pathway and the LPS-induced mRNA expression of inflammatory markers in RAW 264.7 cells. In the acute lung injury model, NKS3 decreased lung fibrosis and inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and nitric oxide (NO) production in broncho-alveolar lavage fluid. NKS3 exerted a protective effect on LPS-induced remodeling of kidney and liver, and reduced circulating IL-1ß, IL-6 and TNF-α concentrations. In a septic shock model, NKS3 gavage decreased significantly the LPS-induced mortality in mice. In the last, NKS3 decreased neuroinflammation in diet-induced obese mice. Altogether, these results suggest that NKS3 is a novel anti-inflammatory agent that could be used, in the future, for the treatment of inflammation-associated pathologies.


Asunto(s)
Endotoxemia , Animales , Ratones , Endotoxemia/inducido químicamente , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Factor de Necrosis Tumoral alfa , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación , Antígenos CD36/genética , Citocinas/genética , Interleucina-1beta/genética , ARN Mensajero , Ácidos Grasos
3.
FASEB J ; 38(8): e23619, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661031

RESUMEN

Exosomes, which are small membrane-encapsulated particles derived from all cell types, are emerging as important mechanisms for intercellular communication. In addition, exosomes are currently envisioned as potential carriers for the delivery of drugs to target tissues. The natural population of exosomes is very variable due to the limited amount of cargo components present in these small vesicles. Consequently, common components of exosomes may play a role in their function. We have proposed that membrane phospholipids could be a common denominator in the effect of exosomes on cellular functions. In this regard, we have previously shown that liposomes made of phosphatidylcholine (PC) or phosphatidylserine (PS) induced a robust alteration of macrophage (Mϕ) gene expression. We herewith report that these two phospholipids modulate gene expression in Mϕs by different mechanisms. PS alters cellular responses by the interaction with surface receptors, particularly CD36. In contrast, PC is captured by a receptor-independent process and likely triggers an activity within endocytic vesicles. Despite this difference in the capture mechanisms, both lipids mounted similar gene expression responses. This investigation suggests that multiple mechanisms mediated by membrane phospholipids could be participating in the alteration of cellular functions by exosomes.


Asunto(s)
Exosomas , Macrófagos , Fosfatidilserinas , Macrófagos/metabolismo , Animales , Ratones , Fosfatidilserinas/metabolismo , Exosomas/metabolismo , Fosfatidilcolinas/metabolismo , Inflamación/metabolismo , Fosfolípidos/metabolismo , Ratones Endogámicos C57BL , Antígenos CD36/metabolismo , Antígenos CD36/genética , Liposomas
4.
PeerJ ; 12: e17062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435992

RESUMEN

Background: Obesity leads to an elevated risk of developing gastrointestinal disease such as gastric ulcers. Callistemon citrinus leaf extract has shown antioxidant, antimicrobial, hepatoprotective, and chemoprotective effects against colon cancer. The aim of this study is to evaluate the gastroprotective effect of C. citrinus leaf extract on indomethacin-induced gastric ulcers in obese rats. Methods: Gastric ulcers were induced in female obese Wistar rats using a single oral dose of indomethacin (IND). In the first stage, the rats were fed with a high fat sugar diet (HFSD) for 15 weeks to induce obesity and, at the same time, the diet of the other group of animals included daily administration of ethanolic C. citrinus leaf extract (250 mg/kg) in addition to HFSD. In the second stage, gastric ulcers were induced with IND (30 mg/kg). The gastroprotective activity of C. citrinus, the inflammatory enzyme activities, and cytokines in the stomach were determined. Results: C. citrinus produced a reduction of gastric lesions caused by IND. Myeloperoxidase (MPO), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-LOX) activities also decreased. Although inflammatory biomarkers such as TNFα, IL-6, AOPP, and leptin were significantly decreased by C. citrinus, adiponectin levels increased. Moreover, C. citrinus decreased weight gain and morphological and biochemical parameters. Conclusion: The use of indomethacin in rats fed with a high fat-sugar diet increased gastric ulcers. Gastroprotective effect of C. citrinus in obese rats is attributed to the reduction of pro-inflammatory cytokines and the inflammatory enzymes.


Asunto(s)
Indometacina , Úlcera Gástrica , Femenino , Ratas , Animales , Úlcera Gástrica/inducido químicamente , Ratas Wistar , Antiinflamatorios , Obesidad/complicaciones , Antígenos CD36 , Azúcares , Citocinas , Extractos Vegetales/farmacología
5.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468335

RESUMEN

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Asunto(s)
Aterosclerosis , Flavonas , PPAR gamma , Animales , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Macrófagos , Células Espumosas , Lipoproteínas LDL/farmacología , Antígenos CD36/genética , Antígenos CD36/metabolismo
6.
Protein J ; 43(2): 243-258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431537

RESUMEN

S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.


Asunto(s)
Antígenos CD36 , Calgranulina A , Calgranulina B , Simulación del Acoplamiento Molecular , Receptor para Productos Finales de Glicación Avanzada , Receptor Toll-Like 4 , Calgranulina B/química , Calgranulina B/metabolismo , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo , Calgranulina A/química , Calgranulina A/metabolismo , Calgranulina A/genética , Humanos , Antígenos CD36/química , Antígenos CD36/metabolismo , Antígenos CD36/genética , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Unión Proteica , Simulación de Dinámica Molecular , Resonancia por Plasmón de Superficie , Multimerización de Proteína , Artritis Reumatoide/metabolismo
7.
Environ Toxicol ; 39(6): 3400-3409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450882

RESUMEN

Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3ßHSD1, 17ßHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.


Asunto(s)
Antígenos CD36 , PPAR gamma , Trofoblastos , Humanos , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Línea Celular , Transducción de Señal/efectos de los fármacos , Femenino
8.
Metabolism ; 155: 155905, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548128

RESUMEN

CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.


Asunto(s)
Autofagia , Antígenos CD36 , Progresión de la Enfermedad , Metabolismo de los Lípidos , Neoplasias , Humanos , Antígenos CD36/metabolismo , Antígenos CD36/fisiología , Autofagia/fisiología , Metabolismo de los Lípidos/fisiología , Neoplasias/metabolismo , Neoplasias/patología , Animales
9.
Br J Oral Maxillofac Surg ; 62(3): 290-298, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461076

RESUMEN

Ameloblastoma (AM) is characterised by local aggressiveness and bone resorption. To our knowledge, the proteomic profile of bone adjacent to AM has not previously been explored. We therefore looked at the differential proteins in cancellous bone (CB) adjacent to AM and normal CB from the mandible. CB proteins were extracted, purified, quantified, and analysed by liquid chromatography-mass spectrometry (LC-MS) using samples from five patients with AM. These proteins were further investigated using gene ontology for additional functional annotation and enrichment. Proteins that met the screening requirements of expression difference ploidy > 1.5-fold (upregulation and downregulation) and p < 0.05 were subsequently deemed differential proteins. Immunohistochemical staining was performed to confirm the above findings. Compared with normal mandibular CB, 151 differential proteins were identified in CB adjacent to the mandibular AM. These were mainly linked to cellular catabolic processes, lipid metabolism, and fatty acids (FA) metabolism. LC-MS and immunohistochemistry showed that CD36 was one of the notably decreased proteins in CB bordering the AM compared with normal mandibular CB (p = 0.0066 and p = 0.0095, respectively). CD36 expression in CB correlates with bone remodelling in AM, making CD36 a viable target for therapeutic approaches.


Asunto(s)
Ameloblastoma , Remodelación Ósea , Antígenos CD36 , Proteómica , Humanos , Ameloblastoma/metabolismo , Ameloblastoma/patología , Remodelación Ósea/fisiología , Antígenos CD36/metabolismo , Antígenos CD36/análisis , Neoplasias Mandibulares/metabolismo , Neoplasias Mandibulares/patología , Cromatografía Liquida , Hueso Esponjoso/metabolismo , Metabolismo de los Lípidos/fisiología , Adulto , Femenino , Masculino , Mandíbula/metabolismo , Espectrometría de Masas , Ácidos Grasos/metabolismo , Persona de Mediana Edad , Proteoma/análisis
10.
Biochem Biophys Res Commun ; 707: 149781, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38492244

RESUMEN

BACKGROUND & AIMS: CD36, a membrane protein widely present in various tissues, is crucial role in regulating energy metabolism. The rise of HCC as a notable outcome of NAFLD is becoming more apparent. Patients with hereditary CD36 deficiency are at increased risk of NAFLD. However, the impact of CD36 deficiency on NAFLD-HCC remains unclear. METHODS: Global CD36 knockout mice (CD36KO) and wild type mice (WT) were induced to establish NAFLD-HCC model by N-nitrosodiethylamine (DEN) plus high fat diet (HFD). Transcriptomics was employed to examine genes that were expressed differentially. RESULTS: Compared to WT mice, CD36KO mice showed more severe HFD-induced liver issues and increased tumor malignancy. The MEK1/2-ERK1/2 pathway activation was detected in the liver tissues of CD36KO mice using RNA sequencing and Western blot analysis. CONCLUSION: Systemic loss of CD36 leaded to the advancement of NAFLD to HCC by causing lipid disorders and metabolic inflammation, a process that involves the activation of MAPK signaling pathway. We found that CD36 contributes significantly to the maintenance of metabolic homeostasis in NAFLD-HCC.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Carcinoma Hepatocelular , Enfermedades Genéticas Congénitas , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Transducción de Señal , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319449

RESUMEN

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Asunto(s)
Antígenos CD36 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácidos Grasos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Antígenos CD36/genética
12.
Circ Res ; 134(5): 505-525, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422177

RESUMEN

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Asunto(s)
Cardiomiopatías , Resistencia a la Insulina , Animales , Ratones , Ratas , Adenosina Trifosfatasas , Arginina , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Antígenos CD36/genética , Fibrosis , Inflamación , Leucina , Lípidos , Lisina , Diana Mecanicista del Complejo 1 de la Rapamicina , Miocitos Cardíacos , Mononucleótido de Nicotinamida , Receptor Toll-Like 4/genética
13.
Environ Res ; 249: 118402, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309560

RESUMEN

Microcystins (MC)-RR is a significant analogue of MC-LR, which has been identified as a hepatotoxin capable of influencing lipid metabolism and promoting the progression of liver-related metabolic diseases. However, the toxicity and biological function of MC-RR are still not well understood. In this study, the toxic effects and its role in lipid metabolism of MC-RR were investigated in hepatoblastoma cells (HepG2cells). The results demonstrated that MC-RR dose-dependently reduced cell viability and induced apoptosis. Additionally, even at low concentrations, MC-RR promoted lipid accumulation through up-regulating levels of triglyceride, total cholesterol, phosphatidylcholines and phosphatidylethaolamine in HepG2 cells, with no impact on cell viability. Proteomics and transcriptomics analysis further revealed significant alterations in the protein and gene expression profiles in HepG2 cells treated with MC-RR. Bioinformatic analysis, along with subsequent validation, indicated the upregulation of CD36 and activation of the AMPK and PI3K/AKT/mTOR in response to MC-RR exposure. Finally, knockdown of CD36 markedly ameliorated MC-RR-induced lipid accumulation in HepG2 cells. These findings collectively suggest that MC-RR promotes lipid accumulation in HepG2 cells through CD36-mediated signal pathway and fatty acid uptake. Our findings provide new insights into the hepatotoxic mechanism of MC-RR.


Asunto(s)
Antígenos CD36 , Ácidos Grasos , Metabolismo de los Lípidos , Microcistinas , Transducción de Señal , Humanos , Células Hep G2 , Antígenos CD36/metabolismo , Antígenos CD36/genética , Metabolismo de los Lípidos/efectos de los fármacos , Microcistinas/toxicidad , Transducción de Señal/efectos de los fármacos , Ácidos Grasos/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
14.
Oncogene ; 43(13): 944-961, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351345

RESUMEN

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Asunto(s)
Antígenos CD36 , Carcinoma Hepatocelular , Quimiocina CCL2 , Células Progenitoras Endoteliales , Neoplasias Hepáticas , Periostina , Animales , Ratones , Carcinoma Hepatocelular/patología , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Neoplasias Hepáticas/patología , Transducción de Señal/genética , Microambiente Tumoral/genética , Quimiocina CCL2/metabolismo , Antígenos CD36/metabolismo
15.
Molecules ; 29(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276607

RESUMEN

It has been found that the development of some cancers can be attributed to obesity, which is associated with the excessive intake of lipids. Cancer cells undergo metabolic reprogramming, shifting from utilizing glucose to fatty acids (FAs) for energy. CD36, a lipid transporter, is highly expressed in certain kinds of cancer cells. High expressions of CD36 in tumor cells triggers FA uptake and lipid accumulation, promoting rapid tumor growth and initiating metastasis. Meanwhile, immune cells in the tumor microenvironment overexpress CD36 and undergo metabolic reprogramming. CD36-mediated FA uptake leads to lipid accumulation and has immunosuppressive effects. This paper reviews the types of FAs associated with cancer, high expressions of CD36 that promote cancer development and progression, effects of CD36 on different immune cells in the tumor microenvironment, and the current status of CD36 as a therapeutic target for the treatment of tumors with high CD36 expression.


Asunto(s)
Neoplasias , Humanos , Ácidos Grasos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Obesidad , Transporte Biológico , Microambiente Tumoral
16.
Life Sci ; 339: 122442, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244916

RESUMEN

CD36 is a transmembrane glycoprotein, located on surface of numerous cell types. This review is aimed to explore regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. CD36 acts as a pattern recognition receptor, regulates cellular fatty acid homeostasis, and negatively monitors angiogenesis. CD36 also mediates free fatty acid transportation to hematopoietic stem cells in response to infections. During normal physiology and pathophysiology, CD36 significantly participates in the activation and metabolic needs of platelets, macrophages, monocytes, T cells, B cells, and dendritic cells. CD36 has shown a unique relationship with Plasmodium falciparum-infected erythrocytes (PfIEs) as a beneficiary for both parasite and host. CD36 actively participates in pathogenesis of various hematological cancers as a significant prognostic biomarker including AML, HL, and NHL. CD36-targeting antibodies, CD36 antagonists (small molecules), and CD36 expression inhibitors/modulators are used to target CD36, depicting its therapeutic potential. Many preclinical studies or clinical trials were performed to assess CD36 as a therapeutic target; some are still under investigation. This review reflects the role of CD36 in hematopoiesis which requires more consideration in future research.


Asunto(s)
Antígenos CD36 , Ácidos Grasos , Ácidos Grasos/metabolismo , Antígenos CD36/metabolismo , Macrófagos/metabolismo , Plasmodium falciparum , Hematopoyesis , Eritrocitos
18.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37702564

RESUMEN

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Asunto(s)
Aterosclerosis , MicroARNs , Placa Aterosclerótica , Animales , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Calcineurina/metabolismo , Antígenos CD36/metabolismo , Ciclosporina/efectos adversos , Ciclosporina/metabolismo , Lípidos , Macrófagos , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Placa Aterosclerótica/inducido químicamente , Placa Aterosclerótica/metabolismo
19.
Mol Cell Endocrinol ; 581: 112112, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000461

RESUMEN

High amount of fat in the pancreas is linked to poor functioning of ß-cells and raises the risk of type 2 diabetes. Here we report the putative role of a circulatory glycoprotein Fetuin-A, a known obesity marker, in promoting lipid accumulation in ß-cells and its association with Fatty acid translocase/CD36 for lipid storage culminate in ß-cell dysfunction. Additionally, this work reveals regulation of CD36 via Nrf2, a key regulator of oxidative stress, and reduction of lipid accumulation by suppression of Nrf2 that restores ß-cell function. Palmitate (0.50 mM) and Fetuin-A (100 µg/mL) exposure showed high levels of intracellular lipid in MIN6 (mouse insulinoma cells) with a concomitant decrease in insulin secretion. This also increased the expression of important lipogenic factors, like CD36, PGC1α, PPARγ, and SREBP1. Flow cytometry analysis of CD36 membrane localization has been corroborated with an increased accumulation of lipids as indicated by Oil-Red-O staining. Immunoblotting and immunofluorescence of Nrf2 indicated its high expression in palmitate-fetuin-A incubation and translocation in the nucleus. Suppression of Nrf2 by siRNA showed a reduced expression of lipogenic genes, ablation of lipid droplets, decrease in the number of apoptotic cells, and restoration of insulin secretion with a corresponding increase of Pdx1, BETA2, and Ins1 gene expression. Our study thus suggested an important aspect of lipid accumulation in the pancreatic ß-cells contributing to ß-cell dysfunction and demonstrated the role of Fetuin-A in CD36 expression, with a possible way of restoring ß-cell function by targeting Nrf2.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinoma , Neoplasias Pancreáticas , Animales , Ratones , alfa-2-Glicoproteína-HS/metabolismo , Antígenos CD36/metabolismo , Insulina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Palmitatos/farmacología
20.
Immunol Lett ; 265: 7-15, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122906

RESUMEN

The membrane protein CD36 is a lipid transporter, scavenger receptor, and receptor for the antiangiogenic protein thrombospondin 1 (TSP1). CD36 is expressed by cancer cells and by many associated cells including various cancer-infiltrating immune cell types. Thereby, CD36 plays critical roles in cancer, and it has been reported to affect cancer growth, metastasis, angiogenesis, and drug resistance. However, these roles are partly contradictory, as CD36 has been both reported to promote and inhibit cancer progression. Moreover, the mechanisms are also partly contradictory, because CD36 has been shown to exert opposite cellular effects such as cell division, senescence and cell death. This review provides an overview of the diverse effects of CD36 on tumor progression, aiming to shed light on its diverse pro- and anti-cancer roles, and the implications for therapeutic targeting.


Asunto(s)
Antígenos CD36 , Neoplasias , Humanos , Antígenos CD36/metabolismo , Neoplasias/terapia , Proteínas de la Membrana/metabolismo , Lipoproteínas LDL/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA