Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.030
Filtrar
1.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952675

RESUMEN

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antibacterianos/química , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratones , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Prótesis e Implantes , Aleaciones/farmacología , Aleaciones/química , Ratas , Titanio/química , Titanio/farmacología , Plata/química , Plata/farmacología , Proliferación Celular/efectos de los fármacos , Cobre/química , Cobre/farmacología , Masculino , Microtomografía por Rayos X , Línea Celular , Nanopartículas del Metal/química
2.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955831

RESUMEN

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Asunto(s)
Antibacterianos , Biopelículas , Croton , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Hojas de la Planta , Biopelículas/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Croton/química , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Membrana Celular/efectos de los fármacos
3.
Chem Biol Drug Des ; 104(1): e14573, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965664

RESUMEN

Infectious diseases have been jeopardized problem that threaten public health over a long period of time. The growing prevalence of drug-resistant pathogens and infectious cases have led to a decrease in the number of effective antibiotics, which highlights the urgent need for the development of new antibacterial agents. Serine acetyltransferase (SAT), also known as CysE in certain bacterial species, and O-acetylserine sulfhydrylase (OASS), also known as CysK in select bacteria, are indispensable enzymes within the cysteine biosynthesis pathway of various pathogenic microorganisms. These enzymes play a crucial role in the survival of these pathogens, making SAT and OASS promising targets for the development of novel anti-infective agents. In this comprehensive review, we present an introduction to the structure and function of SAT and OASS, along with an overview of existing inhibitors for SAT and OASS as potential antibacterial agents. Our primary focus is on elucidating the inhibitory activities, structure-activity relationships, and mechanisms of action of these inhibitors. Through this exploration, we aim to provide insights into promising strategies and prospects in the development of antibacterial agents that target these essential enzymes.


Asunto(s)
Antibacterianos , Cisteína Sintasa , Cisteína , Inhibidores Enzimáticos , Serina O-Acetiltransferasa , Serina O-Acetiltransferasa/metabolismo , Serina O-Acetiltransferasa/química , Serina O-Acetiltransferasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/metabolismo , Cisteína/metabolismo , Cisteína/química , Cisteína/biosíntesis , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Cisteína Sintasa/metabolismo , Cisteína Sintasa/antagonistas & inhibidores , Relación Estructura-Actividad , Humanos , Bacterias/enzimología , Bacterias/efectos de los fármacos , Bacterias/metabolismo
4.
Sci Rep ; 14(1): 15441, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965246

RESUMEN

A very practical method for the synthesis of unsymmetrical carbamide derivatives in good to excellent yield was presented, without the need for any catalyst and at room temperature. Using a facile and robust protocol, fifteen unsymmetrical carbamide derivatives (9-23) bearing different aliphatic amine moieties were designed and synthesized by the reaction of secondary aliphatic amines with isocyanate derivatives in the presence of acetonitrile as an appropriate solvent in good to excellent yields. Trusted instruments like IR, mass spectrometry, NMR spectra, and elemental analyses were employed to validate the purity and chemical structures of the synthesized compounds. All the synthesized compounds were tested as antimicrobial agents against some clinically bacterial pathogens such as Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compounds 15, 16, 17, 19 and 22 showed potent antimicrobial activity with promising MIC values compared to the positive controls. Moreover, compounds 15 and 22 provide a potent lipid peroxidation (LPO) of the bacterial cell wall. On the other hand, we investigated the anti-proliferative activity of compounds 9-23 against selected human cancerous cell lines of breast (MCF-7), colon (HCT-116), and lung (A549) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and pro-apoptotic protein markers. The results of MTT assay revealed that compounds 10, 13, 21, 22 and 23 possessed highly cytotoxic effects. Out of these, three synthesized compounds 13, 21 and 22 showed cytotoxicity with IC50 values (13, IC50 = 62.4 ± 0.128 and 22, IC50 = 91.6 ± 0.112 µM, respectively, on MCF-7), (13, IC50 = 43.5 ± 0.15 and 21, IC50 = 38.5 ± 0.17 µM, respectively, on HCT-116). Cell cycle and apoptosis/necrosis assays demonstrated that compounds 13 and 22 induced S and G2/M phase cell cycle arrest in MCF-7 cells, while only compound 13 had this effect on HCT-116 cells. Furthermore, compound 13 exhibited the greatest potency in inducing apoptosis in both cell lines compared to compounds 21 and 22. Docking studies indicated that compounds 10, 13, 21 and 23 could potentially inhibit enzymes and exert promising antimicrobial effects, as evidenced by their lower binding energies and various types of interactions observed at the active sites of key enzymes such as Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of K. pneumenia and Gyrase B of B. subtilis. Moreover, 13, 21, and 22 demonstrated minimal binding energy and favorable affinity towards the active pocket of anticancer receptor proteins, including CDK2, EGFR, Erα, Topoisomerase II and VEGFFR. Physicochemical properties, drug-likeness, and ADME (absorption, distribution, metabolism, excretion, and toxicity) parameters of the selected compounds were also computed.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Pruebas de Sensibilidad Microbiana , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antiinfecciosos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Tecnología Química Verde/métodos , Proliferación Celular/efectos de los fármacos , Candida albicans/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células MCF-7 , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Bacterias/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos
5.
Signal Transduct Target Ther ; 9(1): 183, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972904

RESUMEN

Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 µg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.


Asunto(s)
Antibacterianos , Berberina , Aprendizaje Profundo , Helicobacter pylori , Helicobacter pylori/efectos de los fármacos , Berberina/farmacología , Berberina/química , Berberina/farmacocinética , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Animales , Omeprazol/farmacología , Claritromicina/farmacología , Amoxicilina/farmacología
6.
ACS Nano ; 18(26): 17086-17099, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952327

RESUMEN

Traditional external field-assisted therapies, e.g., microwave (MW) therapy and phototherapy, cannot effectively and minimally damage eliminate deep-seated infection, owing to the poor penetrability of light and low reactive oxygen species (ROS) stimulation capability of MW. Herein, an implantable and wireless-powered therapeutic platform (CNT-FeTHQ-TS), in which external MW can be converted into internal light via MW wireless-powered light-emitting chips, is designed to eradicate deep-seated tissue infections by MW-induced deep-seated photodynamic therapy. In application, CNT-FeTHQ-TS is implanted at internal lesions, and the chip emits light under external MW irradiation. Subsequently, CNT-FeTHQ coating in the platform can respond to both MW and light simultaneously to generate ROS and MW-hyperthermia for rapid and precise sterilization at focus. Importantly, MW also improves the photodynamic performance of CNT-FeTHQ by introducing vacancies in FeTHQ to facilitate the photoexcitation process and changing the spin state of electrons to inhibit the complexation of photogenerated electron-hole pairs, which were confirmed by simulation calculations and in situ MW-irradiated photoluminescence experiments. In vivo, CNT-FeTHQ-TS can effectively cure mice with Staphylococcus aureus infection in dorsal subcutaneous tissue. This work overcomes the key clinical limitations of safe energy transmission and conversion for treating deep-seated infections.


Asunto(s)
Microondas , Fotoquimioterapia , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Tecnología Inalámbrica , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Luz , Staphylococcus aureus/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Ratones Endogámicos BALB C , Antibacterianos/farmacología , Antibacterianos/química
7.
PeerJ ; 12: e17588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948224

RESUMEN

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Azadirachta/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos , Tamaño de la Partícula , Línea Celular Tumoral
8.
Bioorg Med Chem ; 109: 117798, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38906068

RESUMEN

N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E. coli GyrB24 (ATPase subdomain) was solved, revealing the binding mode of this type of inhibitor to the ATP-binding pocket of the E. coli GyrB subunit. The key binding interactions were identified and their contribution to binding was rationalised by quantum theory of atoms in molecules (QTAIM) analysis. Our study shows that the benzyl or phenethyl substituents bound to the benzothiazole core interact with the lipophilic floor of the active site, which consists mainly of residues Gly101, Gly102, Lys103 and Ser108. Compounds with substituents at position 3 of the benzothiazole core were up to two orders of magnitude more effective than compounds with substituents at the carboxamide nitrogen. In addition, the 6-oxalylamino compounds were more potent inhibitors of E. coli DNA gyrase than the corresponding 6-acetamido analogues.


Asunto(s)
Girasa de ADN , Escherichia coli , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Girasa de ADN/metabolismo , Girasa de ADN/química , Sitios de Unión , Escherichia coli/enzimología , Escherichia coli/efectos de los fármacos , Relación Estructura-Actividad , Benzotiazoles/química , Benzotiazoles/farmacología , Benzotiazoles/síntesis química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Estructura Molecular , Teoría Cuántica , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Modelos Moleculares
9.
Biomolecules ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927062

RESUMEN

Rattusin, an α-defensin-related antimicrobial peptide isolated from the small intestine of rats, has been previously characterized through NMR spectroscopy to elucidate its three-dimensional structure, revealing a C2 homodimeric scaffold stabilized by five disulfide bonds. This study aimed to identify the functional region of rattusin by designing and synthesizing various short analogs, subsequently leading to the development of novel peptide-based antibiotics. The analogs, designated as F1, F2, F3, and F4, were constructed based on the three-dimensional configuration of rattusin, among which F2 is the shortest peptide and exhibited superior antimicrobial efficacy compared to the wild-type peptide. The central cysteine residue of F2 prompted an investigation into its potential to form a dimer at neutral pH, which is critical for its antimicrobial function. This activity was abolished upon the substitution of the cysteine residue with serine, indicating the necessity of dimerization for antimicrobial action. Further, we synthesized ß-hairpin-like analogs, both parallel and antiparallel, based on the dimeric structure of F2, which maintained comparable antimicrobial potency. In contrast to rattusin, which acts by disrupting bacterial membranes, the F2 dimer binds directly to DNA, as evidenced by fluorescence assays and DNA retardation experiments. Importantly, F2 exhibited negligible cytotoxicity up to 515 µg/mL, assessed via hemolysis and MTT assays, underscoring its potential as a lead compound for novel peptide-based antibiotic development.


Asunto(s)
alfa-Defensinas , Animales , alfa-Defensinas/química , alfa-Defensinas/farmacología , alfa-Defensinas/síntesis química , Pruebas de Sensibilidad Microbiana , Ratas , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/síntesis química , Multimerización de Proteína/efectos de los fármacos , ADN/metabolismo , ADN/química , Hemólisis/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Secuencia de Aminoácidos
10.
J Am Chem Soc ; 146(25): 17240-17249, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865148

RESUMEN

Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.


Asunto(s)
Antibacterianos , Hidrogeles , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Dendrímeros/química , Dendrímeros/farmacología , Pruebas de Sensibilidad Microbiana , Adhesivos/química , Adhesivos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polímeros/química , Polímeros/farmacología , Humanos , Estructura Molecular , Química Clic
11.
Bioorg Med Chem Lett ; 109: 129822, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823728

RESUMEN

The quest for novel antibacterial agents is imperative in the face of escalating antibiotic resistance. Naturally occurring tetrahydro-ß-carboline (THßC) alkaloids have been highlighted due to their significant biological derivatives. However, these structures have been little explored for antibacterial drugs development. In this study, a series of 1,2,3,4-THßC derivatives were synthesized and assessed for their antibacterial prowess against both gram-positive and gram-negative bacteria. The compounds exhibited moderate to good antibacterial activity, with some compounds showing superior efficacy against gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), to that of Gentamicin. Among these analogs, compound 3k emerged as a hit compound, demonstrating rapid bactericidal action and a significant post-antibacterial effect, with significant cytotoxicity towards human LO2 and HepG2 cells. In addition, compound 3k (10 mg/kg) showed comparable anti-MRSA efficacy to Ciprofloxacin (2 mg/kg) in a mouse model of abdominal infection. Overall, the present findings suggested that THßC derivatives based on the title compounds hold promising applications in the development of antibacterial drugs.


Asunto(s)
Antibacterianos , Carbolinas , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Carbolinas/farmacología , Carbolinas/química , Carbolinas/síntesis química , Humanos , Relación Estructura-Actividad , Animales , Ratones , Bacterias Grampositivas/efectos de los fármacos , Estructura Molecular , Bacterias Gramnegativas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
12.
Mar Drugs ; 22(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38921559

RESUMEN

The skin of fish is a physicochemical barrier that is characterized by being formed by cells that secrete molecules responsible for the first defense against pathogenic organisms. In this study, the biological activity of peptides from mucus of Seriola lalandi and Seriolella violacea were identified and characterized. To this purpose, peptide extraction was carried out from epidermal mucus samples of juveniles of both species, using chromatographic strategies for purification. Then, the peptide extracts were characterized to obtain the amino acid sequence by mass spectrometry. Using bioinformatics tools for predicting antimicrobial and antioxidant activity, 12 peptides were selected that were chemically produced by simultaneous synthesis using the Fmoc-Tbu strategy. The results revealed that the synthetic peptides presented a random coil or extended secondary structure. The analysis of antimicrobial activity allowed it to be discriminated that four peptides, named by their synthesis code 5065, 5069, 5070, and 5076, had the ability to inhibit the growth of Vibrio anguillarum and affected the copepodite stage of C. rogercresseyi. On the other hand, peptides 5066, 5067, 5070, and 5077 had the highest antioxidant capacity. Finally, peptides 5067, 5069, 5070, and 5076 were the most effective for inducing respiratory burst in fish leukocytes. The analysis of association between composition and biological function revealed that the antimicrobial activity depended on the presence of basic and aromatic amino acids, while the presence of cysteine residues increased the antioxidant activity of the peptides. Additionally, it was observed that those peptides that presented the highest antimicrobial capacity were those that also stimulated respiratory burst in leukocytes. This is the first work that demonstrates the presence of functional peptides in the epidermal mucus of Chilean marine fish, which provide different biological properties when the fish face opportunistic pathogens.


Asunto(s)
Acuicultura , Peces , Moco , Animales , Moco/química , Chile , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Vibrio/efectos de los fármacos , Epidermis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación
13.
Mar Drugs ; 22(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38921577

RESUMEN

Sortase A (SrtA) is a cysteine transpeptidase that binds to the periplasmic membrane and plays a crucial role in attaching surface proteins, including staphylococcal protein A (SpA), to the peptidoglycan cell wall. Six pentacyclic polyketides (1-6) were isolated from the marine sponge Xestospongia sp., and their structures were elucidated using spectroscopic techniques and by comparing them to previously reported data. Among them, halenaquinol (2) was found to be the most potent SrtA inhibitor, with an IC50 of 13.94 µM (4.66 µg/mL). Semi-quantitative reverse transcription PCR data suggest that halenaquinol does not inhibit the transcription of srtA and spA, while Western blot analysis and immunofluorescence microscopy images suggest that it blocks the cell wall surface anchoring of SpA by inhibiting the activity of SrtA. The onset and magnitude of the inhibition of SpA anchoring on the cell wall surface in S. aureus that has been treated with halenaquinol at a value 8× that of the IC50 of SrtA are comparable to those for an srtA-deletion mutant. These findings contribute to the understanding of the mechanism by which marine-derived pentacyclic polyketides inhibit SrtA, highlighting their potential as anti-infective agents targeting S. aureus virulence.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Proteínas Bacterianas , Pared Celular , Cisteína Endopeptidasas , Poríferos , Staphylococcus aureus , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Animales , Poríferos/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Policétidos/farmacología , Policétidos/química
14.
Mar Drugs ; 22(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921584

RESUMEN

The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.


Asunto(s)
Antibacterianos , Antioxidantes , Algas Marinas , Algas Marinas/química , Argelia , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Sargassum/química , Espectroscopía Infrarroja por Transformada de Fourier , Phaeophyceae/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
15.
Mar Drugs ; 22(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921579

RESUMEN

Bioprospecting the secondary metabolism of underexplored Actinomycetota taxa is a prolific route to uncover novel chemistry. In this work, we report the isolation, structure elucidation, and bioactivity screening of cellulamides A and B (1 and 2), two novel linear peptides obtained from the culture of the macroalga-associated Cellulosimicrobium funkei CT-R177. The host of this microorganism, the Chlorophyta Codium tomentosum, was collected in the northern Portuguese coast and, in the scope of a bioprospecting study focused on its associated actinobacterial community, strain CT-R177 was isolated, taxonomically identified, and screened for the production of antimicrobial and anticancer compounds. Dereplication of a crude extract of this strain using LC-HRMS(/MS) analysis unveiled a putative novel natural product, cellulamide A (1), that was isolated following mass spectrometry-guided fractionation. An additional analog, cellulamide B (2) was obtained during the chromatographic process and chemically characterized. The chemical structures of the novel linear peptides, including their absolute configurations, were elucidated using a combination of HRMS, 1D/2D NMR spectroscopy, and Marfey's analysis. Cellulamide A (1) was subjected to a set of bioactivity screenings, but no significant biological activity was observed. The cellulamides represent the first family of natural products reported from the Actinomycetota genus Cellulosimicrobium, showcasing not only the potential of less-explored taxa but also of host-associated marine strains for novel chemistry discovery.


Asunto(s)
Péptidos , Humanos , Péptidos/química , Péptidos/farmacología , Péptidos/aislamiento & purificación , Actinobacteria/química , Actinobacteria/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Organismos Acuáticos , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular Tumoral , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación
16.
ACS Appl Mater Interfaces ; 16(25): 32104-32117, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865210

RESUMEN

The repair of infected wounds is a complex physiopathologic process. Current studies on infected wound treatment have predominantly focused on infection treatment, while the factors related to delayed healing caused by vascular damage and immune imbalance are commonly overlooked. In this study, an extracellular matrix (ECM)-like dynamic and multifunctional hyaluronic acid (HA) hydrogel with antimicrobial, immunomodulatory, and angiogenic capabilities was designed as wound dressing for the treatment of infected skin wounds. The dynamic network in the hydrogel dressing was based on reversible metal-ligand coordination formed between sulfhydryl groups and bioactive metal ions. In our design, antibacterial silver and immunomodulatory zinc ions were employed to coordinate with sulfhydrylated HA and a vasculogenic peptide. In addition to the desired bioactivities for infected wounds, the hydrogel could also exhibit self-healing and injectable abilities. Animal experiments with infected skin wound models indicated that the hydrogel dressings enabled minimally invasive injection and seamless skin wound covering and then facilitated wound healing by efficient bacterial killing, continuous inflammation inhibition, and improved blood vessel formation. In conclusion, the metal ion-coordinated hydrogels with wound-infection-desired bioactivities and ECM-like dynamic structures represent a class of tissue bionic wound dressings for the treatment of infected and chronic inflammation wounds.


Asunto(s)
Antibacterianos , Hidrogeles , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Ratones , Plata/química , Plata/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Zinc/química , Zinc/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/patología , Infección de Heridas/microbiología , Vendajes , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Iones/química
17.
ACS Appl Mater Interfaces ; 16(25): 32087-32103, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38866723

RESUMEN

Due to the extensive use of antibiotics, many highly resistant bacteria and extensively resistant bacteria have been produced. In recent years, the increase of drug-resistant bacteria and the resulting proliferation of drug-resistant bacteria have increased the incidence of hospital-acquired infections and caused great harm to human health. Antimicrobial peptides (AMPs) are considered to be an innovative antibiotic and belong to the latest advances in this field. We designed a polypeptide and verified its low minimum inhibitory concentration and broad-spectrum activity against Gram-positive bacteria, Gram-negative bacteria, and fungi in microbiology and pharmacology. Several experiments have confirmed that the screened antimicrobial peptides have significant antidrug resistance and also show significant therapeutic properties in the treatment of systemic bacterial infections. In addition, through our experimental research, it was proved that the antibacterial hydrogel composed of poly(vinyl alcohol), sodium alginate, and antimicrobial peptides had excellent antibacterial properties and showed good wound healing ability.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Ratones , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Humanos , Bacterias Gramnegativas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Bacterias Grampositivas/efectos de los fármacos , Alginatos/química , Alginatos/farmacología
18.
Microb Cell Fact ; 23(1): 174, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867319

RESUMEN

BACKGROUND: The objectives of the current study were to extract pyocyanin from Pseudomonas aeruginosa clinical isolates, characterize its chemical nature, and assess its biological activity against different bacteria and cancer cells. Due to its diverse bioactive properties, pyocyanin, being one of the virulence factors of P. aeruginosa, holds a promising, safe, and available therapeutic potential. METHODS: 30 clinical P. aeruginosa isolates were collected from different sources of infections and identified by routine methods, the VITEK 2 compact system, and 16 S rRNA. The phenazine-modifying genes (phzM, phzS) were identified using polymerase chain reaction (PCR). Pyocyanin chemical characterization included UV-Vis spectrophotometry, Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass Spectrometry (GC-MS), and Liquid Chromatography-Mass Spectrometry (LC-MS). The biological activity of pyocyanin was explored by determining the MIC values against different clinical bacterial strains and assessing its anticancer activity against A549, MDA-MB-231, and Caco-2 cancer cell lines using cytotoxicity, wound healing and colony forming assays. RESULTS: All identified isolates harboured at least one of the phzM or phzS genes. The co-presence of both genes was demonstrated in 13 isolates. The UV-VIS absorbance peaks were maxima at 215, 265, 385, and 520 nm. FTIR could identify the characteristic pyocyanin functional groups, whereas both GC-MS and LC-MS elucidated the chemical formula C11H18N2O2, with a molecular weight 210. The quadri-technical analytical approaches confirmed the chemical nature of the extracted pyocyanin. The extract showed broad-spectrum antibacterial activity, with the greatest activity against Bacillus, Staphylococcus, and Streptococcus species (MICs 31.25-125 µg/mL), followed by E. coli isolates (MICs 250-1000 µg/mL). Regarding the anticancer activity, the pyocyanin extract showed IC50 values against A549, MDA-MB-231, and Caco-2 cancer cell lines of 130, 105, and 187.9 µg/mL, respectively. Furthermore, pyocyanin has markedly suppressed colony formation and migratory abilities in these cells. CONCLUSIONS: The extracted pyocyanin has demonstrated to be a potentially effective candidate against various bacterial infections and cancers. Hence, the current findings could contribute to producing this natural compound easily through an affordable method. Nonetheless, future studies are required to investigate pyocyanin's effects in vivo and analyse the results of combining it with other traditional antibiotics or anticancer drugs.


Asunto(s)
Antibacterianos , Antineoplásicos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Piocianina , Piocianina/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Células CACO-2
19.
J Hazard Mater ; 475: 134907, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878442

RESUMEN

In this study, the activation of peroxydisulfate (PS) by K2FeO4-activation biochar (KFeB) and acid-picking K2FeO4-activation biochar (AKFeB) was investigated to reveal the mechanism differences between iron site and graphitic structure in sulfadiazine (SDZ) degradation and ARB inactivation, respectively. KFeB/PS and AKFeB/PS systems had similar degradation property towards SDZ, but only KFeB/PS system showed excellent bactericidal property. The mechanism study demonstrated that dissolved SDZ was degraded through electron transfer pathway mediated by graphitic structure, while suspended ARB was inactivated through free radicals generated by iron-activated PS, accompanied by excellent removal on antibiotic resistance genes (ARGs). The significant decrease in conjugative transfer frequency indicated the reduced horizontal gene transfer risk of ARGs after treatment with KFeB/PS system. Transcriptome data suggested that membrane protein channel disruption and adenosine triphosphate synthesis inhibition were key reasons for conjugative transfer frequency reduction. Continuous flow reactor of KFeB/PS system can efficiently remove antibiotics and ARB, implying the potential application in practical wastewater purification. In conclusion, this study provides novel insights for classified and collaborative control of antibiotics and ARB by carbon-based catalysts driven persulfate advanced oxidation technology.


Asunto(s)
Antibacterianos , Carbón Orgánico , Grafito , Hierro , Sulfadiazina , Sulfatos , Carbón Orgánico/química , Sulfadiazina/química , Antibacterianos/química , Antibacterianos/farmacología , Hierro/química , Hierro/metabolismo , Grafito/química , Sulfatos/química , Sulfatos/metabolismo , Contaminantes Químicos del Agua/química , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Purificación del Agua/métodos , Peróxidos/química
20.
J Nat Prod ; 87(6): 1591-1600, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38862138

RESUMEN

Mangrove derived actinomycetes are a rich reservoir of bioactive natural products and play important roles in pharmaceutical chemistry. In a screen of actinomycetes from mangrove rhizosphere sedimental environments, the isolated strain Streptomyces sp. SCSIO 40068 displayed strong antibacterial activity. Further fractionation of the extract yielded four new compounds kebanmycins A-D (1-4) and two known analogues FD-594 (5) and the aglycon (6). The structures of 1-6 were determined based on extensive spectroscopic data and single-crystal X-ray diffraction analysis. 1-3 featured a fused pyranonaphthaxanthene as an integral part of a 6/6/6/6/6/6 polycyclic motif, and showed bioactivity against a series of Gram-positive bacteria and cytotoxicity to several human tumor cells. In addition, the kebanmycins biosynthetic gene cluster (keb) was identified in Streptomyces sp. SCSIO 40068, and KebMT2 was biochemically characterized as a tailoring sugar-O-methyltransferase, leading to a proposed biosynthetic route to 1-6. This study paves the way to further investigate 1 as a potential lead compound.


Asunto(s)
Antibacterianos , Streptomyces , Streptomyces/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Humanos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Bacterias Grampositivas/efectos de los fármacos , Familia de Multigenes , Ensayos de Selección de Medicamentos Antitumorales , Rhizophoraceae/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA