Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.214
Filtrar
Más filtros











Intervalo de año de publicación
1.
Oncol Res ; 32(6): 1093-1107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827320

RESUMEN

Breast cancer is the leading cause of cancer-related deaths in women worldwide, with Hormone Receptor (HR)+ being the predominant subtype. Tamoxifen (TAM) serves as the primary treatment for HR+ breast cancer. However, drug resistance often leads to recurrence, underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates. Artemisinin (ART) has demonstrated efficacy in inhibiting the growth of drug-resistant cells, positioning art as a viable option for counteracting endocrine resistance. This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation. Five characterized genes (ar, cdkn1a, erbb2, esr1, hsp90aa1) and seven drug-disease crossover genes (cyp2e1, rorc, mapk10, glp1r, egfr, pgr, mgll) were identified using WGCNA crossover analysis. Subsequent functional enrichment analyses were conducted. Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and -sensitized patients. scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells, suggesting artemisinin's specific impact on tumor cells in estrogen receptor (ER)-positive BC tissues. Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes. These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.


Asunto(s)
Artemisininas , Neoplasias de la Mama , Biología Computacional , Resistencia a Antineoplásicos , Receptores de Estrógenos , Tamoxifeno , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Humanos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Resistencia a Antineoplásicos/genética , Biología Computacional/métodos , Receptores de Estrógenos/metabolismo , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos
2.
Cancer Discov ; 14(5): 704-706, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690600

RESUMEN

SUMMARY: Rosano, Sofyali, Dhiman, and colleagues show that epigenetic-related changes occur in endocrine therapy (ET)-induced dormancy in estrogen receptor positive (ER+) breast cancer, as well as in its reawakening. Targeting these epigenetic changes blocks the entrance to dormancy and reduces the persister cancer cell population, enhancing the cytotoxic effects of ET in vitro. See related article by Rosano et al., p. 866 (9).


Asunto(s)
Antineoplásicos Hormonales , Neoplasias de la Mama , Resistencia a Antineoplásicos , Epigénesis Genética , Humanos , Epigénesis Genética/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Femenino , Receptores de Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Aust J Gen Pract ; 53(5): 291-300, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38697060

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the most common malignancy after skin cancer in men in Australia. Its management varies according to tumour stage. Due to the significant dependence on androgen receptor signalling, agents that interfere with this pathway (most commonly medical castration in the form of androgen deprivation therapy [ADT]) are the mainstay treatment of advanced disease. OBJECTIVE: This review provides a contemporary update on ADT, with further discussion of emerging novel therapies for primary care. DISCUSSION: ADT is currently indicated for the treatment of metastatic prostate cancer, disease recurrence following attempted local curative therapy, as well as combined use with radiotherapy for intermediate/high-risk disease. There has been rapid development of new pharmaceuticals targeting the androgen receptor. These are reviewed historically with an emphasis placed on emerging therapies, their common side effects, and how to manage them in the general practice setting.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Australia
4.
Front Endocrinol (Lausanne) ; 15: 1365321, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779454

RESUMEN

Background: Adrenocortical carcinoma (ACC) is an aggressive endocrine malignancy with limited therapeutic options. Treating advanced ACC with mitotane, the cornerstone therapy, remains challenging, thus underscoring the significance to predict mitotane response prior to treatment and seek other effective therapeutic strategies. Objective: We aimed to determine the efficacy of mitotane via an in vitro assay using patient-derived ACC cells (PDCs), identify molecular biomarkers associated with mitotane response and preliminarily explore potential agents for ACC. Methods: In vitro mitotane sensitivity testing was performed in 17 PDCs and high-throughput screening against 40 compounds was conducted in 8 PDCs. Genetic features were evaluated in 9 samples using exomic and transcriptomic sequencing. Results: PDCs exhibited variable sensitivity to mitotane treatment. The median cell viability inhibition rate was 48.4% (IQR: 39.3-59.3%) and -1.2% (IQR: -26.4-22.1%) in responders (n=8) and non-responders (n=9), respectively. Median IC50 and AUC were remarkably lower in responders (IC50: 53.4 µM vs 74.7 µM, P<0.0001; AUC: 158.0 vs 213.5, P<0.0001). Genomic analysis revealed CTNNB1 somatic alterations were only found in responders (3/5) while ZNRF3 alterations only in non-responders (3/4). Transcriptomic profiling found pathways associated with lipid metabolism were upregulated in responder tumors whilst CYP27A1 and ABCA1 expression were positively correlated to in vitro mitotane sensitivity. Furthermore, pharmacologic analysis identified that compounds including disulfiram, niclosamide and bortezomib exhibited efficacy against PDCs. Conclusion: ACC PDCs could be useful for testing drug response, drug repurposing and guiding personalized therapies. Our results suggested response to mitotane might be associated with the dependency on lipid metabolism. CYP27A1 and ABCA1 expression could be predictive markers for mitotane response, and disulfiram, niclosamide and bortezomib could be potential therapeutics, both warranting further investigation.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Antineoplásicos Hormonales , Mitotano , Pruebas de Farmacogenómica , Humanos , Mitotano/uso terapéutico , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , Carcinoma Corticosuprarrenal/metabolismo , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/patología , Neoplasias de la Corteza Suprarrenal/metabolismo , Femenino , Masculino , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Persona de Mediana Edad , Adulto , Anciano , Farmacogenética
5.
Sci Rep ; 14(1): 12542, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822093

RESUMEN

Around 75% of breast cancer (BC) patients have tumors expressing the predictive biomarker estrogen receptor α (ER) and are offered endocrine therapy. One-third eventually develop endocrine resistance, a majority with retained ER expression. Mutations in the phosphatidylinositol bisphosphate 3-kinase (PI3K) catalytic subunit encoded by PIK3CA is a proposed resistance mechanism and a pharmacological target in the clinical setting. Here we explore the frequency of PIK3CA mutations in endocrine-resistant BC before and during treatment and correlate to clinical features. Patients with ER-positive (ER +), human epidermal growth factor receptor 2 (HER2)-negative primary BC with an ER + relapse within 5 years of ongoing endocrine therapy were retrospectively assessed. Tissue was collected from primary tumors (n = 58), relapse tumors (n = 54), and tumor-free lymph nodes (germline controls, n = 62). Extracted DNA was analyzed through panel sequencing. Somatic mutations were observed in 50% (31/62) of the patients, of which 29% occurred outside hotspot regions. The presence of PIK3CA mutations was significantly associated with nodal involvement and mutations were more frequent in relapse than primary tumors. Our study shows the different PIK3CA mutations in endocrine-resistant BC and their fluctuations during therapy. These results may aid investigations of response prediction, facilitating research deciphering the mechanisms of endocrine resistance.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Resistencia a Antineoplásicos , Mutación , Humanos , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Resistencia a Antineoplásicos/genética , Persona de Mediana Edad , Anciano , Adulto , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Estudios Retrospectivos , Anciano de 80 o más Años , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Recurrencia Local de Neoplasia/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
6.
Cell Signal ; 119: 111184, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640982

RESUMEN

Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Fulvestrant , Fosfofructoquinasa-2 , Humanos , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Receptor alfa de Estrógeno/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Fulvestrant/farmacología , Animales , Estabilidad Proteica/efectos de los fármacos , Ratones , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Carcinogénesis/metabolismo , Carcinogénesis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos Hormonales/farmacología , Línea Celular Tumoral
7.
BMC Mol Cell Biol ; 25(1): 12, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649821

RESUMEN

Hormone receptor (HR)-positive breast cancer can become aggressive after developing hormone-treatment resistance. This study elucidated the role of long non-coding RNA (lncRNA) SOX2OT in tamoxifen-resistant (TAMR) breast cancer and its potential interplay with the tumor microenvironment (TME). TAMR breast cancer cell lines TAMR-V and TAMR-H were compared with the luminal type A cell line (MCF-7). LncRNA expression was assessed via next-generation sequencing, RNA extraction, lncRNA profiling, and quantitative RT-qPCR. SOX2OT overexpression effects on cell proliferation, migration, and invasion were evaluated using various assays. SOX2OT was consistently downregulated in TAMR cell lines and TAMR breast cancer tissue. Overexpression of SOX2OT in TAMR cells increased cell proliferation and cell invasion. However, SOX2OT overexpression did not significantly alter SOX2 levels, suggesting an independent interaction within TAMR cells. Kaplan-Meier plot analysis revealed an inverse relationship between SOX2OT expression and prognosis in luminal A and B breast cancers. Our findings highlight the potential role of SOX2OT in TAMR breast cancer progression. The downregulation of SOX2OT in TAMR breast cancer indicates its involvement in resistance mechanisms. Further studies should explore the intricate interactions between SOX2OT, SOX2, and TME in breast cancer subtypes.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/genética , Células MCF-7 , Invasividad Neoplásica , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Microambiente Tumoral/genética
8.
Cancer Lett ; 590: 216847, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583647

RESUMEN

Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Resistencia a Antineoplásicos , GTP Fosfohidrolasas , Dinámicas Mitocondriales , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Apoptosis/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Animales , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Antineoplásicos Hormonales/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Células MCF-7 , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Biol Direct ; 19(1): 21, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459605

RESUMEN

BACKGROUND: Mammalian enabled (MENA) protein is a member of the enabled/vasodilator stimulated phosphoprotein (Ena/VASP) protein family, which regulates cytoplasmic actin network assembly. It plays a significant role in breast cancer invasion, migration, and resistance against targeted therapy and chemotherapy. However, its role in the efficacy of endocrine therapy for the hormone receptor-positive (HR+) breast cancer patients is not known. This study investigated the role of MENA in the resistance against tamoxifen therapy in patients with HR+ breast cancer and the underlying mechanisms. METHODS: MENA expression levels in the clinical HR+ breast cancer samples (n = 119) were estimated using immunohistochemistry (IHC) to determine its association with the clinicopathological features, tamoxifen resistance, and survival outcomes. Western blotting (WB) and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis was performed to estimate the MENA protein and mRNA levels in the tamoxifen-sensitive and -resistant HR+ breast cancer cell lines. Furthermore, CCK8, colony formation, and the transwell invasion and migration assays were used to analyze the effects of MENA knockdown on the biological behavior and tamoxifen sensitivity of the HR+ breast cancer cell lines. Xenograft tumor experiments were performed in the nude mice to determine the tumor growth rates and tamoxifen sensitivity of the control and MENA knockdown HR+ breast cancer cells in the presence and absence of tamoxifen treatment. Furthermore, we estimated the growth rates of organoids derived from the HR+ breast cancer patients (n = 10) with high and low MENA expression levels when treated with tamoxifen. RESULTS: HR+ breast cancer patients with low MENA expression demonstrated tamoxifen resistance and poorer prognosis compared to those with high MENA expression. Univariate and multivariate Cox regression analysis demonstrated that MENA expression was an independent predictor of tamoxifen resistance in patients with HR+ breast cancer. MENA knockdown HR+ breast cancer cells showed significantly reduced tamoxifen sensitivity in the in vitro experiments and the in vivo xenograft tumor mouse model compared with the corresponding controls. Furthermore, MENA knockdown increased the in vitro invasion and migration of the HR+ breast cancer cells. HR+ breast cancer organoids with low MENA expression demonstrated reduced tamoxifen sensitivity than those with higher MENA expression. Mechanistically, P-AKT levels were significantly upregulated in the MENA-knockdown HR + breast cancer cells treated with or without 4-OHT compared with the corresponding controls. CONCLUSIONS: This study demonstrated that downregulation of MENA promoted tamoxifen resistance in the HR+ breast cancer tissues and cells by enhancing the AKT signaling pathway. Therefore, MENA is a promising prediction biomarker for determining tamoxifen sensitivity in patients with HR+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Mamíferos/metabolismo , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
10.
Cell Death Dis ; 15(2): 147, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360722

RESUMEN

Tamoxifen (TAM) is the frontline therapy for estrogen receptor-positive (ER+) breast cancer in premenopausal women that interrupts ER signaling. As tumors with elevated heterogeneity, amounts of ER-negative (ER-) cells are present in ER+ breast cancer that cannot be directly killed by TAM. Despite complete remissions have been achieved in clinical practice, the mechanism underlying the elimination of ER- cells during TAM treatment remains an open issue. Herein, we deciphered the elimination of ER- cells in TAM treatment from the perspective of the bystander effect. Markable reductions were observed in tumorigenesis of ER- breast cancer cells by applying both supernatants from TAM-treated ER+ cells and a transwell co-culture system, validating the presence of a TAM-induced bystander effect. The major antitumor protein derived from ER+ cells, peptidyl-prolyl cis-trans isomerase B (PPIB), is the mediator of the TAM-induced bystander effect identified by quantitative proteomics. The attenuation of ER- cells was attributed to activated BiP/eIF2α/CHOP axis and promoted endoplasmic reticulum stress (ERS)-induced apoptosis, which can also be triggered by PPIB independently. Altogether, our study revealed a novel TAM-induced bystander effect in TAM treatment of ER+ breast cancer, raising the possibility of developing PPIB as a synergistic antitumor agent or even substitute endocrine therapy.


Asunto(s)
Neoplasias de la Mama , Efecto Espectador , Isomerasa de Peptidilprolil , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Isoenzimas , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
11.
Front Biosci (Landmark Ed) ; 29(2): 81, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38420813

RESUMEN

BACKGROUND: Previous clinical studies have suggested that Toll-like receptor (TLR)2 had predictive function for endocrine resistance in HER2-positive breast cancer (BCa). Nevertheless, it remains unclear whether TLR2 would relate to development of endocrine therapy resistance in triple-positive breast cancer (TPBC). METHODS: Bioinformatic analysis of TLR2 was carried out through a database. Ten tumor tissues were obtained from TPBC patients who underwent surgery, with five patients displaying primary resistance to tamoxifen (TAM) with the remaining 5 being sensitive. Different levels of proteins were identified through mass spectrometry analysis and confirmed through reverse transcription polymerase chain reaction (RT-PCR) and western blot. TAM-resistant cell lines (BT474-TAM) were established by continuous exposure to TAM, and TAM resistance was assessed via IC50. Additionally, TLR2 mRNA was analyzed through western blot and RT-PCR in BT474, BT474-TAM, MCF-7, and MCF10A cells. Furthermore, TLR2-specific interference sequences were utilized to downregulate TLR2 expression in BT474-TAM cells to elucidate its role in TAM resistance. RESULTS: TLR2 had a correlation with decreased relapse-free survival in BCa patients from the GSE1456-GPL96 cohort, and it was involved in cancer development predominantly mediated by MAPK and PI3K pathways. TLR2 protein expression ranked in the top 5 proteins within the TAM-resistant group, and was 1.9 times greater than that in the sensitive group. Additionally, TLR2 mRNA and protein expression increased significantly in the established TAM-resistant BT474/TAM cell lines. The sensitivity of TAM was restored upon TLR2 downregulation in BT474/TAM cells. CONCLUSIONS: TLR2 might have a therapeutic value as it was involved in the TAM resistance in TPBC, with potential to be a marker for primary endocrine resistance.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/uso terapéutico , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , ARN Mensajero/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica
12.
Trends Endocrinol Metab ; 35(4): 321-330, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38220576

RESUMEN

Estrogen receptor-positive (ER+) breast tumors have a better overall prognosis than ER- tumors; however, there is a sustained risk of recurrence. Mounting evidence indicates that genetic and epigenetic changes associated with resistance impact critical signaling pathways governing cell metabolism. This review delves into recent literature concerning the metabolic pathways regulated in ER+ breast tumors by the availability of nutrients and endocrine therapies and summarizes research on how changes in systemic and gut microbial metabolism can affect ER activity and responsiveness to endocrine therapy. As targeting of metabolic pathways using dietary or pharmacological approaches enters the clinic, we provide an overview of the supporting literature and suggest future directions.


Asunto(s)
Neoplasias de la Mama , Microbioma Gastrointestinal , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Transducción de Señal , Pronóstico , Resistencia a Antineoplásicos
13.
Cell Biol Int ; 48(4): 496-509, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225685

RESUMEN

Tamoxifen (TAM) resistance poses a significant clinical challenge in human breast cancer and exhibits high heterogeneity among different patients. Rg3, an original ginsenoside known to inhibit tumor growth, has shown potential for enhancing TAM sensitivity in breast cancer cells. However, the specific role and underlying mechanisms of Rg3 in this context remain unclear. Aerobic glycolysis, a metabolic process, has been implicated in chemotherapeutic resistance. In this study, we demonstrate that elevated glycolysis plays a central role in TAM resistance and can be effectively targeted and overcome by Rg3. Mechanistically, we observed upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key mediator of glycolysis, in TAM-resistant MCF-7/TamR and T-47D/TamR cells. Crucially, PFKFB3 is indispensable for the synergistic effect of TAM and Rg3 combination therapy, which suppresses cell proliferation and glycolysis in MCF-7/TamR and T-47D/TamR cells, both in vitro and in vivo. Moreover, overexpression of PFKFB3 in MCF-7 cells mimicked the TAM resistance phenotype. Importantly, combination treatment significantly reduced TAM-resistant MCF-7 cell proliferation in an in vivo model. In conclusion, this study highlights the contribution of Rg3 in enhancing the therapeutic efficacy of TAM in breast cancer, and suggests that targeting TAM-resistant PFKFB3 overexpression may represent a promising strategy to improve the response to combination therapy in breast cancer.


Asunto(s)
Neoplasias de la Mama , Ginsenósidos , Humanos , Femenino , Tamoxifeno/farmacología , Neoplasias de la Mama/patología , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Células MCF-7 , Glucólisis , Regulación Neoplásica de la Expresión Génica
14.
Arch Pharm Res ; 46(11-12): 907-923, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048029

RESUMEN

Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Lactatos/uso terapéutico , Células MCF-7 , Piruvatos/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
15.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069023

RESUMEN

BACKGROUND: Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). Although it has been used for many years, its mechanism of action remains elusive. H295R cells are, in ACC, an essential tool to evaluate drug mechanisms, although they often lead to conflicting results. METHODS: Using different in vitro biomolecular technologies and biochemical/biophysical experiments, we evaluated how the presence of "confounding factors" in culture media and patient sera could reduce the pharmacological effect of mitotane and its metabolites. RESULTS: We discovered that albumin, the most abundant protein in the blood, was able to bind mitotane. This interaction altered the effect of the drug by blocking its biological activity. This blocking effect was independent of the albumin source or methodology used and altered the assessment of drug sensitivity of the cell lines. CONCLUSIONS: In conclusion, we have for the first time demonstrated that albumin does not only act as an inert drug carrier when mitotane or its metabolites are present. Indeed, our experiments clearly indicated that both albumin and human serum were able to suppress the pharmacological effect of mitotane in vitro. These experiments could represent a first step towards the individualization of mitotane treatment in this rare tumor.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Humanos , Neoplasias de la Corteza Suprarrenal/metabolismo , Carcinoma Corticosuprarrenal/patología , Albúminas , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Mitotano/farmacología , Mitotano/uso terapéutico , Mitotano/metabolismo
16.
J Cancer Res Clin Oncol ; 149(20): 18103-18117, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999751

RESUMEN

BACKGROUND: Tamoxifen (Tam) is an effective treatment for estrogen receptor (ER) positive breast cancer. However, a significant proportion of patients develop resistance under treatment, presenting a therapeutic challenge. The study aims to determine the role of early growth response protein (EGR) 3 in tamoxifen resistance (TamR) and elucidate its molecular mechanism. METHODS: TamR cell models were established and NGS was used to screening signaling alternation. Western blot and qRT-PCR were used to analysis the expression of ERα, EGR3, MCL1 and factors associated with apoptosis. CCK8, colony formation and apoptosis assay were used to analysis resistance to Tam. Immunofluorescence, chromatin immunoprecipitation, and dual luciferase assays were used to investigate mechanism of regulation. RESULTS: We observed that EGR3, a deeply rooted ERα response factor, showed increased upregulation in response to both estrone (E1) and Tam in TamR cells with elevated level of E1 and ERα expression, indicating a potential connection between EGR3 and TamR. Mechanically, manipulating EGR3 expression revealed that it imparted resistance to Tam through increased expression of the downstream molecule MCL1 (apoptosis suppressor gene) that it regulated. Mechanismly, EGR3 directly binds to the promoter of the anti-apoptotic factor MCL1 gene, facilitating its transcription. Furthermore, apoptosis assays revealed that E1 reduces Tam induced apoptosis by upregulating EGR3 expression. Importantly, clinical public database confirmed the high expression of EGR3 in breast cancer tissue and in Tam-treated patients. CONCLUSIONS: These findings shed light on the novel estrogen/EGR3/MCL1 axis and its role in inducing TamR in ER positive breast cancer. EGR3 emerges as a promising target to overcome TamR. The elucidation of this mechanism holds potential for the development of new therapeutic modalities to overcome endocrine therapy resistance in clinical settings.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estrona/farmacología , Estrona/uso terapéutico , Receptor alfa de Estrógeno , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/uso terapéutico , Resistencia a Antineoplásicos/genética , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Células MCF-7 , Proliferación Celular , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/farmacología
17.
Front Endocrinol (Lausanne) ; 14: 1261283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900137

RESUMEN

Endocrine therapy is the prominent strategy for the treatment of hormone-positive breast cancers. The emergence of resistance to endocrine therapy is a major health concern among hormone-positive breast cancer patients. Resistance to endocrine therapy demands the design of newer therapeutic strategies. The understanding of underlying molecular mechanisms of endocrine resistance, components of the tumor microenvironment (TME), and interaction of resistant breast cancer cells with the cellular/acellular components of the intratumoral environment are essential to formulate new therapeutic strategies for the treatment of endocrine therapy-resistant breast cancers. In the first half of the article, we have discussed the general mechanisms (including mutations in estrogen receptor gene, reregulated activation of signaling pathways, epigenetic changes, and cell cycle alteration) responsible for endocrine therapy resistance in hormone-positive breast cancers. In the latter half, we have emphasized the precise role of cellular (cancer-associated fibroblasts, immune cells, and cancer stem cells) and acellular components (collagen, fibronectin, and laminin) of TME in the development of endocrine resistance in hormone-positive breast cancers. In sum, the article provides an overview of the relationship between endocrine resistance and TME in hormone-positive breast cancers.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Microambiente Tumoral , Resistencia a Antineoplásicos/genética , Hormonas/uso terapéutico
18.
Cell Death Dis ; 14(10): 653, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803002

RESUMEN

Tamoxifen-based endocrine therapy remains a major adjuvant therapy for estrogen receptor (ER)-positive breast cancer (BC). However, many patients develop tamoxifen resistance, which results in recurrence and poor prognosis. Herein, we show that fatty acid oxidation (FAO) was activated in tamoxifen-resistant (TamR) ER-positive BC cells by performing bioinformatic and functional studies. We also reveal that CPT1A, the rate-limiting enzyme of FAO, was significantly overexpressed and that its enzymatic activity was enhanced in TamR cells. Mechanistically, the transcription factor c-Jun was activated by JNK kinase-mediated phosphorylation. Activated c-Jun bound to the TRE motif in the CPT1A promoter to drive CPT1A transcription and recruited CBP/P300 to chromatin, catalysing histone H3K27 acetylation to increase chromatin accessibility, which ensured more effective transcription of CPT1A and an increase in the FAO rate, eliminating the cytotoxic effects of tamoxifen in ER-positive BC cells. Pharmacologically, inhibiting CPT1A enzymatic activity with the CPT1 inhibitor etomoxir or blocking c-Jun phosphorylation with a JNK inhibitor restored the tamoxifen sensitivity of TamR cells. Clinically, high levels of phosphorylated c-Jun and CPT1A were observed in ER-positive BC tissues in patients with recurrence after tamoxifen therapy and were associated with poor survival. These results indicate that the assessment and targeting of the JNK/c-Jun-CPT1A-FAO axis will provide promising insights for clinical management, increased tamoxifen responses and improved outcomes for ER-positive BC patients.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Ácidos Grasos/metabolismo , Cromatina , Resistencia a Antineoplásicos , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Regulación Neoplásica de la Expresión Génica
19.
Clin Cancer Res ; 29(23): 4894-4907, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747807

RESUMEN

PURPOSE: In estrogen receptor-positive (ER+)/HER2- breast cancer, multiple measures of intratumor heterogeneity are associated with a worse response to endocrine therapy. We sought to develop a novel experimental model to measure heterogeneity in response to tamoxifen treatment in primary breast tumors. EXPERIMENTAL DESIGN: To investigate heterogeneity in response to treatment, we developed an operating room-to-laboratory pipeline for the collection of live normal breast specimens and human tumors immediately after surgical resection for processing into single-cell workflows for experimentation and genomic analyses. Live primary cell suspensions were treated ex vivo with tamoxifen (10 µmol/L) or control media for 12 hours, and single-cell RNA libraries were generated using the 10X Genomics droplet-based kit. RESULTS: In total, we obtained and processed normal breast tissue from two women undergoing reduction mammoplasty and tumor tissue from 10 women with ER+/HER2- invasive breast carcinoma. We demonstrate differences in tamoxifen response by cell type and identify distinctly responsive and resistant subpopulations within the malignant cell compartment of human tumors. Tamoxifen resistance signatures from resistant subpopulations predict poor outcomes in two large cohorts of ER+ breast cancer patients and are enriched in endocrine therapy-resistant tumors. CONCLUSIONS: This novel ex vivo model system now provides the foundation to define responsive and resistant subpopulations within heterogeneous human tumors, which can be used to develop precise single cell-based predictors of response to therapy and to identify genes and pathways driving therapeutic resistance.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico
20.
Anticancer Agents Med Chem ; 23(16): 1819-1828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448364

RESUMEN

Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/patología , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Resistencia a Antineoplásicos , Transducción de Señal , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA