Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
1.
Int J Biol Macromol ; 278(Pt 1): 134678, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137852

RESUMEN

Inhibition of carbohydrate digestive enzymes is a key focus across diverse fields, given the prominence of α-glucosidase inhibitors as preferred oral hypoglycaemic drugs for diabetes treatment. ß-conglycinin is the most abundant functional protein in soy; however, it is unclear whether the peptides produced after its gastrointestinal digestion exhibit α-glucosidase inhibitory properties. Therefore, we examined the α-glucosidase inhibitory potential of soy peptides. Specifically, ß-conglycinin was subjected to simulated gastrointestinal digestion by enzymatically cleaving it into 95 peptides with gastric, pancreatic and chymotrypsin enzymes. Eight soybean peptides were selected based on their predicted activity; absorption, distribution, metabolism, excretion and toxicity score; and molecular docking analysis. The results indicated that hydrogen bonding and electrostatic interactions play important roles in inhibiting α-glucosidase, with the tripeptide SGR exhibiting the greatest inhibitory effect (IC50 = 10.57 µg/mL). In vitro studies revealed that SGR markedly improved glucose metabolism disorders in insulin-resistant HepG2 cells without affecting cell viability. Animal experiments revealed that SGR significantly improved blood glucose and decreased maltase activity in type 2 diabetic zebrafish larvae, but it did not result in the death of zebrafish larvae. Transcriptomic analysis revealed that SGR exerts its anti-diabetic and hypoglycaemic effects by attenuating the expression of several genes, including Slc2a1, Hsp70, Cpt2, Serpinf1, Sfrp2 and Ggt1a. These results suggest that SGR is a potential food-borne bioactive peptide for managing diabetes.


Asunto(s)
Antígenos de Plantas , Globulinas , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Larva , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Pez Cebra , alfa-Glucosidasas , Animales , Células Hep G2 , Humanos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Globulinas/química , Globulinas/farmacología , Proteínas de Soja/química , Proteínas de Soja/farmacología , Larva/efectos de los fármacos , alfa-Glucosidasas/metabolismo , Antígenos de Plantas/química , Antígenos de Plantas/farmacología , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Péptidos/química , Glucemia/efectos de los fármacos
2.
J Agric Food Chem ; 72(29): 16191-16203, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38990326

RESUMEN

Interactions between phenolic compounds and the allergen Mal d 1 are discussed to be the reason for better tolerance of apple cultivars, which are rich in polyphenols. Because Mal d 1 is susceptible to proteolytic digestion and allergenic symptoms are usually restricted to the mouth and throat area, the release of native Mal d 1 during the oral phase is of particular interest. Therefore, we studied the release of Mal d 1 under different in vitro oral digestion conditions and revealed that only 6-15% of the total Mal d 1 present in apples is released. To investigate proposed polyphenol-Mal d 1 interactions, various analytical methods, e.g., isothermal titration calorimetry, 1H-15N-HSQC NMR, and untargeted mass spectrometry, were applied. For monomeric polyphenols, only limited noncovalent interactions were observed, whereas oligomeric polyphenols and browning products caused aggregation. While covalent modifications were not detectable in apple samples, a Michael addition of epicatechin at cysteine 107 in r-Mal d 1.01 was observed.


Asunto(s)
Alérgenos , Malus , Polifenoles , Malus/química , Malus/inmunología , Polifenoles/química , Alérgenos/inmunología , Alérgenos/química , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Espectroscopía de Resonancia Magnética , Frutas/química , Frutas/inmunología , Humanos , Espectrometría de Masas , Digestión , Antígenos de Plantas
3.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891986

RESUMEN

Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.


Asunto(s)
Actinidia , Alérgenos , Reacciones Cruzadas , Hipersensibilidad a los Alimentos , Inmunoglobulina E , Látex , Musa , Humanos , Reacciones Cruzadas/inmunología , Hipersensibilidad a los Alimentos/inmunología , Alérgenos/inmunología , Alérgenos/genética , Musa/inmunología , Musa/genética , Inmunoglobulina E/inmunología , Actinidia/inmunología , Femenino , Látex/inmunología , Masculino , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Adulto , Antígenos de Plantas/inmunología , Antígenos de Plantas/genética , Secuencia de Aminoácidos , Epítopos de Linfocito T/inmunología , Persona de Mediana Edad , Adolescente , Niño , Adulto Joven
4.
J Agric Food Chem ; 72(20): 11694-11705, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723176

RESUMEN

The most significant and sensitive antigen protein that causes diarrhea in weaned pigs is soybean 7S globulin. Therefore, identifying the primary target for minimizing intestinal damage brought on by soybean 7S globulin is crucial. MicroRNA (miRNA) is closely related to intestinal epithelium's homeostasis and integrity. However, the change of miRNAs' expression and the function of miRNAs in Soybean 7S globulin injured-IPEC-J2 cells are still unclear. In this study, the miRNAs' expression profile in soybean 7S globulin-treated IPEC-J2 cells was investigated. Fifteen miRNAs were expressed differently. The differentially expressed miRNA target genes are mainly concentrated in signal release, cell connectivity, transcriptional inhibition, and Hedgehog signaling pathway. Notably, we noticed that the most significantly decreased miRNA was ssc-miR-221-5p after soybean 7S globulin treatment. Therefore, we conducted a preliminary study on the mechanisms of ssc-miR-221-5p in soybean 7S globulin-injured IPEC-J2 cells. Our research indicated that ssc-miR-221-5p may inhibit ROS production to alleviate soybean 7S globulin-induced apoptosis and inflammation in IPEC-J2 cells, thus protecting the cellular mechanical barrier, increasing cell proliferation, and improving cell viability. This study provides a theoretical basis for the prevention and control of diarrhea of weaned piglets.


Asunto(s)
Apoptosis , Globulinas , Glycine max , Mucosa Intestinal , MicroARNs , Proteínas de Soja , Animales , MicroARNs/genética , MicroARNs/metabolismo , Porcinos , Línea Celular , Glycine max/genética , Glycine max/química , Glycine max/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Globulinas/genética , Globulinas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Células Epiteliales/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antígenos de Plantas
5.
Food Funct ; 15(12): 6488-6501, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804660

RESUMEN

Mustard seeds belong to the food category of mandatory labelling due to the severe reactions they can trigger in allergic patients. However, the mechanisms underlying allergic sensitization to mustard seeds are poorly understood. The aim of this work is to study type 2 immune activation induced by the mustard seed major allergen Sin a1 via the intestinal mucosa, employing an in vitro model mimicking allergen exposure via the intestinal epithelial cells (IECs). Sin a1 was isolated from the total protein extract and exposed to IEC, monocyte derived dendritic cells (DCs) or IEC/DC co-cultures. A system of consecutive co-cultures was employed to study the generic capacity of Sin a1 to induce type 2 activation leading to sensitization: IEC/DC, DC/T-cell, T/B-cell and stem cell derived mast cells (MCs) derived from healthy donors. Immune profiles were determined by ELISA and flow cytometry. Sin a1 activated IEC and induced type-2 cytokine secretion in IEC/DC co-culture or DC alone (IL-15, IL-25 and TSLP), and primed DC induced type 2 T-cell skewing. IgG secretion in the T-cell/B-cell phase was enhanced in the presence of Sin a1 in the first stages of the co-culture. Anti-IgE did not induce degranulation but promoted IL-13 and IL-4 release by MC primed with the supernatant from B-cells co-cultured with Sin a1-IEC/DC or -DC primed T-cells. Sin a1 enhanced the release of type-2 inflammatory mediators by epithelial and dendritic cells; the latter instructed generic type-2 responses in T-cells that resulted in B-cell activation, and finally MC activation upon anti-IgE exposure. This indicates that via activation of IEC and/or DC, mustard seed allergen Sin a1 is capable of driving type 2 immunity which may lead to allergic sensitization.


Asunto(s)
Alérgenos , Células Dendríticas , Células Epiteliales , Planta de la Mostaza , Semillas , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Humanos , Semillas/química , Alérgenos/inmunología , Células Epiteliales/inmunología , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/inmunología , Técnicas de Cocultivo , Antígenos de Plantas/inmunología , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Inmunoglobulina E/inmunología , Citocinas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/farmacología
6.
Int J Biol Macromol ; 258(Pt 1): 128340, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000575

RESUMEN

Interactions between plant polyphenols and food allergens may be a new way to alleviate food allergies. The non-covalent interactions between the major allergen from peanut (Ara h 2) with procyanidin dimer (PA2) were therefore characterized using spectroscopic, thermodynamic, and molecular simulation analyses. The main interaction between the Ara h 2 and PA2 was hydrogen bonding. PA2 statically quenched the intrinsic fluorescence intensity and altered the conformation of the Ara h 2, leading to a more disordered polypeptide structure with a lower surface hydrophobicity. In addition, the in vitro allergenicity of the Ara h 2-PA2 complex was investigated using enzyme-linked immunosorbent assay (ELISA) kits. The immunoglobulin E (IgE) binding capacity of Ara h 2, as well as the release of allergenic cytokines, decreased after interacting with PA2. When the ratio of Ara h 2-to-PA2 was 1:50, the IgE binding capacity was reduced by around 43 %. This study provides valuable insights into the non-covalent interactions between Ara h 2 and PA2, as well as the potential mechanism of action of the anti-allergic reaction caused by binding of the polyphenols to the allergens.


Asunto(s)
Hipersensibilidad al Cacahuete , Proantocianidinas , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proantocianidinas/metabolismo , Glicoproteínas/química , Inmunoglobulina E/metabolismo , Polifenoles/metabolismo , Proteínas de Plantas/química
7.
Front Immunol ; 14: 1291666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077382

RESUMEN

Background: Allergens from Fagales trees frequently cause spring allergy in Europe, North America, and some parts of Asia. The definition of the birch homologous group, which includes birch (Bet v), oak (Que a), alder (Aln g), hazel (Cor a), hornbeam (Car b), beech (Fag s), and chestnut (Cas s), is based on high allergen sequence identity and extensive IgE cross-reactivity. Clinical effect was seen during the alder/hazel, birch, and oak pollen seasons after treatment with tree SLIT-tablets containing only birch allergen extract. Here, we characterize T-cell reactivity with respect to epitope specificities and cross-reactivity toward various Bet v 1 family members, (PR-10/group 1 major allergens). This cross-reactivity may be part of the immunological basis of clinical effect or cross-protection when exposed to birch homologous tree species. Method: T-cell lines were generated from 29 birch-allergic individuals through stimulation of peripheral blood mononuclear cells (PBMCs) with birch/Bet v or oak/Que a allergen extracts. T-cell responses to allergen extracts, purified group 1 allergens, and overlapping 20-mer peptides (Bet v 1, Aln g 1, Cor a 1, and Que a 1) were investigated by T-cell proliferation and cytokine production. Cross-reactivity was evaluated based on Pearson's correlations of response strength and further investigated by flow cytometry using tetramer staining for homologous peptide pairs. Results: T-cell reactivity toward extracts and group 1 allergens from across the birch homologous group was observed for birch/Bet v as well as oak/Que a T-cell lines. T-cell lines responded to multiple Bet v 1 homologous peptides from Aln g 1 and Cor a 1 and a subset of Que a 1 peptides. Significant Pearson's correlations between frequently recognized peptides derived from Bet v 1 and the corresponding peptides derived from alder, hazel, and oak strongly supported the T-cell cross-reactivity toward these allergens. Cross-reactivity between birch and birch homologous peptides was confirmed by pMHCII tetramer staining. Conclusion: T cells from birch tree pollen allergic individuals respond to multiple trees within the birch homologous group in accordance with the level of sequence homology between Bet v 1 family members, (PR-10 allergens) from these allergen sources, confirming the basis for clinical cross-protection.


Asunto(s)
Hipersensibilidad , Árboles , Humanos , Linfocitos T , Leucocitos Mononucleares , Antígenos de Plantas , Polen , Alérgenos , Péptidos/análisis , Betula
8.
Allergy ; 78(12): 3136-3153, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37701941

RESUMEN

BACKGROUND: The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE: To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS: Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS: IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION: IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.


Asunto(s)
Hipersensibilidad a los Alimentos , Polen , Ratas , Animales , Humanos , Epítopos , Antígenos de Plantas , Alérgenos , Inmunoglobulina G , Inmunoglobulina E , Péptidos , Proteínas de Plantas , Proteínas Recombinantes
9.
Mol Nutr Food Res ; 67(22): e2300134, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37706599

RESUMEN

SCOPE: The unstructured region of Ara h 2, referred to as epitope 3, contains a repeated motif, DYPSh (h = hydroxyproline) that is important for IgE binding. METHODS AND RESULTS: IgE binding assays to 20mer and shorter peptides of epitope 3, defines a 16mer core sequence containing one copy of the DPYSh motif, DEDSYERDPYShSQDP. This study performs alanine scanning of this and a related 12mer mimotope, LLDPYAhRAWTK. IgE binding, using a pool of 10 sera and with individual sera, is greatly reduced when alanine is substituted for aspartate at position 8 (D8; p < 0.01), tyrosine at position 10 (Y10; p < 0.01), and hydroxyproline at position 12 (h12; p < 0.001). IgE binding to alanine-substituted peptides of a mimotope containing the DPY_h motif confirm the critical importance of Y (p < 0.01) and h (p < 0.01), but not D. Molecular modeling of the core and mimotope suggests an h-dependent conformational basis for the recognition of these sequences by polyclonal IgE. CONCLUSIONS: IgE from pooled sera and individual sera differentially bound amino acids throughout the sequences of Epitope 3 and its mimotope, with Y10 and h12 being most important for all sera. These results are highly significant for designing hypoallergenic forms of Ara h 2.


Asunto(s)
Aminoácidos , Hipersensibilidad al Cacahuete , Humanos , Secuencia de Aminoácidos , Antígenos de Plantas/química , Alanina , Hidroxiprolina , Epítopos , Proteínas de Plantas/química , Péptidos , Inmunoglobulina E/metabolismo , Albuminas 2S de Plantas , Alérgenos/química
10.
Rev. cuba. med. mil ; 52(3)sept. 2023. tab
Artículo en Inglés | LILACS, CUMED | ID: biblio-1559840

RESUMEN

Introduction: Monitoring changes in the levels of immune markers is of great significance in evaluating the effectiveness of treatment in patients with allergic rhinitis. Objectives: Determine the change in the concentration of immune markers after treatment in patients with allergic rhinitis caused by cotton dust. Methods: A descriptive, single-group, comparative before and after intervention study on 52 patients with allergic rhinitis caused by cotton dust. Comparison of immunological markers results before and after 36 months of treatment. Results: Total IgE concentration after treatment decreased, the median decreased from 1227.756 U/mL to 676.805 UI/mL. Serum levels of IgG, IgG4, and IgG1 in patients after treatment increased compared to before (p< 0.001). The cytokines also changed in the direction of no longer responding toward allergy. Median IL-17 decreased from 1.752 mg/dL to 0.417 mg/dL. Conclusion: In patients with allergic rhinitis after specific sublingual desensitization treatment, IgE levels and cytokines such as IL-6 and IL-17 are significantly reduced and IgG, IgG4 and IgG1 levels are increased after treatment(AU)


Introducción: El monitoreo de los cambios en los niveles de marcadores inmunes es de gran importancia para evaluar la efectividad del tratamiento en pacientes con rinitis alérgica. Objetivos: Determinar el cambio en la concentración de marcadores inmunes después del tratamiento, en pacientes con rinitis alérgica causada por polvo de algodón. Métodos: Estudio descriptivo, monogrupo, comparativo antes y después de la intervención, en 52 pacientes con rinitis alérgica por polvo de algodón. Se compararon resultados de marcadores inmunológicos antes y después de 36 meses de tratamiento. Resultados: La concentración de IgE total después del tratamiento disminuyó, la mediana disminuyó de 1227,756 U/mL a 676,805 UI/mL. Los niveles séricos de IgG, IgG4 e IgG1 en pacientes, después del tratamiento, aumentaron (p< 0,001). Las citocinas también cambiaron en dirección a ausencia de respuesta a la alergia. La mediana de IL-17 disminuyó de 1,752 mg/dL a 0,417 mg/dL. Conclusión: En pacientes con rinitis alérgica, después del tratamiento específico de desensibilización sublingual, los niveles de IgE y citocinas como IL-6 e IL-17 se reducen significativamente y los niveles de IgG, IgG4 e IgG1 aumentan(AU)


Asunto(s)
Humanos , Inmunoglobulina E , Inmunoglobulina G , Biomarcadores , Resultado del Tratamiento , Polvo , Antígenos de Plantas , Rinitis Alérgica/terapia , Administración Sublingual , Citocinas/inmunología , Vestuario , Corticoesteroides/uso terapéutico , Gossypium , Evaluación de Medicamentos/métodos , Antagonistas de los Receptores Histamínicos/uso terapéutico , Grupos Profesionales
11.
J Allergy Clin Immunol Pract ; 11(11): 3485-3492.e2, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37495080

RESUMEN

BACKGROUND: A precise diagnosis of peanut allergy is extremely important. We identified 4 Ara h 2 peptides that improved Ara h 2-specific IgE (sIgE) diagnostic accuracy. OBJECTIVE: To assess the diagnostic utility of sIgE to the mixture of these peptides and their role in mast cell response to peanut allergens. METHODS: sIgE to the peptide mix was determined using ImmunoCAP. Its diagnostic utility was compared with Ara h 2-sIgE and sIgE to the individual peptides. The functional relevance of the peptides was tested on the mast cell activation test using laboratory of allergic diseases 2 cell line and flow cytometry. RESULTS: A total of 52 peanut-allergic (PA), 36 peanut-sensitized but tolerant, and 9 nonsensitized nonallergic children were studied. Peptide mix-sIgE improved the diagnostic performance of Ara h 2-sIgE compared with Ara h 2-sIgE alone (area under the receiver operating characteristic curve .92 vs .89, respectively; P = .056). The sensitivity and specificity of Ara h 2-sIgE combined with the peptide mix were 85% and 96%, respectively. sIgE to individual peptides had the highest specificity (91%-96%) but the lowest sensitivity (10%-52%) compared with Ara h 2-sIgE (69% specificity and 87% sensitivity) or with peptide mix-sIgE (82% specificity and 63% sensitivity). Peptide 3 directly induced mast cell activation, and the peptide mix inhibited Ara h 2-induced activation of mast cells sensitized with plasma from Ara h 2-positive PA patients. CONCLUSIONS: sIgE to the peptide mix improved the diagnostic performance of Ara h 2-sIgE similarly to sIgE to individual peptides. The peptides interfered with Ara h 2-induced mast cell activation, confirming its relevance in peanut allergy.


Asunto(s)
Hipersensibilidad al Cacahuete , Niño , Humanos , Hipersensibilidad al Cacahuete/diagnóstico , Mastocitos , Antígenos de Plantas , Inmunoglobulina E , Albuminas 2S de Plantas , Arachis , Alérgenos , Péptidos
12.
Int Immunol ; 35(9): 447-458, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37418020

RESUMEN

Cry j 1 is a major allergen present in Japanese cedar (Cryptomeria japonica) pollens. Peptides with the core sequence of KVTVAFNQF from Cry j 1 ('pCj1') bind to HLA-DP5 and activate Th2 cells. In this study, we noticed that Ser and Lys at positions -2 and -3, respectively, in the N-terminal flanking (NF) region to pCj1 are conserved well in HLA-DP5-binding allergen peptides. A competitive binding assay showed that the double mutation of Ser(-2) and Lys(-3) to Glu [S(P-2)E/K(P-3)E] in a 13-residue Cry j 1 peptide (NF-pCj1) decreased its affinity for HLA-DP5 by about 2-fold. Similarly, this double mutation reduced, by about 2-fold, the amount of NF-pCj1 presented on the surface of mouse antigen-presenting dendritic cell line 1 (mDC1) cells stably expressing HLA-DP5. We established NF-pCj1-specific and HLA-DP5-restricted CD4+ T-cell clones from HLA-DP5 positive cedar pollinosis (CP) patients, and analyzed their IL-2 production due to the activation of mouse TG40 cells expressing the cloned T-cell receptor by the NF-pCj1-presenting mDC1 cells. The T-cell activation was actually decreased by the S(P-2)E/K(P-3)E mutation, corresponding to the reduction in the peptide presentation by this mutation. In contrast, the affinity of NF-pCj1·HLA-DP5 for the T-cell receptor was not affected by the S(P-2)E/K(P-3)E mutation, as analyzed by surface plasmon resonance. Considering the positional and side-chain differences of these NF residues from previously reported T-cell activating sequences, the mechanisms of enhanced T-cell activation by Ser(-2) and Lys(-3) of NF-pCj1 may be novel.


Asunto(s)
Alérgenos , Cryptomeria , Animales , Ratones , Cryptomeria/química , Antígenos de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Polen , Péptidos , Receptores de Antígenos de Linfocitos T
13.
J Agric Food Chem ; 71(23): 9110-9119, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37256970

RESUMEN

Given that roasting changes the structure and allergenicity of peanut allergens, the structural information of peanut allergens must be expounded to explain the alteration in their allergenicity. This work focused on allergen aggregations (AAs) in roasted peanuts. IgE recognition capability was assessed via western blot analysis. The disulfide bond (DB) rearrangement and chemical modification in AAs were identified by combining mass spectroscopy and software tools, and structural changes induced by cross-links were displayed by molecular dynamics and PyMOL software. Results showed that AAs were strongly recognized by IgE and cross-linked mainly by DBs. The types of DB rearrangement in AAs included interprotein (98 peptide pairs), intraprotein (22 peptide pairs), and loop-linked (6 peptides) DBs. Among allergens, Ara h 2 and Ara h 6 presented the most cysteine residues to cross-linkf with others or themselves. DB rearrangement involved IgE epitopes and induced structural changes. Ara h 1 and Ara h 3 were predominantly chemically modified. Moreover, chemical modification altered the local structures of proteins, which may change the allergenic potential of allergens.


Asunto(s)
Arachis , Hipersensibilidad al Cacahuete , Arachis/química , Alérgenos/química , Proteínas de Plantas/química , Antígenos de Plantas/química , Inmunoglobulina E/metabolismo , Disulfuros , Albuminas 2S de Plantas
14.
Curr Allergy Asthma Rep ; 23(6): 277-285, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178263

RESUMEN

PURPOSE OF REVIEW: Defensin-polyproline-linked proteins are relevant allergens in Asteraceae pollen. Depending on their prevalence and amount in the pollen source, they are potent allergens, as shown for the major mugwort pollen allergen Art v 1. Only a few allergenic defensins have been identified in plant foods, such as peanut and celery. This review provides an overview of structural and immunological features, IgE cross-reactivity, and diagnostic and therapeutic options regarding allergenic defensins. RECENT FINDINGS: We present and critically review the allergenic relevance of pollen and food defensins. The recently identified Api g 7 from celeriac and other allergens potentially involved in Artemisia pollen-related food allergies are discussed and related to clinical severity and allergen stability. To specify Artemisia pollen-related food allergies, we propose the term "defensin-related food allergies" to account for defensin-polyproline-linked protein-associated food syndromes. There is increasing evidence that defensins are the causative molecules in several mugwort pollen-associated food allergies. A small number of studies have shown IgE cross-reactivity of Art v 1 with celeriac, horse chestnut, mango, and sunflower seed defensins, while the underlying allergenic molecule remains unknown in other mugwort pollen-associated food allergies. As these food allergies can cause severe allergic reactions, identification of allergenic food defensins and further clinical studies with larger patient cohorts are required. This will allow molecule-based allergy diagnosis and a better understanding of defensin-related food allergies to raise awareness of potentially severe food allergies due to primary sensitization to Artemisia pollen.


Asunto(s)
Artemisia , Hipersensibilidad a los Alimentos , Humanos , Proteínas de Plantas/química , Polen , Alérgenos , Reacciones Cruzadas , Inmunoglobulina E , Defensinas/análisis , Antígenos de Plantas
15.
Clin Exp Allergy ; 53(6): 636-647, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37038893

RESUMEN

BACKGROUND: Clinical and experimental analyses indicate a pathognomonic role for allergen IgE crosslinking through epitope-paratope interactions as a major initial step in the cascade leading to effector cell activation and clinical manifestations of lgE-mediated food allergies. We aimed to undertake the initial development and assessment of Ara h 2-specific IgE epitope-like peptides that can bind to allergen-specific IgE paratopes and suppress effector cell activation. METHODS: We performed biopanning, screening, IgE binding, selection and mapping of peptides. We generated synthetic peptides for use in all functional experiments. ImmunoCAP inhibition, basophil and mast cell activation tests, with LAD2 cells, a human mast cell line were performed. Twenty-six children or young adults who had peanut allergy were studied. RESULTS: We identified and selected three linear peptides (DHPRFNRDNDVA, DHPRYGP and DHPRFST), and immunoblot analyses revealed binding to lgE from peanut-allergic individuals. The peptide sequences were aligned to the disordered region corresponding to the loop between helices 2 and 3 of Ara h 2, and conformational mapping showed that the peptides match the surface of Ara h 2 and h 6 but not other peanut allergens. In ImmunoCAP inhibition experiments, the peptides significantly inhibit the binding of IgE to Ara h 2 (p < .001). In basophil and mast cell activation tests, the peptides significantly suppressed Ara h 2-induced effector cell activation (p < .05) and increased the half-maximal Ara h 2 effective concentration (p < .05). Binding of the peptides to specific IgEs did not induce activation of basophils or mast cells. CONCLUSIONS: These studies show that the indicated peptides reduce the allergenic activity of Ara h 2 and suppress lgE-dependent basophil and mast cell activation. These observations may suggest a novel therapeutic strategy for food allergy based on epitope-paratop blocking.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Niño , Adulto Joven , Humanos , Epítopos , Antígenos de Plantas , Glicoproteínas , Péptidos , Inmunoglobulina E , Alérgenos , Arachis , Albuminas 2S de Plantas
16.
J Allergy Clin Immunol ; 152(2): 436-444.e6, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37028524

RESUMEN

BACKGROUND: Surprisingly, IgE cross-reactivity between the major peanut allergens Ara h 1, 2, and 3 has been reported despite very low sequence identities. OBJECTIVE: We investigated the unexpected cross-reactivity between peanut major allergens. METHODS: Cross-contamination of purified natural Ara h 1, 2, 3, and 6 was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot test, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and sandwich enzyme-linked immunosorbent assay (ELISA). IgE cross-reactivity was studied with sera of peanut-allergic patients (n = 43) by ELISA and ImmunoCAP inhibition using both intact natural and recombinant allergens and synthetic peptides representing postulated Ara h 1 and Ara h 2 cross-reactive epitopes. RESULTS: Both purified nAra h 1 and nAra h 3 were demonstrated to contain small but significant amounts of Ara h 2 and Ara h 6 (<1%) by sandwich ELISA, SDS-PAGE/Western blot analysis, and LC-MS/MS. IgE cross-inhibition between both 2S albumins and Ara h 1 and Ara h 3 was only observed when using natural purified allergens, not recombinant allergens or synthetic peptides. Apparent cross-reactivity was lost when purified nAra h 1 was pretreated under reducing conditions, suggesting that Ara h 2 and Ara h 6 contaminations may be covalently bound to Ara h 1 via disulfide interactions. CONCLUSION: True cross-reactivity of both peanut 2S albumins with Ara h 1 and Ara h 3 could not be demonstrated. Instead, cross-contamination with small quantities was shown to be sufficient to cause significant cross-inhibition that can be misinterpreted as molecular cross-reactivity. Diagnostic tests using purified nAra h 1 and nAra h 3 can overestimate their importance as major allergens as a result of the presence of contaminating 2S albumins, making recombinant Ara h 1 and Ara h 3 a preferred alternative.


Asunto(s)
Alérgenos , Hipersensibilidad al Cacahuete , Humanos , Alérgenos/química , Proteínas de Plantas/química , Arachis , Antígenos de Plantas/metabolismo , Cromatografía Liquida , Inmunoglobulina E , Espectrometría de Masas en Tándem , Albuminas 2S de Plantas , Péptidos/metabolismo , Albúminas/metabolismo , Hipersensibilidad al Cacahuete/diagnóstico
17.
Biosci Biotechnol Biochem ; 87(6): 649-652, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-36945060

RESUMEN

The antiallergic properties of phlorotannins, algal polyphenols, have been widely reported. This study examined the soothing effect of phlorotannin concentrate (PTC) from Eisenia nipponica on cedar pollinosis in Cry j 1-stimulated mice. PTC reduced the mice's sneezing and nasal rubbing, which was attributed to decreased levels of immunoglobulin E and Th2-type cytokines [interleukin (IL)-4, IL-5, and IL-13].


Asunto(s)
Cryptomeria , Rinitis Alérgica Estacional , Ratones , Animales , Alérgenos , Proteínas de Plantas , Antígenos de Plantas , Citocinas
18.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675318

RESUMEN

Next to cow's milk and eggs, plant foods, i.e., legumes, tree nuts and cereal grains, most often sensitise atopic children. Storage proteins constitutes the most relevant protein fraction of plant foods, causing primary sensitisation. They exhibit strong allergenic properties and immunogenicity. Our goal was to analyse sensitisation to 26 plant storage proteins in a group of 76 children aged 0-5 years with chronic symptoms of atopic dermatitis using Allergy Explorer ALEX2 and to discover changes in serum protein-peptide patterns in allergic patients with the use of MALDI-TOF-MS. We reported that 25% of children were allergic to 2S albumins, 19.7% to 7S globulins, 13.2% to 11S globulins and 1.3% to cereal prolamins. The most common allergenic molecules were Ara h 1 (18.4%), Ara h 2 (17.1%), Ara h 6 (15.8%) and Ara h 3 (11.8%) from peanuts, and the mean serum sIgE concentrations in allergic patients were 10.93 kUA/L, 15.353 kUA/L, 15.359 kUA/L and 9.038 kUA/L, respectively. In children allergic to storage proteins compared to the other patients (both allergic and non-allergic), the cell cycle control protein 50A, testis-expressed sequence 13B, DENN domain-containing protein 5A and SKI family transcriptional corepressor 2 were altered. Our results indicate that the IgE-mediated allergy to storage proteins is a huge problem in a group of young, atopic children, and show the potential of proteomic analysis in the prediction of primary sensitisation to plant foods. It is the next crucial step for understanding the molecular consequences of allergy to storage proteins.


Asunto(s)
Dermatitis Atópica , Proteínas de Plantas , Masculino , Femenino , Animales , Bovinos , Proteómica , Alérgenos , Péptidos , Proteínas Sanguíneas , Antígenos de Plantas , Arachis
19.
J Agric Food Chem ; 71(5): 2554-2565, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696630

RESUMEN

The apple allergy in Northern Europe is a cross-reaction to the birch pollen allergy. No correlation between the allergenicity of an apple variety and the content of the major apple allergen Mal d 1, a homologue to the Bet v 1 allergen in birch, could be found using ELISA, so far. Therefore, an impact of polyphenols and/or differences in the isoallergen profile are discussed. To allow a more detailed analysis of the Mal d 1 content and the isoallergen profile, a mass spectrometric method was applied to investigate differences in the flesh and peel of 10 traditional varieties and 10 commercial breeds. The data revealed often, but not always, lower Mal d 1 contents in traditional varieties grown in orchard meadows, which was more obvious in the flesh. Differences among the peels were less pronounced. A closer look at the individual isoallergens 1.01, 1.02, 1.03, and 1.06 reveals an increased impact of the minor isoallergens 1.03 and 1.06 on the allergenic potential, since commercial breeds like Braeburn, Santana, and Holstein Cox, which are considered to have reduced allergenic potentials, were characterized by low levels of these isoallergens.


Asunto(s)
Hipersensibilidad a los Alimentos , Malus , Antígenos de Plantas , Fitomejoramiento , Alérgenos/química , Betula , Proteínas de Plantas
20.
Food Chem ; 410: 135374, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608553

RESUMEN

Naturally occurring polyphenols can modify the molecular properties of food allergens. For the major apple allergen Mal d 1 it has been postulated that chemical reactions with polyphenols cause permanent changes in the tertiary structure, causing a loss of conformational IgE epitopes and reducing allergenicity. In our study, we investigated the effect that reactions with oxidized polyphenols have on the structure of Mal d 1 by mass spectrometry and NMR spectroscopy. We showed that a surface-exposed cysteine residue in this allergen spontaneously reacts with oxidized polyphenols under formation of a defined covalent adduct. Chemical modification of Mal d 1 did not destabilize or perturb the three-dimensional fold, nor did it interfere with ligand binding to its internal pocket. A structural model of the chemically modified apple allergen is presented, which reveals that the bound polyphenol partially covers a conformational IgE epitope on the protein surface.


Asunto(s)
Malus , Malus/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Cisteína , Alérgenos/química , Epítopos , Inmunoglobulina E
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA