Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Heart Fail Rev ; 29(5): 969-988, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990214

RESUMEN

Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos , Apelina , Cardiotoxicidad , Doxorrubicina , Humanos , Doxorrubicina/efectos adversos , Cardiotoxicidad/etiología , Antibióticos Antineoplásicos/efectos adversos , Apelina/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Receptores de Apelina/metabolismo
2.
Sci Adv ; 10(27): eadk1174, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968355

RESUMEN

During angiogenesis, vascular tip cells guide nascent vascular sprouts to form a vascular network. Apelin, an agonist of the G protein-coupled receptor Aplnr, is enriched in vascular tip cells, and it is hypothesized that vascular-derived Apelin regulates sprouting angiogenesis. We identify an apelin-expressing neural progenitor cell population in the dorsal neural tube. Vascular tip cells exhibit directed elongation and migration toward and along the apelin-expressing neural progenitor cells. Notably, restoration of neural but not vascular apelin expression in apelin mutants remedies the angiogenic defects of mutants. By functional analyses, we show the requirement of Apelin signaling for tip cell behaviors, like filopodia formation and cell elongation. Through genetic interaction studies and analysis of transgenic activity reporters, we identify Apelin signaling as a modulator of phosphoinositide 3-kinase and extracellular signal-regulated kinase signaling in tip cells in vivo. Our results suggest a previously unidentified neurovascular cross-talk mediated by Apelin signaling that is important for tip cell function during sprouting angiogenesis.


Asunto(s)
Apelina , Neovascularización Fisiológica , Células-Madre Neurales , Transducción de Señal , Animales , Apelina/metabolismo , Apelina/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Pez Cebra , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Movimiento Celular , Tubo Neural/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Quimiocinas , Proteínas de Pez Cebra
3.
Reprod Biol ; 24(3): 100918, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924877

RESUMEN

Apelin and APJ have been shown to regulate female reproductive functions. However, its uterine expression during the oestrous cycle and its regulation by ovarian steroids, along with gonadotropin regulation in the ovary, has not been investigated. This study aimed to analyze the steroid-dependent uterine expression of apelin/APJ in the uterus along with the oestrous cycle. Furthermore, it also aimed to investigate gonadotropin-dependent ovarian expression of apelin and APJ. To investigate the uterine expression of apelin and APJ during estrous cycle in mice, uterus at different estrous stage were collected. To explore the ovarian steroids dependent expression of apelin system in the uterus, ovariectomized mice were treated with only estrogen at dose of 30 ng/g, only progesterone at dose of 150 µg/g and combined doses. To study the effect of gonadotropin on ovarian expression of apelin system, immature mice were injected with 2.5 IU of pregnant mare serum gonadotropin (PMSG) alone and both PMSG plus 2.5 IU of chorionic gonadotropin (hCG). Apelin and APJ protein expression are modulated by estrous phases in the uterus. The uterine apelin and APJ expression are up-regulated by estrogen and down-regulated by progesterone. The expression and localization of APJ showed increased abundance in the follicles of PMSG treated mice, however, the PMSG plus HCG treatment showed formation of corpus luteum with increased abundance of APJ and progesterone secretion. The expression of apelin and APJ are regulated by pituitary gonadotropin in the ovary and uterine apelin system by ovarian steroid hormone.


Asunto(s)
Receptores de Apelina , Apelina , Ovario , Progesterona , Útero , Animales , Femenino , Apelina/metabolismo , Receptores de Apelina/metabolismo , Ovario/metabolismo , Ovario/efectos de los fármacos , Ratones , Útero/metabolismo , Útero/efectos de los fármacos , Progesterona/farmacología , Progesterona/metabolismo , Gonadotropinas Equinas/farmacología , Ciclo Estral/metabolismo , Ciclo Estral/fisiología , Gonadotropina Coriónica/farmacología , Estrógenos/farmacología , Estrógenos/metabolismo , Ovariectomía
4.
BMC Genomics ; 25(1): 501, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773369

RESUMEN

BACKGROUND: The peri-implantation period is a critical time during pregnancy that mostly defines the overall litter size. Most authors agree that the highest percentage of embryo mortality occurs during this time. Despite the brevity of the peri-implantation period, it is the most dynamic part of pregnancy in which the sequential and uninterrupted course of several processes is essential to the animal's reproductive success. Also then, the maternal uterine tissues undergo an intensive remodelling process, and their energy demand dramatically increases. It is believed that apelin, a member of the adipokine family, is involved in the control of female reproductive functions in response to the current metabolic state. The verified herein hypothesis assumed the modulatory effect of apelin on the endometrial tissue transcriptome on days 15 to 16 of gestation (beginning of implantation). RESULTS: The analysis of data obtained during RNA-seq (Illumina HiSeq2500) of endometrial slices treated and untreated with apelin (n = 4 per group) revealed changes in the expression of 68 genes (39 up-regulated and 29 down-regulated in the presence of apelin), assigned to 240 gene ontology terms. We also revealed changes in the frequency of alternative splicing events (397 cases), as well as single nucleotide variants (1,818 cases) in the presence of the adipokine. The identified genes were associated, among others, with the composition of the extracellular matrix, apoptosis, and angiogenesis. CONCLUSIONS: The obtained results indicate a potential role of apelin in the regulation of uterine tissue remodelling during the peri-implantation period.


Asunto(s)
Implantación del Embrión , Endometrio , Transcriptoma , Animales , Femenino , Endometrio/metabolismo , Implantación del Embrión/genética , Embarazo , Porcinos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Perfilación de la Expresión Génica , Apelina/genética , Apelina/metabolismo , Empalme Alternativo
5.
Cytokine ; 179: 156639, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38733946

RESUMEN

AIMS: Polycystic ovarian syndrome (PCOS) is one of the most common (about 5-20%) reproductive disorders in women of reproductive age; it is characterized by polycystic ovaries, hyperandrogenism, and oligo/ anovulation. The levels and expression of ovarian adipokines are deregulated in the PCOS. Apelin is an adipokine that acts through its receptor (APJ) and is known to express in the various tissues including the ovary. It has also been suggested that apelin and APJ could be targeted as therapeutic adjuncts for the management of PCOS. However, no study has been conducted on the management of PCOS by targeting the apelin system. Thus, we aimed to evaluate its impact on combating PCOS-associated ovarian pathogenesis. METHODS: The current work employed a letrozole-induced-hyperandrogenism PCOS-like mice model to investigate the effects of apelin13 and APJ, antagonist ML221. The PCOS model was induced by oral administration of letrozole (1 mg/kg) for 21 days. A total of four experimental groups were made, control, PCOS control, PCOS + aplein13, and PCOS + ML221. The treatment of apelin13 and ML221 was given from day 22 for two weeks. KEY FINDINGS: The letrozole-induced PCOS-like features such as hyperandrogenism, cystic follicle, decreased corpus luteum, elevated levels of LH/FSH ratio, and up-regulation of ovarian AR expression were ameliorated by apelin13 and ML221 treatment. However, the PCOS-augmented oxidative stress and apoptosis were suppressed by apelin 13 treatments only. ML221 treatment still showed elevated oxidative stress and stimulated apoptosis as reflected by decreased antioxidant enzymes and increased active caspase3 and Bax expression. The expression of ERs was elevated in all groups except control. Furthermore, the PCOS model showed elevated expression of APJ and apelin13 treatment down-regulated its own receptor. Overall, observing the ovarian histology, corpus luteum formation, and decreased androgen levels by both apelin13 and ML221 showed ameliorative effects on the cystic ovary. SIGNIFICANCE: Despite the similar morphological observation of ovarian histology, apelin13 and ML221 exhibited opposite effects on oxidative stress and apoptosis. Therefore, apelin13 (which down-regulates APJ) and ML221 (an APJ antagonist) may have suppressed APJ signalling, which would account for our findings on the mitigation of polycystic ovarian syndrome. In conclusion, both apelin13 and ML221 mediated mitigation have different mechanisms, which need further investigation.


Asunto(s)
Receptores de Apelina , Apelina , Letrozol , Ovario , Síndrome del Ovario Poliquístico , Letrozol/farmacología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Animales , Femenino , Receptores de Apelina/metabolismo , Ratones , Apelina/metabolismo , Ovario/metabolismo , Ovario/patología , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hiperandrogenismo/metabolismo , Hiperandrogenismo/inducido químicamente , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad
6.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38587319

RESUMEN

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Asunto(s)
Cannabidiol , Fármacos Neuroprotectores , Femenino , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cannabidiol/farmacología , Cannabidiol/metabolismo , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Dopamina/farmacología , Apelina/metabolismo , Apelina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/toxicidad , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología , Hipocampo/metabolismo , Expresión Génica
7.
Front Endocrinol (Lausanne) ; 15: 1336543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516409

RESUMEN

The prevalence of osteoporosis has been on the rise globally. With ageing populations, research has sought therapeutic solutions in novel areas. One such area is that of the adipokines. Current literature points to an important role for these chemical mediators in relation to bone metabolism. Well-established adipokines have been broadly reported upon. These include adiponectin and leptin. However, other novel adipokines such as visfatin, nesfatin-1, meteorin-like protein (Metrnl), apelin and lipocalin-2 are starting to be addressed pre-clinically and clinically. Adipokines hold pro-inflammatory and anti-inflammatory properties that influence the pathophysiology of various bone diseases. Omentin-1 and vaspin, two novel adipokines, share cardioprotective effects and play essential roles in bone metabolism. Studies have reported bone-protective effects of omentin-1, whilst others report negative associations between omentin-1 and bone mineral density. Lipocalin-2 is linked to poor bone microarchitecture in mice and is even suggested to mediate osteoporosis development from prolonged disuse. Nesfatin-1, an anorexigenic adipokine, has been known to preserve bone density. Animal studies have demonstrated that nesfatin-1 treatment limits bone loss and increases bone strength, suggesting exogenous use as a potential treatment for osteopenic disorders. Pre-clinical studies have shown adipokine apelin to have a role in bone metabolism, mediated by the enhancement of osteoblast genesis and the inhibition of programmed cell death. Although many investigations have reported conflicting findings, sufficient literature supports the notion that adipokines have a significant influence on the metabolism of bone. This review aims at highlighting the role of novel adipokines in osteoporosis while also discussing their potential for treating osteoporosis.


Asunto(s)
Osteoporosis , Serpinas , Animales , Ratones , Adipoquinas/metabolismo , Apelina/metabolismo , Lipocalina 2 , Adiponectina/metabolismo , Osteoporosis/tratamiento farmacológico
8.
J Steroid Biochem Mol Biol ; 238: 106463, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38246202

RESUMEN

The expression of adipokines is well-known in the ovary and uterus. Recently we have shown that apelin and its receptor, APJ are developmentally regulated in the ovary and uterus of mice with elevation at postnatal day 14 (PND14). However, its role in the ovary and uterus of PND14 has not been investigated. Thus, we aimed to unravel the role of the apelin system (by APJ antagonist, ML221) on ovarian steroid secretion, proliferation, and apoptosis along with its role in uterine apoptosis in PND14 mice by in vitro approaches. The treatment of ML221 decreased estrogen, testosterone, and androstenedione secretion while increasing the progesterone secretion from the infantile ovary. These results suggest that apelin signaling would be important for ovarian estrogen synthesis in infantile mice (PND14). The abundance of 3ß-HSD, 17ß-HSD, aromatase, and active caspase3 increased in the infantile ovary after ML221 treatment. The expression of ERs and BCL2 were also down-regulated by ML221 treatment. The decreased BCL2 and increased active caspase3 by ML221 suggest the suppressive role of apelin on ovarian apoptosis. The APJ antagonist treatment also down-regulated the ER expression in the uterus along with increased active caspase3 and decreased BCL2 expression. In conclusion, apelin signaling inhibits the ovarian and uterine apoptosis via estrogen signaling in the ovary and uterus.


Asunto(s)
Nitrobenzoatos , Ovario , Piranos , Útero , Animales , Femenino , Ratones , Apelina/metabolismo , Apoptosis , Estrógenos/metabolismo , Ovario/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Útero/metabolismo
9.
Epigenetics ; 19(1): 2293409, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38232183

RESUMEN

Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1ß, interleukin-1ß; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.


Asunto(s)
Isquemia Encefálica , Diabetes Mellitus Tipo 2 , ARN Helicasas , ARN Largo no Codificante , Apnea Obstructiva del Sueño , Accidente Cerebrovascular , Animales , Humanos , Ratones , Apelina/genética , Apelina/metabolismo , Isquemia Encefálica/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Metilación de ADN , Células Endoteliales/metabolismo , Glucosa , Hemo Oxigenasa (Desciclizante)/metabolismo , Hipoxia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/metabolismo , Accidente Cerebrovascular/complicaciones , Transactivadores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Biochim Biophys Acta Biomembr ; 1866(3): 184289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278504

RESUMEN

The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.


Asunto(s)
Hormonas Peptídicas , Humanos , Apelina/metabolismo , Ligandos , Células HEK293 , Hormonas Peptídicas/química , Catálisis
11.
Neuroendocrinology ; 114(3): 234-249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37899035

RESUMEN

INTRODUCTION: Apelin is an endogenous peptide, whose expression has been shown in the hypothalamus, pituitary, and ovary; furthermore, it is also called a neuropeptide, binding to apelin receptor (APJ) for various functions. It has been suggested that the hypothalamus, pituitary, and ovarian (HPO) axis is tightly regulated and factors and functions of the HPO axis can be modulated during the estrous cycle to influence reproductive status. To the best of our knowledge, the status of apelin and its receptor, APJ has not been investigated in the HPO axis during the estrous cycle. METHODS: To explore the expression of apelin and APJ in the HPO axis of mice during the estrous cycle, mice were divided into four groups: proestrus (Pro), estrus (Est), metestrus (Met), and diestrus (Di), and apelin and APJ were checked. Further, to explore the role of apelin in gonadotropin secretion, an in vitro study of the pituitary was performed at the Pro and Est stages. RESULT: The expression apelin and APJ in the hypothalamus showed elevation during the estrous cycle of postovulatory phases, Met, and Di. The immunolocalization of apelin and APJ in the anterior pituitary showed more abundance in the Est and Di. Our in vitro results showed that gonadotropin-releasing hormone agonist stimulated luteinizing hormone secretion was suppressed by the apelin 13 peptide from the pituitary of Pro and Est phases. This suggests an inhibitory role of apelin on gonadotropin secretion. The ovary also showed conspicuous changes in the presence of apelin and APJ during the estrous cycle. The expression of apelin and APJ coincides with folliculogenesis and corpus luteum formation and the expression of the apelin system in the different cell types of the ovary suggests its cell-specific role. Previous studies also showed that apelin has a stimulatory role in ovarian steroid secretion, proliferation, and corpus luteum. CONCLUSION: Overall our results showed that the apelin system changes along the HPO axis during the estrous cycle and might have an inhibitory at level of hypothalamus and pituitary and a stimulatory role at ovarian level.


Asunto(s)
Ovario , Enfermedades de la Hipófisis , Animales , Femenino , Ratones , Apelina/metabolismo , Receptores de Apelina/metabolismo , Ciclo Estral , Gonadotropinas/metabolismo , Ovario/metabolismo
12.
Int J Oncol ; 63(6)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921070

RESUMEN

Cancer­associated fibroblasts (CAFs) are pivotal in tumor progression. TP53­deficiency in cancer cells is associated with robust stromal activation. The apelin­apelin receptor (APJ) system has been implicated in suppressing fibroblast­to­myofibroblast transition in non­neoplastic organ fibrosis. The present study aimed to elucidate the oncogenic role of the apelin­APJ system in tumor fibroblasts. APJ expression and the effect of APJ suppression in fibroblasts were investigated for p53 status in cancer cells using human cell lines (TP53­wild colon cancer, HCT116, and Caco­2; TP53­mutant colon cancer, SW480, and DLD­1; and colon fibroblasts, CCD­18Co), resected human tissue samples of colorectal cancers, and immune­deficient nude mouse xenograft models. The role of exosomes collected by ultracentrifugation were also analyzed as mediators of p53 expression in cancer cells and APJ expression in fibroblasts. APJ expression in fibroblasts co­cultured with p53­suppressed colon cancer cells (HCT116sh p53 cells) was significantly lower than in control colon cancer cells (HCT116sh control cells). APJ­suppressed fibroblasts treated with an antagonist or small interfering RNA showed myofibroblast­like properties, including increased proliferation and migratory abilities, via accelerated phosphorylation of Sma­ and Mad­related protein 2/3 (Smad2/3). In addition, xenografts of HCT116 cells with APJ­suppressed fibroblasts showed accelerated tumor growth. By contrast, apelin suppressed the upregulation of phosphorylated Smad2/3 in fibroblasts. MicroRNA 5703 enriched in exosomes derived from HCT116sh p53 cells inhibited APJ expression, and inhibition of miR­5703 diminished APJ suppression in fibroblasts caused by cancer cells. APJ suppression from a specific microRNA in cancer cell­derived exosomes induced CAF­like properties in fibroblasts. Thus, the APJ system in fibroblasts in the tumor microenvironment may be a promising therapeutic target.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Colon , MicroARNs , Ratones , Animales , Humanos , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Células CACO-2 , Apelina/genética , Apelina/metabolismo , Fibroblastos/metabolismo , MicroARNs/genética , Neoplasias del Colon/patología , Transducción de Señal , Fibroblastos Asociados al Cáncer/metabolismo , Proliferación Celular , Microambiente Tumoral
13.
Hum Exp Toxicol ; 42: 9603271231217992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37990541

RESUMEN

Background: Adipose tissue is a dynamic endocrine organ that plays a key role in regulating metabolic homeostasis. Previous studies confirmed that bisphenol A (BPA) or fructose can interfere with the function of adipose tissue. Nonetheless, knowledge on how exposure to BPA and fructose impacts energy metabolism in adipose tissue remains limited.Purpose: To determine impact of combined chronic exposure to low-dose bisphenol A and fructose on serum adipocytokines and the energy target metabolome in white adipose tissue.Method: 57 energy metabolic intermediates in adipose tissue and 7 adipocytokines in serum from Sprague Dawley rats were examined after combined exposure to two levels of BPA (lower dose: 0.25, and higher dose: 25 µg/kg every other day) and 5% fructose for 6 months.Results: combined exposure to lower-dose BPA and fructose significantly increased omentin-1, pyruvic acid, adenosine triphosphate (ATP), adenosine monophosphate (AMP), inosine monophosphate (IMP), inosine, and l-lactate; however, these parameters were not significantly affected by higher-dose BPA combined with fructose. Interestingly, the level of succinate (an intermediate of the citric acid cycle) increased dose-dependently in adipose tissue, and the level of apelin 13 (a versatile adipocytokine) decreased dose-dependently in serum after combined exposure to BPA and fructose. Phosphoenolpyruvic acid, phenyl-lactate, and ornithine were significantly correlated with asprosin, omentin-1, apelin, apelin 13, and adiponectin, while l-tyrosine was significantly correlated with irisin and a-FABP under combined exposure to BPA and fructose.Conclusions: these findings indicated that lower-dose BPA combined with fructose could amplify the impact on glycolysis, energy storage, and purine nucleotide biosynthesis in adipose tissue, and adipocytokines, such as omentin-1 and apelin 13, may be related to metabolic interference induced by BPA and fructose exposure.


Asunto(s)
Adipoquinas , Fructosa , Ratas , Animales , Fructosa/metabolismo , Ratas Sprague-Dawley , Apelina/metabolismo , Tejido Adiposo/metabolismo , Compuestos de Bencidrilo/toxicidad , Tejido Adiposo Blanco/metabolismo , Metaboloma , Lactatos/metabolismo
14.
Free Radic Biol Med ; 208: 759-770, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774802

RESUMEN

BACKGROUND: Preeclampsia is a placentally induced syndrome with diverse clinical presentation that currently has no cure. Oxidative stress is a potent inducer of placental dysfunction. The apelin receptor (APJ) system is a pleiotropic pathway with a potential for therapeutic targeting in preeclampsia. This study examines the alteration of circulating apelin levels and placental APJ expression in preeclampsia and investigates whether apelin/APJ system can protect placental trophoblast from hypoxia-induced oxidative stress injury through PI3K/AKT signaling pathway. RESULTS: Our results confirmed that maternal apelin concentration was increased in women with preeclampsia, but APJ expression was reduced in the preeclamptic placentas. Apelin-13 treatment not only specifically attenuated CoCl2-induced superoxide production, but also prevented CoCl2-induced reduction of SOD activity and SOD1 expression. In addition, apelin-13 suppressed CoCl2-induced apoptosis by increasing the expression of bcl-2/bax ratio and by decreasing the expression of active caspase-3 in placental trophoblasts. Furthermore, we found that apelin-13 binding APJ activated the PI3K and AKT kinases and inhibition of PI3K kinase significantly blocked the anti-oxidative effects of apelin-13 in placental trophoblasts. CONCLUSIONS: Decrease of placental APJ expression is associated with oxidative stress-induced placental dysfunction in preeclampsia, and increased circulating apelin could be a moderately successful marker to differentiate subjects with preeclampsia from healthy pregnant women. Inhibition of superoxide production and caspase-3 cleavage, together with upregulation of SOD activity/expression and bcl-2/bax ratio, could be the potential molecular mechanisms by which apelin-13/APJ protects placental trophoblasts from oxidative stress injury.


Asunto(s)
Estrés Oxidativo , Preeclampsia , Trofoblastos , Femenino , Humanos , Embarazo , Apelina/genética , Apelina/metabolismo , Apelina/farmacología , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Hipoxia/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Preeclampsia/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Trofoblastos/metabolismo
15.
Nature ; 621(7980): 813-820, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587341

RESUMEN

Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.


Asunto(s)
Células Endoteliales , Pulmón , Infecciones por Orthomyxoviridae , Receptores de Hidrocarburo de Aril , Animales , Humanos , Ratones , Apelina/metabolismo , Dieta , Células Endoteliales/metabolismo , Endotelio/citología , Endotelio/metabolismo , Células Epiteliales/metabolismo , Eritrocitos/metabolismo , Gripe Humana/inmunología , Gripe Humana/metabolismo , Intestinos/metabolismo , Leucocitos/metabolismo , Ligandos , Pulmón/inmunología , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
16.
Protein Pept Lett ; 30(9): 743-753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622713

RESUMEN

BACKGROUND: Apelin-13 is an endogenous adipocytokine known for its antioxidant, antiinflammatory, and antiapoptotic properties. OBJECTIVE: We aimed to investigate the possible protective effects of exogenous Apelin-13 administration on oxidative stress, inflammation, and apoptosis induced by the cytotoxic agent cyclophosphamide (CP) in the lungs. METHODS: Twenty-four male Wistar albino rats were divided into four groups: Control (saline), CP (200 mg/kg), Apelin-13 (10 µg/kg/day), and CP+Apelin-13. CP was administered as a single dose on the fifth day, and apelin-13 was administered intraperitoneally for five days. Total oxidant status (TOS), total antioxidant status (TAS), and lipid peroxidation were determined with spectrophotometry, TNFα and IL1ß were determined with ELISA, APJ, Sirt1, NF-κB, and p53 mRNA expressions were determined with qRT-PCR, cytochrome (Cyt) C and caspase-3 protein expressions were studied with western blotting in lung tissues. The oxidative stress index (OSI) was also calculated. Furthermore, serum surfactant protein-D (SP-D) and Krebs von den Lungen-6 (KL-6) levels were measured with ELISA. RESULTS: Compared to the control group, TOS, OSI, lipid peroxidation, TNFα, IL1ß, cyt C, caspase-3, APJ, NF-κB, and p53 were higher, and Sirt1 was lower in the lung tissue of rats in the CP group. Serum KL-6 and SP-D levels were higher in the CP group. Co-administration of CP with Apelin-13 completely reversed the changes induced by CP administration. CONCLUSION: Exogenous Apelin-13 treatment protected lung tissue against injury by inhibiting cyclophosphamide-induced oxidative stress, inflammation, and apoptosis. This protective effect of apelin-13 was accompanied by upregulation of the Sirt1 and downregulation of NF-κB/p53 in the lungs.


Asunto(s)
Antioxidantes , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Ratas Wistar , Antioxidantes/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Caspasa 3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/farmacología , Estrés Oxidativo , Ciclofosfamida/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Pulmón , Apoptosis , Apelina/efectos adversos , Apelina/metabolismo
17.
Biomed Pharmacother ; 166: 115268, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562237

RESUMEN

Apelin and Elabela (Ela) are peptides encoded by APLN and APELA, respectively, which act on their receptor APJ and play crucial roles in the body. Recent research has shown that they not only have important effects on the endocrine system, but also promote vascular development and maintain the homeostasis of myocardial cells. From a molecular biology perspective, we explored the roles of Ela and apelin in the cardiovascular system and summarized the mechanisms of apelin-APJ signaling in the progression of myocardial infarction, ischemia-reperfusion injury, atherosclerosis, pulmonary arterial hypertension, preeclampsia, and congenital heart disease. Evidences indicated that apelin and Ela play important roles in cardiovascular diseases, and there are many studies focused on developing apelin, Ela, and their analogues for clinical treatments. However, the literature on the therapeutic potential of apelin, Ela and their analogues and other APJ agonists in the cardiovascular system is still limited. This review summarized the regulatory pathways of apelin/ELA-APJ axis in cardiovascular function and cardiovascular-related diseases, and the therapeutic effects of their analogues in cardiovascular diseases were also included.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Femenino , Humanos , Embarazo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Hormonas Peptídicas/uso terapéutico , Transducción de Señal
18.
Front Endocrinol (Lausanne) ; 14: 1193150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424869

RESUMEN

Lifestyle changes have made metabolic disorders as one of the major threats to life. Growing evidence demonstrates that obesity and diabetes disrupt the reproductive system by affecting the gonads and the hypothalamus-pituitary-gonadal (HPG) axis. Apelin, an adipocytokine, and its receptor (APJ) are broadly expressed in the hypothalamus nuclei, such as paraventricular and supraoptic, where gonadotropin-releasing hormone (GnRH) is released, and all three lobes of the pituitary, indicating that apelin is involved in the control of reproductive function. Moreover, apelin affects food intake, insulin sensitivity, fluid homeostasis, and glucose and lipid metabolisms. This review outlined the physiological effects of the apelinergic system, the relationship between apelin and metabolic disorders such as diabetes and obesity, as well as the effect of apelin on the reproductive system in both gender. The apelin-APJ system can be considered a potential therapeutic target in the management of obesity-associated metabolic dysfunction and reproductive disorders.


Asunto(s)
Enfermedades Metabólicas , Obesidad , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Gónadas/metabolismo , Hormona Liberadora de Gonadotropina/química , Hormona Liberadora de Gonadotropina/metabolismo
19.
Life Sci ; 328: 121892, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364634

RESUMEN

The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and ß-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override ß-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.


Asunto(s)
Neuroblastoma , Humanos , Apelina/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Transducción de Señal
20.
J Steroid Biochem Mol Biol ; 232: 106345, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286110

RESUMEN

Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7ß-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7ß-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7ß-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7ß-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7ß-hydroxycholesterol, and IL-8 secretion was increased on differentiated cells. 7-ketocholesterol- and 7ß-hydroxycholesterol-induced cell death was strongly attenuated by α-tocopherol and Pistacia lentiscus L. seed oil both on myoblasts and/or myotubes. TNF-α and/or IL-8 secretions were reduced by α-tocopherol and Pistacia lentiscus L. seed oil. Our data support the hypothesis that the enhancement of oxidative stress observed in sarcopenic patients could contribute, especially via 7ß-hydroxycholesterol, to skeletal muscle atrophy and inflammation via cytotoxic effects on myoblasts and myotubes. These data bring new elements to understand the pathophysiology of sarcopenia and open new perspectives for the treatment of this frequent age-related disease.


Asunto(s)
Antioxidantes , Sarcopenia , Humanos , Ratones , Animales , Anciano , Catalasa , Apelina/metabolismo , Apelina/farmacología , Antioxidantes/farmacología , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacología , Sarcopenia/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Estudios de Casos y Controles , Interleucina-6/metabolismo , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacología , Hidroxicolesteroles/metabolismo , Cetocolesteroles/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa , Biomarcadores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA