Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Cell Rep ; 43(3): 113888, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38416644

RESUMEN

Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Estudio de Asociación del Genoma Completo , Antígenos Virales/genética , Antígenos Virales/metabolismo , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica , Latencia del Virus
2.
PLoS Pathog ; 20(1): e1011907, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38232124

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Nucleares , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Latencia del Virus/genética , Antígenos Virales/genética , Antígenos Virales/metabolismo , Expresión Génica , Regulación Viral de la Expresión Génica , Replicación Viral
3.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240593

RESUMEN

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Histonas/genética , Histonas/metabolismo , Nucleosomas , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Latencia del Virus/genética , Antígenos Virales/genética , Antígenos Virales/metabolismo , Secuencias Repetidas Terminales/genética , Regulación Viral de la Expresión Génica
4.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240591

RESUMEN

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Asunto(s)
Proteasas Virales 3C , Enterovirus Humano D , Interferón Tipo I , Transducción de Señal , Humanos , Proteasas Virales 3C/metabolismo , Antígenos Virales/metabolismo , Antivirales/farmacología , Cisteína Endopeptidasas/metabolismo , Enterovirus Humano D/fisiología , Interacciones Huésped-Patógeno , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis , Factor de Transcripción STAT1/metabolismo , Proteínas Virales/metabolismo
5.
J Virol ; 98(2): e0126823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240588

RESUMEN

Protein knockdown with an inducible degradation system is a powerful tool for studying proteins of interest in living cells. Here, we adopted the auxin-inducible degron (AID) approach to detail Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) function in latency maintenance and inducible viral lytic gene expression. We fused the mini-auxin-inducible degron (mAID) tag at the LANA N-terminus with KSHV bacterial artificial chromosome 16 recombination, and iSLK cells were stably infected with the recombinant KSHV encoding mAID-LANA. Incubation with 5-phenyl-indole-3-acetic acid, a derivative of natural auxin, rapidly degraded LANA within 1.5 h. In contrast to our hypothesis, depletion of LANA alone did not trigger lytic reactivation but rather decreased inducible lytic gene expression when we stimulated reactivation with a combination of ORF50 protein expression and sodium butyrate. Decreased overall lytic gene induction seemed to be associated with a rapid loss of KSHV genomes in the absence of LANA. The rapid loss of viral genomic DNA was blocked by a lysosomal inhibitor, chloroquine. Furthermore, siRNA-mediated knockdown of cellular innate immune proteins, cyclic AMP-GMP synthase (cGAS) and simulator of interferon genes (STING), and other autophagy-related genes rescued the degradation of viral genomic DNA upon LANA depletion. Reduction of the viral genome was not observed in 293FT cells that lack the expression of cGAS. These results suggest that LANA actively prevents viral genomic DNA from sensing by cGAS-STING signaling axis, adding novel insights into the role of LANA in latent genome maintenance.IMPORTANCESensing of pathogens' components is a fundamental cellular immune response. Pathogens have therefore evolved strategies to evade such cellular immune responses. KSHV LANA is a multifunctional protein and plays an essential role in maintaining the latent infection by tethering viral genomic DNA to the host chromosome. We adopted the inducible protein knockdown approach and found that depletion of LANA induced rapid degradation of viral genomic DNA, which is mediated by innate immune DNA sensors and autophagy pathway. These observations suggest that LANA may play a role in hiding KSHV episome from innate immune DNA sensors. Our study thus provides new insights into the role of LANA in latency maintenance.


Asunto(s)
Antígenos Virales , Herpesvirus Humano 8 , Plásmidos , Sarcoma de Kaposi , Humanos , Antígenos Virales/metabolismo , ADN , Herpesvirus Humano 8/fisiología , Ácidos Indolacéticos , Nucleotidiltransferasas/genética , Sarcoma de Kaposi/virología , Latencia del Virus , Proteínas Nucleares/metabolismo
6.
Sci Rep ; 13(1): 6977, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117225

RESUMEN

In slowly progressive type 1 diabetes mellitus (SPIDDM), the pancreas shows sustained islet inflammation, pancreatitis, pancreatic acinar cell metaplasia/dysplasia (ADM), and intraepithelial neoplasia (PanIN), a precancerous lesion. The mechanisms underlying these changes remain unclear. The presence of enterovirus (EV) encoded-capsid protein 1 (VP1) and -2A protease (2Apro) and the innate immune responses of the pancreas were studied using immunohistochemistry and in situ hybridization in 12 SPIDDM and 19 non-diabetic control pancreases. VP1, 2Apro, and EV-RNA were detected in islets and the exocrine pancreas in all SPIDDM pancreases. Innate immune receptor, melanoma differentiation-associated gene 5 (MDA5), and interferon (IFN)-beta1 were intensified in the islets of SPIDDM patients with short disease duration. However, expressions of MDA5 and IFN-beta1were suppressed in those with longer disease duration. CD3+ T cell infiltration was observed in the VP1- and insulin-positive islets (insulitis) and exocrine acinar cells. CD11c+ dendritic cells (DCs) in islets were scarce in long-term SPIDDM. This study showed the consistent presence of EV, suggesting an association with inflammatory changes in the endocrine and exocrine pancreas in SPIDDM. Suppressed expressions of MDA5 and IFN-beta1, as well as decreased numbers of DCs in the host cells, may contribute to persistent EV infection and induction of ADM/PanIN lesions, which may potentially provide a scaffold for pancreatic neoplasms.


Asunto(s)
Diabetes Mellitus Tipo 1 , Infecciones por Enterovirus , Enterovirus , Islotes Pancreáticos , Páncreas Exocrino , Humanos , Enterovirus/genética , Diabetes Mellitus Tipo 1/metabolismo , Páncreas/metabolismo , Infecciones por Enterovirus/metabolismo , Páncreas Exocrino/metabolismo , Antígenos Virales/metabolismo , Islotes Pancreáticos/metabolismo
7.
J Med Virol ; 95(1): e28255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36284455

RESUMEN

Kaposi's sarcoma (KS) is the second most common tumor in people infected with human immunodeficiency virus worldwide, but its pathogenesis is still unclear. In this study, we discovered that the expression of GATA-binding protein 3 (GATA3) was lowly expressed in KS tissues and KSHV-infected cells, while microRNA-155 (miR-155) was highly expressed in KS serum and KSHV-infected cells. miR-155 promoted the proliferation, migration and invasion of KSHV infection by targeting GATA3. Further, The KSHV-encoded protein, the Latency associated nuclear antigen (LANA), promotes the proliferation, migration and invasion of KSHV-infected cells by regulating the miR-155/GATA3 axis. Regarding the molecular mechanism, c-Jun and c-Fos interact to form a complex. LANA upregulates the expression of c-Jun and c-Fos and enhances the formation of c-Jun/c-Fos complex. The complex binds to the -95∼-100 bp site of miR-155 promoter and transcriptionally activates miR-155. All in all, LANA enhances the c-Jun/c-Fos interaction, resulting in enhanced transcriptional regulation of miR-155 by the c-Jun/c-Fos complex, thereby downregulating GATA3 and promoting the proliferation, migration and invasion of KSHV-infected cells. The discovery of LANA/c-Jun/c-Fos/miR-155/GATA3 further refines the pathogenesis of KS, potentially opening a new avenue for developing effective drugs against KS.


Asunto(s)
Herpesvirus Humano 8 , MicroARNs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Línea Celular , Antígenos Virales/metabolismo , Antígenos Nucleares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo
8.
Viruses ; 14(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36560739

RESUMEN

OBJECTIVES: Recently, histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors of several viral pathogens. Among rotaviruses, HBGAs interact with the outer viral protein, VP4, which has been identified as a potential susceptibility factor, although the findings are inconsistent throughout populations due to HBGA polymorphisms. We investigated the association between HBGA phenotypes and rotavirus infection in children with acute gastroenteritis in northern Pretoria, South Africa. METHODS: Paired diarrheal stool and saliva samples were collected from children aged ≤ 59 months (n = 342) with acute moderate to severe diarrhea, attending two health care facilities. Rotaviruses in the stool samples were detected by commercial EIA and the rotavirus strains were characterized by RT-PCR targeting the outer capsid VP7 (G-type) and VP4 (P-type) antigens for genotyping. Saliva-based ELISAs were performed to determine A, B, H, and Lewis antigens for blood group typing. RESULTS: Blood type O was the most common blood group (62.5%) in this population, followed by groups A (26.0%), B (9.3%), and AB (2.2%). The H1-based secretors were common (82.7%) compared to the non-secretors (17.3%), and the Lewis antigen positive phenotypes (Le(a+b+)) were predominant (54.5%). Blood type A children were more likely to be infected by rotavirus (38.8%) than any other blood types. P[4] rotaviruses (21/49; 42.9%) infected only secretor individuals, whereas P[6] rotaviruses (3/49; 6.1%) only infected Le(a-b-), although the numbers were very low. On the contrary, P[8] rotaviruses infected children with a wide range of blood group phenotypes, including Le(a-b-) and non-secretors. CONCLUSIONS: Our findings demonstrated that Lewis antigens, or the lack thereof, may serve as susceptibility factors to rotaviral infection by specific VP4 genotypes as observed elsewhere. Potentially, the P[8] strains remain the predominant human VP4 genotype due to their ability to bind to a variety of HBGA phenotypes.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Rotavirus , Rotavirus , Preescolar , Humanos , Antígenos Virales/genética , Antígenos Virales/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Diarrea , Genotipo , Antígenos del Grupo Sanguíneo de Lewis/genética , Sudáfrica/epidemiología
9.
PLoS Pathog ; 18(12): e1011033, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36534707

RESUMEN

The humoral antibody response against Kaposi sarcoma-associated herpesvirus (KSHV) in infected individuals has been characterized demonstrating the latency-associated nuclear antigen (LANA) as the most antigenic KSHV protein. Despite the antigenicity of the protein, specific LANA epitopes have not been systematically characterized. Here, we utilized a bacteriophage T7 library, which displays 56-amino acid KSHV LANA peptides with 28-amino acid overlap (VirScan), to define those epitopes in LANA targeted by antibodies from a cohort of 62 sub-Saharan African Kaposi sarcoma (KS) patients and 22 KSHV-infected asymptomatic controls. Intra- and inter-patient breadth and magnitude of the anti-LANA responses were quantified at the peptide and amino acid levels. From these data, we derived a detailed epitope annotation of the entire LANA protein, with a high-resolution focus on the N- and C-termini. Overall, the central repeat region was highly antigenic, but the responses to this region could not be confidently mapped due to its high variability. The highly conserved N-terminus was targeted with low breadth and magnitude. In a minority of individuals, antibodies specific to the nuclear localization sequence and a portion of the proline-rich regions of the N-terminus were evident. In contrast, the first half of the conserved C-terminal domain was consistently targeted with high magnitude. Unfortunately, this region was not included in LANA partial C-terminal crystal structures, however, it was predicted to adopt predominantly random-coil structure. Coupled with functional and secondary structure domain predictions, VirScan revealed fine resolution epitope mapping of the N- and C-terminal domains of LANA that is consistent with previous antigenicity studies and may prove useful to correlate KSHV humoral immunity with pathogenesis.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Epítopos , Línea Celular , Antígenos Virales/metabolismo , Péptidos , Aminoácidos
10.
BMB Rep ; 55(12): 587-594, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36379513

RESUMEN

A persistent DNA tumor virus infection transforms normal cells into cancer cells by either integrating its genome into host chromosomes or retaining it as an extrachromosomal entity called episome. Viruses have evolved mechanisms for attaching episomes to infected host cell chromatin to efficiently segregate the viral genome during mitosis. It has been reported that viral episome can affect the gene expression of the host chromosomes through interactions between viral episomes and epigenetic regulatory host factors. This mini review summarizes our current knowledge of the tethering sites of viral episomes, such as EBV, KSHV, and HBV, on host chromosomes analyzed by three-dimensional genomic tools. [BMB Reports 2022; 55(12): 587-594].


Asunto(s)
Herpesvirus Humano 8 , Neoplasias , Humanos , Antígenos Virales/genética , Antígenos Virales/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Plásmidos , Genoma Viral/genética , ADN , Neoplasias/genética
11.
J Proteome Res ; 21(10): 2367-2384, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36106392

RESUMEN

Human enterovirus A71 (EV-A71), a member of the Picornaviridae family, is one of the main etiological viruses that lead to hand, foot, and mouth disease (HFMD). We utilized a multiplex tandem mass tag-based quantitative proteomic technique to monitor the alternation of the whole cell proteome and phosphoproteome of human rhabdomyosarcoma cells over the course of EV-A71 infection. We successfully quantified more than 7000 host proteins and 17,000 phosphosites, of which 80 proteins and nearly 1700 phosphosites were significantly regulated upon viral infection. We found that Myc proto-oncogene protein level decreased significantly, benefiting EV-A71 replication. Multiple signaling pathways were regulated in phosphorylation events that converge for protein translation, cell cycle control, and cell survival. Numerous host factors targeted by virus proteins are phosphoproteins. These factors are involved in host translational initiation, unfolded protein response, endoplasmic reticulum stress, and stress granule formation, and their phosphorylation may play key roles in the virus life cycle. Notably, we identified three conserved phosphorylation sites on viral polyproteins that have not been previously reported. Our study provides valuable resources for a systematic understanding of the interaction between the host cells and the EV-A71 at the protein and the post-translational level.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Antígenos Virales/metabolismo , Enterovirus Humano A/fisiología , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Poliproteínas , Proteoma/genética , Proteoma/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-myc/metabolismo
12.
Cell Rep ; 40(7): 111234, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977517

RESUMEN

Spermidine is essential for cellular growth and acts as a prerequisite of hypusination, a post-translational modification of eukaryotic initiation factor 5A (eIF5A), allowing the translation of polyproline-containing proteins. Here, we show that oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) increases spermidine synthesis and eIF5A hypusination to enhance expression of polyproline-containing latency-associated nuclear antigen (LANA) for viral episomal maintenance. KSHV upregulates intracellular spermidine levels by dysregulating polyamine metabolic pathways in three-dimensional (3D) culture and 2D de novo infection conditions. Increased intracellular spermidine leads to increased eIF5A hypusination, ultimately enhancing LANA expression. In contrast, inhibition of spermidine synthesis or eIF5A hypusination alleviates LANA expression, decreasing viral episomal maintenance and KSHV-infected cell proliferation in vitro and in vivo, which is reversed by spermidine supplement. This demonstrates that KSHV hijacks spermidine synthesis and eIF5A hypusination pathways to enhance LANA expression for viral episomal maintenance, suggesting polyamine metabolism and eIF5A hypusination as therapeutic targets for KSHV-induced tumorigenesis.


Asunto(s)
Herpesvirus Humano 8 , Espermidina , Antígenos Virales/metabolismo , Línea Celular , Herpesvirus Humano 8/fisiología , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Espermidina/metabolismo , Espermidina/farmacología
13.
Viruses ; 14(7)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35891342

RESUMEN

Enterovirus 2Apro is a protease that proteolytically processes the viral polyprotein and cleaves several host proteins to antagonize host responses during enteroviral infection. Recently, the host protein actin histidine methyltransferase SET domain containing 3 (SETD3) was identified to interact with 2Apro and to be essential for virus replication. The role of SETD3 and its interaction with 2Apro remain unclear. In this study, we investigated the potential involvement of SETD3 in several functions of 2Apro. For this, we introduced the 2Apro from coxsackievirus B3 (CVB3) in a mutant of encephalomyocarditis virus (EMCV) containing an inactivated Leader protein (EMCV-Lzn) that is unable to shut down host mRNA translation, to trigger nucleocytoplasmic transport disorder (NCTD), and to suppress stress granule (SG) formation and type I interferon (IFN) induction. Both in wt HeLa cells and in HeLa SETD3 knockout (SETD3KO) cells, the virus containing active 2Apro (EMCV-2Apro) efficiently cleaved eukaryotic translation initiation factor 4 gamma (eIF4G) to shut off host mRNA translation, cleaved nucleoporins to trigger NCTD, and actively suppressed SG formation and IFN gene transcription, arguing against a role of SETD3 in these 2Apro-mediated functions. Surprisingly, we observed that the catalytic activity of enteroviral 2A is not crucial for triggering NCTD, as a virus containing an inactive 2Apro (EMCV-2Am) induced NCTD in both wt and SETD3KO cells, albeit delayed, challenging the idea that the NCTD critically depends on nucleoporin cleavage by this protease. Taken together, our results do not support a role of SETD3 in the proteolytic activities of enterovirus 2Apro.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Antígenos Virales/metabolismo , Virus de la Encefalomiocarditis/genética , Enterovirus/genética , Células HeLa , Histona Metiltransferasas/metabolismo , Humanos , Péptido Hidrolasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Biotechnol Bioeng ; 119(10): 2919-2937, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781691

RESUMEN

Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and ß1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.


Asunto(s)
Anticuerpos Neutralizantes , Infecciones por VIH , Animales , Antígenos Virales/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Anticuerpos Anti-VIH , Mamíferos/metabolismo , Polisacáridos/metabolismo , Conejos
15.
Cell Rep ; 39(6): 110788, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545047

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.


Asunto(s)
Herpesvirus Humano 8 , ARN Largo no Codificante , Sarcoma de Kaposi , Antígenos Virales/genética , Antígenos Virales/metabolismo , Cromosomas/metabolismo , Herpesvirus Humano 8/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Plásmidos , ARN Largo no Codificante/genética , Microambiente Tumoral , Latencia del Virus/genética
16.
Curr Protoc ; 2(2): e368, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35201679

RESUMEN

Application of flow cytometry principles for the analysis of viruses has been referred to as flow virometry (FVM). FVM is a multiparametric, high-throughput, and sensitive technique that allows viral particles to be detected, quantified, and characterized based on the biophysical properties of the virus and the expression of proteins on their surface. More specifically, by calibrating the flow cytometer with reference materials, it is possible to measure the concentration of intact viral particles in a sample, the abundance of a target antigen on the surface of the virus, and the relative diameter of the virus. Here, we describe a comprehensive overview of procedures used to stain, detect, and quantify viral and host-derived proteins located on the surface of retroviruses. These outlined techniques can be applied for the rapid phenotypic characterization of retroviruses, other enveloped viruses, and generally most viruses at the single-particle level through the direct staining of viruses collected from the supernatant of infected cells, without the need for enrichment or purification. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Virus production Basic Protocol 2: Instrument setup, standardization, and quality control for fluorescence quantification Basic Protocol 3: Flow virometry analysis Basic Protocol 4: Viral surface antigen staining and fluorescence quantification Support Protocol: Determination of the optimal antibody concentration for virus staining Basic Protocol 5: Gain configuration optimization.


Asunto(s)
Antígenos de Superficie , Virus , Antígenos de Superficie/metabolismo , Antígenos Virales/metabolismo , Citometría de Flujo/métodos , Virión
17.
J Virol ; 96(1): e0134021, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643433

RESUMEN

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress toward vaccine development. Previously, the DP148R gene was deleted from the genome of genotype I virulent Benin 97/1 isolate. This virus, BeninΔDP148R, induced transient moderate clinical signs after immunization and high levels of protection against challenge. However, the BeninΔDP148R virus and genome persisted in blood over a prolonged period. In the current study, deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R genome was shown not to reduce virus replication in macrophages in vitro. However, deletion of EP402R dramatically reduced the period of infectious virus persistence in blood in immunized pigs from 28 to 14 days and virus genome from 59 to 14 days while maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus, and no viremia or clinical signs were observed postimmunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and did not reduce the period of virus persistence in blood. These results show that EP402R and EP153R have a synergistic role in reducing clinical signs and levels of virus in blood. IMPORTANCE African swine fever virus (ASFV) causes a disease of domestic pigs and wild boar which results in death of almost all infected animals. The disease has a high economic impact, and no vaccine is available. We investigated the role of two ASFV proteins, called EP402R and EP153R, in determining the levels and length of time virus persists in blood from infected pigs. EP402R causes ASFV particles and infected cells to bind to red blood cells. Deletion of the EP402R gene dramatically reduced virus persistence in blood but did not reduce the level of virus. Deletion of the EP153R gene alone did not reduce the period or level of virus persistence in blood. However, deleting both EP153R and EP402R resulted in undetectable levels of virus in blood and no clinical signs showing that the proteins act synergistically. Importantly, the infected pigs were protected following infection with the wild-type virus that kills pigs.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/virología , Proteínas Virales/metabolismo , Viremia/virología , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/metabolismo , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Biomarcadores , Células Cultivadas , Ingeniería Genética , Genotipo , Interacciones Huésped-Patógeno , Inmunización , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Eliminación de Secuencia , Porcinos , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Virulencia , Replicación Viral
18.
Nucleic Acids Res ; 49(22): 12895-12911, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34850113

RESUMEN

Mixed lineage leukemia 1 (MLL1) is a histone methyltransferase. Kaposi's sarcoma-associated herpesvirus (KSHV) is a leading cause of malignancy in AIDS. KSHV latently infects tumor cells and its genome is decorated with epigenetic marks. Here, we show that KSHV latency-associated nuclear antigen (LANA) recruits MLL1 to viral DNA where it establishes H3K4me3 modifications at the extensive KSHV terminal repeat elements during primary infection. LANA interacts with MLL1 complex members, including WDR5, integrates into the MLL1 complex, and regulates MLL1 activity. We describe the 1.5-Å crystal structure of N-terminal LANA peptide complexed with MLL1 complex member WDR5, which reveals a potential regulatory mechanism. Disruption of MLL1 expression rendered KSHV latency establishment highly deficient. This deficiency was rescued by MLL1 but not by catalytically inactive MLL1. Therefore, MLL1 is LANA regulable and exerts a central role in virus infection. These results suggest broad potential for MLL1 regulation, including by non-host factors.


Asunto(s)
Antígenos Virales/genética , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/genética , Sarcoma de Kaposi/genética , Latencia del Virus/genética , Antígenos Virales/química , Antígenos Virales/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , ADN Viral/genética , ADN Viral/metabolismo , Técnicas de Silenciamiento del Gen , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiología , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Sarcoma de Kaposi/virología
19.
Nat Immunol ; 22(12): 1590-1598, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34811538

RESUMEN

Although critical to T cell function, antigen specificity is often omitted in high-throughput multiomics-based T cell profiling due to technical challenges. We describe a high-dimensional, tetramer-associated T cell antigen receptor (TCR) sequencing (TetTCR-SeqHD) method to simultaneously profile cognate antigen specificities, TCR sequences, targeted gene expression and surface-protein expression from tens of thousands of single cells. Using human polyclonal CD8+ T cells with known antigen specificity and TCR sequences, we demonstrate over 98% precision for detecting the correct antigen specificity. We also evaluate gene expression and phenotypic differences among antigen-specific CD8+ T cells and characterize phenotype signatures of influenza- and Epstein-Barr virus-specific CD8+ T cells that are unique to their pathogen targets. Moreover, with the high-throughput capacity of profiling hundreds of antigens simultaneously, we apply TetTCR-SeqHD to identify antigens that preferentially enrich cognate CD8+ T cells in patients with type 1 diabetes compared to healthy controls and discover a TCR that cross-reacts with diabetes-related and microbiome antigens. TetTCR-SeqHD is a powerful approach for profiling T cell responses in humans and mice.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Receptores de Antígenos de Linfocitos T/genética , Análisis de la Célula Individual , Antígenos/metabolismo , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Autoantígenos/inmunología , Autoantígenos/metabolismo , Autoinmunidad , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Estudios de Casos y Controles , Separación Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/patogenicidad , Humanos , Orthomyxoviridae/inmunología , Orthomyxoviridae/patogenicidad , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo
20.
PLoS Pathog ; 17(11): e1010019, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780571

RESUMEN

Gammaherpesviruses establish life-long infections within their host and have been shown to be the causative agents of devastating malignancies. Chronic infection within the host is mediated through cycles of transcriptionally quiescent stages of latency with periods of reactivation into detectable lytic and productive infection. The mechanisms that regulate reactivation from latency remain poorly understood. Previously, we defined a critical role for the viral cyclin in promoting reactivation from latency. Disruption of the viral cyclin had no impact on the frequency of cells containing viral genome during latency, yet it remains unclear whether the viral cyclin influences latently infected cells in a qualitative manner. To define the impact of the viral cyclin on properties of latent infection, we utilized a viral cyclin deficient variant expressing a LANA-beta-lactamase fusion protein (LANA::ßla), to enumerate both the cellular distribution and frequency of LANA gene expression. Disruption of the viral cyclin did not affect the cellular distribution of latently infected cells, but did result in a significant decrease in the frequency of cells that expressed LANA::ßla across multiple tissues and in both immunocompetent and immunodeficient hosts. Strikingly, whereas the cyclin-deficient virus had a reactivation defect in bulk culture, sort purified cyclin-deficient LANA::ßla expressing cells were fully capable of reactivation. These data emphasize that the γHV68 latent reservoir is comprised of at least two distinct stages of infection characterized by differential LANA expression, and that a primary function of the viral cyclin is to promote LANA expression during latency, a state associated with ex vivo reactivation competence.


Asunto(s)
Antígenos Virales/metabolismo , Ciclinas/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Virales/metabolismo , Activación Viral , Replicación Viral , Animales , Antígenos Virales/genética , Ciclinas/genética , Gammaherpesvirinae/fisiología , Infecciones por Herpesviridae/virología , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Infección Persistente , Proteínas Virales/genética , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA