Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131.490
Filtrar
Más filtros











Intervalo de año de publicación
1.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823930

RESUMEN

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Asunto(s)
Amorphophallus , Mananos , Mananos/química , Mananos/aislamiento & purificación , Humanos , Amorphophallus/química , Animales , Fibras de la Dieta/análisis , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Suplementos Dietéticos , Prebióticos , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología
2.
Mol Biol Rep ; 51(1): 705, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824214

RESUMEN

BACKGROUND: Quinoa seeds (Chenopodium quinoa Willd.) have gained interest due to their naturally occurring phytochemicals and antioxidants. They possess potent anticancer properties against human colorectal cancer. METHODS AND RESULTS: Fatty acids in quinoa oil were studied using gas chromatography-mass spectrometry. Rats were used to test the acute oral toxicity of the nanoemulsion loaded with sodium alginate. The DPPH radical scavenging method was employed to assess the nanoemulsion's ability to scavenge free radicals. It was examined the in vivo anticancer potential of quinoa oil nanoemulsion on rats with breast cancer induced by 7, 12-dimethylbenz (a) anthracene (DMBA). DMBA-breast cancer models received daily quinoa oil nanoemulsions for 30 days. The anticancer effect of the nanoemulsion was assessed by measuring ROS, protein carbonyl, gene expression of anti-oncogenes, and histopathological analysis. Supplying quinoa oil nanoemulsion significantly reduced the increase in serum ROS and PC levels induced in breast cancer tissue. The expression levels of antioncogenes in breast cancer tissue were decreased by the quinoa oil nanoemulsion. Nanoemulsions also improved the cellular morphology of breast tumors. CONCLUSION: The study results indicate that quinoa oil nanoemulsion has anticancer activity against breast cancer, effectively modulating oxidative stress markers, anti-oncogene expressions, and tissue architecture. It can be inferred from the results that quinoa oil nanoemulsion is a chemoprotective medication that may hinder breast cancer progression in rats.


Asunto(s)
Alginatos , Neoplasias de la Mama , Chenopodium quinoa , Emulsiones , Aceites de Plantas , Animales , Chenopodium quinoa/química , Femenino , Ratas , Aceites de Plantas/farmacología , Aceites de Plantas/química , Alginatos/química , Alginatos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Semillas/química , Antineoplásicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Humanos
3.
Commun Biol ; 7(1): 680, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831092

RESUMEN

Ferroptosis, a type of iron-dependent non-apoptotic cell death, plays a vital role in both tumor proliferation and resistance to chemotherapy. Here, our study demonstrates that MAX's Next Tango (MNT), by involving itself in the spermidine/spermine N1-acetyltransferase 1 (SAT1)-related ferroptosis pathway, promotes the proliferation of lung adenocarcinoma (LUAD) cells and diminishes their sensitivity to chemotherapy. Initially, an RNA-sequence screen of LUAD cells treated with ferroptosis inducers (FINs) reveals a significant increase in MNT expression, suggesting a potential link between MNT and ferroptosis. Overexpression of MNT in LUAD cells hinders changes associated with ferroptosis. Moreover, the upregulation of MNT promotes cell proliferation and suppresses chemotherapy sensitivity, while the knockdown of MNT has the opposite effect. Through the intersection of ChIP-Seq and ferroptosis-associated gene sets, and validation by qPCR and western blot, SAT1 is identified as a potential target of MNT. Subsequently, we demonstrate that MNT binds to the promoter sequence of SAT1 and suppresses its transcription by ChIP-qPCR and dual luciferase assays. Restoration of SAT1 levels antagonizes the efficacy of MNT to inhibit ferroptosis and chemosensitivity and promote cell growth in vitro as well as in vivo. In the clinical context, MNT expression is elevated in LUAD and is inversely connected with SAT1 expression. High MNT expression is also associated with poor patient survival. Our research reveals that MNT inhibits ferroptosis, and impairing chemotherapy effectiveness of LUAD.


Asunto(s)
Acetiltransferasas , Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Ratones , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Ratones Endogámicos BALB C , Masculino
4.
Drug Dev Res ; 85(4): e22218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825827

RESUMEN

We report herein, the design and synthesis of benzimidazole-oxadiazole derivatives as new inhibitors for vascular endothelial growth factor receptor-2 (VEGFR-2). The designed members were assessed for their in vitro anticancer activity against three cancer cell lines and two normal cell lines; A549, MCF-7, PANC-1, hTERT-HPNE and CCD-19Lu. Compounds 4c and 4d were found to be the most effective compounds against three cancer cell lines. Compounds 4c and 4d were then tested for their in vitro VEGFR-2 inhibitory activity, safety profiles, and selectivity indices using the normal hTERT-HPNE and CCD-19Lu cell lines. It was determined that compound 4c was the most effective and safe member of the produced chemical family. Vascular endothelial growth factor A (VEGFA) immunolocalizations of compounds 4c and 4d were evaluated relative to control by VEGFA immunofluorescence staining. Compounds 4c and 4d inhibited VEGFR-2 enzyme with half-maximal inhibitory concentration values of 0.475 ± 0.021 and 0.618 ± 0.028 µM, respectively. Molecular docking of the target compounds was carried out in the active site of VEGFR-2 (Protein Data Bank: 4ASD).


Asunto(s)
Antineoplásicos , Bencimidazoles , Simulación del Acoplamiento Molecular , Oxadiazoles , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Oxadiazoles/farmacología , Oxadiazoles/química , Oxadiazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Bencimidazoles/farmacología , Bencimidazoles/química , Bencimidazoles/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos
5.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822881

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Humanos , Cisplatino/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Células A549 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Línea Celular Tumoral , Elementos de Respuesta Antioxidante/genética , Antineoplásicos/farmacología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo
6.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829450

RESUMEN

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Asunto(s)
Antineoplásicos , Técnicas de Cultivo de Célula , Esferoides Celulares , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Esferoides Celulares/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Doxorrubicina/farmacología , Paclitaxel/farmacología , Cisplatino/farmacología , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Células MCF-7 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
7.
Cancer Discov ; 14(6): 903-905, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826100

RESUMEN

SUMMARY: In this issue, a study by Kazansky and colleagues explored resistance mechanisms after EZH2 inhibition in malignant rhabdoid tumors (MRT) and epithelioid sarcomas (ES). The study identified genetic alterations in EZH2 itself, along with alterations that converge on RB1-E2F-mediated cell-cycle control, and demonstrated that inhibition of cell-cycle kinases, such as Aurora Kinase B (AURKB) could bypass EZH2 inhibitor resistance to enhance treatment efficacy. See related article by Kazansky et al., p. 965 (6).


Asunto(s)
Ciclo Celular , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Resistencia a Antineoplásicos/genética , Terapia Molecular Dirigida , Aurora Quinasa B/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/antagonistas & inhibidores
8.
Am Soc Clin Oncol Educ Book ; 44(3): e431766, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828973

RESUMEN

Antibody-drug conjugates (ADCs) have reshaped the cancer treatment landscape across a variety of different tumor types. ADCs' peculiar pharmacologic design combines the cytotoxic properties of chemotherapeutic agents with the selectivity of targeted therapies. At present, the approval of many ADCs used in clinical practice has not always been biomarker-driven. Indeed, predicting ADCs' activity and toxicity through the demonstration of specific biomarkers is still a great unmet need, and the identification of patients who can derive significant benefit from treatment with ADCs may often be uncertain. With the lack of robust predictive biomarkers to anticipate primary, intrinsic resistance to ADCs and no consolidated biomarkers to aid in the early identification of treatment resistance (ie, acquired resistance), the determination of precise biologic mechanisms of ADC activity and safety becomes priority in the quest for better patient-centric outcomes. Of great relevance, whether the target antigen expression is a determinant of ADCs' primary activity is still to be clarified, and available data remain quite controversial. Antigen expression assessment is typically performed on tissue biopsy, hence only providing information on a specific tumor site, therefore unable to capture heterogeneous patterns of tumor antigen expression. Quantifying the expression of the target antigen across all tumor sites would help better understand tumor heterogeneity, whereas molecularly characterizing tumor-intrinsic features over time might provide information on resistance mechanisms. In addition, toxicity can represent a critical concern, since most ADCs have a safety profile that resembles that of chemotherapies, with often unique adverse events requiring special management, possibly because of the differential in pharmacokinetics between the small-molecule agent versus payload of a similar class (eg, deruxtecan conjugate-related interstitial lung disease). As such, the identification of robust predictive biomarkers of safety and activity of ADCs has the potential to improve patient selection and enrich the population of patients most likely to derive a substantial clinical benefit, especially in those disease settings where different ADCs happen to be approved in competing clinical indications, with undefined biomarkers to make precise decision making and unclear data on how to sequence ADCs. At this point, the identification of clinically actionable biomarkers in the space of ADCs remains a top research priority.


Asunto(s)
Biomarcadores de Tumor , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/farmacocinética , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida , Resistencia a Antineoplásicos , Resultado del Tratamiento
9.
Proc Natl Acad Sci U S A ; 121(24): e2404668121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833473

RESUMEN

Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.


Asunto(s)
Cobre , Glutatión , Homeostasis , Oxidación-Reducción , Animales , Ratones , Humanos , Glutatión/metabolismo , Ratones Endogámicos C57BL , Antineoplásicos/farmacología , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Sinergismo Farmacológico , Muerte Celular Inmunogénica/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Ferroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo
10.
Anal Chim Acta ; 1312: 342747, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834275

RESUMEN

BACKGROUND: Lipid droplets (LDs) polarity is intricately linked to diverse biological processes and diseases. The visualization of LDs-polarity is of vital importance but challenging due to the lack of high-specificity, high-sensitivity and large-Stokes shift probes for real-time tracking LDs-polarity in biological systems. RESULTS: Four D-π-A based fluorescent probes (TPA-TCF1-TPA-TCF4) have been developed by combining tricyanofuran (an electron acceptor, A) and triphenylamine (an electron donor, D) derivatives with different terminal groups. Among them, TPA-TCF1 and TPA-TCF4 exhibit excellent polar sensitivity, large Stokes shift (≥182 nm in H2O), and efficient LDs targeting ability. In particular, TPA-TCF4 is capable of monitoring the change of LDs-polarity during ferroptosis, inflammation, apoptosis of cancer cell, and fatty liver. SIGNIFICANCE: All these features render TPA-TCF4 a versatile tool for pharmacodynamic evaluation of anti-cancer drugs, in-depth understanding of the biological effect of LDs on ferroptosis, and medical diagnosis of LDs-polarity related diseases.


Asunto(s)
Hígado Graso , Ferroptosis , Colorantes Fluorescentes , Inflamación , Gotas Lipídicas , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Humanos , Ferroptosis/efectos de los fármacos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Colorantes Fluorescentes/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Estructura Molecular
11.
Sci Rep ; 14(1): 12868, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834690

RESUMEN

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Asunto(s)
Proliferación Celular , Leucemia Mieloide Aguda , Proteínas Activadoras de ras GTPasa , Humanos , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Simulación por Computador , Antineoplásicos/farmacología , Dominios Proteicos , Animales , Proteómica/métodos
12.
AAPS PharmSciTech ; 25(5): 125, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834759

RESUMEN

DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.


Asunto(s)
Doxorrubicina , Liposomas , Ácido N-Acetilneuramínico , Fosfatidilserinas , Macrófagos Asociados a Tumores , Animales , Ratones , Ácido N-Acetilneuramínico/química , Células RAW 264.7 , Fosfatidilserinas/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Fagocitosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Apoptosis/efectos de los fármacos
13.
Sci Rep ; 14(1): 12833, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834809

RESUMEN

Breast Cancer is the most common cancer among women globally. Despite significant improvements in overall survival, many tumours are refractory to therapy and so novel approaches are required to improve patient outcomes. We have evaluated patient-derived explants (PDEs) as a novel preclinical platform for breast cancer (BC) and implemented cutting-edge digital pathology and multi-immunofluorescent approaches for investigating biomarker changes in both tumour and stromal areas at endpoint. Short-term culture of intact fragments of BCs as PDEs retained an intact immune microenvironment, and tumour architecture was augmented by the inclusion of autologous serum in the culture media. Cell death/proliferation responses to FET chemotherapy in BC-PDEs correlated significantly with BC patient progression-free survival (p = 0.012 and p = 0.0041, respectively) and cell death responses to the HER2 antibody therapy trastuzumab correlated significantly with HER2 status (p = 0.018). These studies show that the PDE platform combined with digital pathology is a robust preclinical approach for informing clinical responses to chemotherapy and antibody-directed therapies in breast cancer. Furthermore, since BC-PDEs retain an intact tumour architecture over the short-term, they facilitate the preclinical testing of anti-cancer agents targeting the tumour microenvironment.


Asunto(s)
Neoplasias de la Mama , Trastuzumab , Microambiente Tumoral , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Femenino , Microambiente Tumoral/efectos de los fármacos , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Receptor ErbB-2/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/farmacología
14.
Mol Cancer ; 23(1): 120, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831402

RESUMEN

The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.


Asunto(s)
Aclarubicina , Antraciclinas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Aclarubicina/farmacología , Aclarubicina/uso terapéutico , Antraciclinas/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/efectos adversos , Animales , Femenino , Masculino , Resultado del Tratamiento
15.
J Hematol Oncol ; 17(1): 39, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831455

RESUMEN

The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.


Asunto(s)
Neoplasias , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Humanos , Neoplasias/tratamiento farmacológico , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida/métodos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Animales
16.
Int J Nanomedicine ; 19: 5045-5056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832334

RESUMEN

Background: Chemodynamic therapy (CDT) is a new treatment approach that is triggered by endogenous stimuli in specific intracellular conditions for generating hydroxyl radicals. However, the efficiency of CDT is severely limited by Fenton reaction agents and harsh reaction conditions. Methods: Bimetallic PtMn nanocubes were rationally designed and simply synthesized through a one-step high-temperature pyrolysis process by controlling both the nucleation process and the subsequent crystal growth stage. The polyethylene glycol was modified to enhance biocompatibility. Results: Benefiting from the alloying of Pt nanocubes with Mn doping, the structure of the electron cloud has changed, resulting in different degrees of the shift in electron binding energy, resulting in the increasing of Fenton reaction activity. The PtMn nanocubes could catalyze endogenous hydrogen peroxide to toxic hydroxyl radicals in mild acid. Meanwhile, the intrinsic glutathione (GSH) depletion activity of PtMn nanocubes consumed GSH with the assistance of Mn3+/Mn2+. Upon 808 nm laser irradiation, mild temperature due to the surface plasmon resonance effect of Pt metal can also enhance the Fenton reaction. Conclusion: PtMn nanocubes can not only destroy the antioxidant system via efficient reactive oxygen species generation and continuous GSH consumption but also propose the photothermal effect of noble metal for enhanced Fenton reaction activity.


Asunto(s)
Glutatión , Manganeso , Platino (Metal) , Especies Reactivas de Oxígeno , Animales , Platino (Metal)/química , Platino (Metal)/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/química , Humanos , Manganeso/química , Manganeso/farmacología , Terapia Fototérmica/métodos , Ratones , Nanopartículas del Metal/química , Peróxido de Hidrógeno/química , Línea Celular Tumoral , Radical Hidroxilo/química , Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química
17.
Oncol Res ; 32(6): 1063-1078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827322

RESUMEN

Hepatocellular carcinoma (HCC) is a malignancy known for its unfavorable prognosis. The dysregulation of the tumor microenvironment (TME) can affect the sensitivity to immunotherapy or chemotherapy, leading to treatment failure. The elucidation of PHLDA2's involvement in HCC is imperative, and the clinical value of PHLDA2 is also underestimated. Here, bioinformatics analysis was performed in multiple cohorts to explore the phenotype and mechanism through which PHLDA2 may affect the progression of HCC. Then, the expression and function of PHLDA2 were examined via the qRT-PCR, Western Blot, and MTT assays. Our findings indicate a substantial upregulation of PHLDA2 in HCC, correlated with a poorer prognosis. The methylation levels of PHLDA2 were found to be lower in HCC tissues compared to normal liver tissues. Besides, noteworthy associations were observed between PHLDA2 expression and immune infiltration in HCC. In addition, PHLDA2 upregulation is closely associated with stemness features and immunotherapy or chemotherapy resistance in HCC. In vitro experiments showed that sorafenib or cisplatin significantly up-regulated PHLDA2 mRNA levels, and PHLDA2 knockdown markedly decreased the sensitivity of HCC cells to chemotherapy drugs. Meanwhile, we found that TGF-ß induced the expression of PHLDA2 in vitro. The GSEA and in vitro experiment indicated that PHLDA2 may promote the HCC progression via activating the AKT signaling pathway. Our study revealed the novel role of PHLDA2 as an independent prognostic factor, which plays an essential role in TME remodeling and treatment resistance in HCC.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/inmunología , Microambiente Tumoral/inmunología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Pronóstico , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal , Proteínas Nucleares
18.
Drug Des Devel Ther ; 18: 1833-1853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828018

RESUMEN

Purpose: Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods: This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results: Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1ß, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion: This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.


Asunto(s)
Linfocitos T CD8-positivos , Proliferación Celular , Quimiocina CXCL10 , Neoplasias del Colon , Ratones Endogámicos BALB C , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/inmunología , Membrana Externa Bacteriana/inmunología , Membrana Externa Bacteriana/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Humanos , Neoplasias Experimentales/patología , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Células Tumorales Cultivadas
19.
Int J Nanomedicine ; 19: 4893-4906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828202

RESUMEN

Introduction: The tumor microenvironment (TME) has attracted considerable attention as a potential therapeutic target for cancer. High levels of reactive oxygen species (ROS) in the TME may act as a stimulus for drug release. In this study, we have developed ROS-responsive hyaluronic acid-bilirubin nanoparticles (HABN) loaded with doxorubicin (DOX@HABN) for the specific delivery and release of DOX in tumor tissue. The hyaluronic acid shell of the nanoparticles acts as an active targeting ligand that can specifically bind to CD44-overexpressing tumors. The bilirubin core has intrinsic anti-cancer activity and ROS-responsive solubility change properties. Methods & Results: DOX@HABN showed the HA shell-mediated targeting ability, ROS-responsive disruption leading to ROS-mediated drug release, and synergistic anti-cancer activity against ROS-overproducing CD44-overexpressing HeLa cells. Additionally, intravenously administered HABN-Cy5.5 showed remarkable tumor-targeting ability in HeLa tumor-bearing mice with limited distribution in major organs. Finally, intravenous injection of DOX@HABN into HeLa tumor-bearing mice showed synergistic anti-tumor efficacy without noticeable side effects. Conclusion: These findings suggest that DOX@HABN has significant potential as a cancer-targeting and TME ROS-responsive nanomedicine for targeted cancer treatment.


Asunto(s)
Bilirrubina , Doxorrubicina , Receptores de Hialuranos , Ácido Hialurónico , Nanomedicina , Nanopartículas , Especies Reactivas de Oxígeno , Microambiente Tumoral , Ácido Hialurónico/química , Microambiente Tumoral/efectos de los fármacos , Animales , Especies Reactivas de Oxígeno/metabolismo , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/administración & dosificación , Nanopartículas/química , Ratones , Células HeLa , Receptores de Hialuranos/metabolismo , Bilirrubina/química , Bilirrubina/farmacología , Bilirrubina/farmacocinética , Liberación de Fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
20.
Drug Res (Stuttg) ; 74(5): 227-240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830371

RESUMEN

PURPOSE: Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer and the chemotherapeutic drugs available have high toxicity and have reported side effects hence, there is a need for the synthesis of novel drugs in the treatment of cancer. METHODS: The current research work dealt with the synthesis of a series of 3-(3-acetyl-2-oxoquinolin-1-(2H)-yl-2-(substitutedphenyl)thiazolidin-4-one (Va-j) derivatives and evaluation of their in-vitro anticancer activity. All the synthesized compounds were satisfactorily characterized by IR and NMR data. Compounds were further evaluated for their in-vitro anticancer activity against A-549 (lung cancer) cell lines. The in-vitro anticancer activity was based upon the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay method. RESULTS: The synthesized compounds exhibited satisfactory anticancer properties against the A-549 cell line. The compound (VH): showed the highest potency amongst the tested derivatives against the A-549 cell line with IC50 values of 100 µg/ml respectively and was also found to be more potent than Imatinib (150 µg/ml) which was used as a standard drug. Molecular docking studies of the titled compounds (Va-j) were carried out using AutoDock Vina/PyRx software. The synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of the EGFRK tyrosine kinase domain (PDB 1m17). CONCLUSION: Among all the synthesized analogues, the binding affinity of the compound (Vh) was found to be higher than other synthesized derivatives and a molecular dynamics simulation study explored the stability of the docked complex system.


Asunto(s)
Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral , Células A549 , Tiazolidinas/farmacología , Tiazolidinas/química , Tiazolidinas/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA