Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.384
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Med ; 54(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39092569

RESUMEN

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Asunto(s)
Proliferación Celular , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Femenino , Proliferación Celular/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal/genética , Apoptosis/genética , Movimiento Celular/genética , Pronóstico
2.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 73-78, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39097893

RESUMEN

Chemotherapy presents the main therapy of non-small cell lung cancer (NSCLC). Nevertheless, cisplatin-based therapy can be limited by drug resistance. MicroRNA (miRNA) possesses a vital regulatory function in modulating the progression as well as cisplatin resistance of NSCLC, but how miR-3195 influences NSCLC is obscure. In this work, it was discovered that miR-3195 presented definite down-regulation in NSCLC cells. Gain-of function assays revealed that overexpressing miR-3195 hindered NSCLC cell proliferation together with migration whereas induced cell apoptosis. Mechanically, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) presented the target gene of miR-3195 and was high-expressed in NSCLC cells. The repressive impacts of overexpressing miR-3195 on NSCLC cells malignant behaviors were reversed via PFKFB4 elevation. Additionally, elevated miR-3195 expression reduced cisplatin resistance of NSCLC both in vitro as well as in vivo. PFKFB4 elevation could offset the reduced cisplatin resistance caused by miR-3195 overexpression in NSCLC cells. In conclusion, this work clarified miR-3195 repressed NSCLC cell proliferation, migration, as well as cisplatin resistance by modulating PFKFB4. Our study might provide a promising clue to promote the anti-tumor effects of chemotherapy.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , Fosfofructoquinasa-2 , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Animales , Ratones Desnudos , Ratones , Ratones Endogámicos BALB C
3.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 8-14, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39097901

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder, and amyloid beta oligomers (AßO), which are pathological markers of AD, are known to be highly toxic. AßO increase mitochondrial dysfunction, which is accompanied by a decrease in mitochondrial fusion. Although mitofusin (Mfn) 1 and Mfn2 are mitochondrial fusion proteins, Mfn2 is known to regulate endoplasmic reticulum (ER) function, as it is located in the ER. Several studies have shown that AßO exacerbates ER stress, however, the exact mechanism requires further elucidation. In this study, we used mouse neuroblastoma cells stably overexpressing the amyloid precursor protein (APP) with the Swedish mutation (N2a APPswe cells) to investigate the role of Mfn in ER stress. Our results revealed that  amyloid beta (Aß) caused cellular toxicity in N2a APPswe cells, upregulated ER stress-related proteins, and promoted ER expansion. The AßO-mediated ER stress was reduced when Mfn1 and Mfn2 were overexpressed. Moreover, Mfn1 and Mfn2 overexpressed resulted in reduced apoptosis of N2a APPswe cells. In conclusion, our results indicate that both Mfn1 and Mfn2 reduce ER stress and apoptosis. Our data provide a foundation for future studies on the roles of Mfn1 and Mfn2 in the molecular mechanisms underlying AßO-mediated ER stress and the pathogenesis of AD.


Asunto(s)
Péptidos beta-Amiloides , Apoptosis , Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Estrés del Retículo Endoplásmico/genética , Apoptosis/genética , Animales , Péptidos beta-Amiloides/metabolismo , Ratones , Línea Celular Tumoral , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Retículo Endoplásmico/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Mitocondrias/metabolismo
4.
Oncol Res ; 32(8): 1335-1346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055884

RESUMEN

Long non-coding RNAs (lncRNAs) have been implicated in cancer progression and drug resistance development. Moreover, there is evidence that lncRNA HOX transcript antisense intergenic RNA (HOTAIR) is involved in colorectal cancer (CRC) progression. The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells, as well as the underlying mechanism. The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues, as well as in radiosensitive and radioresistant samples. The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test. Functional assays such as cell proliferation, colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation. RNA pull-down assay and fluorescence in situ hybridization (FISH) were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated- and Rad3-related (ATR). HOTAIR was significantly upregulated in CRC tumor tissues, especially in radioresistant tumor samples. The elevated expression of HOTAIR was correlated with more advanced histological grades, distance metastasis and the poor prognosis in patients with CRC. Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells. HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model. Moreover, the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway. Silencing HOTAIR impaired the ATR-ATR interacting protein (ATRIP) complex and signaling in cell cycle progression. Collectively, the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proliferación Celular , Neoplasias Colorrectales , Daño del ADN , Reparación del ADN , ARN Largo no Codificante , Tolerancia a Radiación , ARN Largo no Codificante/genética , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Tolerancia a Radiación/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ratones , Proliferación Celular/genética , Apoptosis/genética , Línea Celular Tumoral , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Pronóstico , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
5.
Clin Epigenetics ; 16(1): 97, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044262

RESUMEN

BACKGROUND: Esophagogastric junction cancer (EJC) refers to malignant tumors that develop at the junction between the stomach and the esophagus. TUSC1 is a recently identified tumor suppressor gene known for its involvement in various types of cancer. The objective of this investigation was to elucidate the regulatory influence of DNA methylation on TUSC1 expression and its role in the progression of EJC. METHODS: Bioinformatics software was utilized to analyze the expression of TUSC1, enriched pathways, and highly methylated sites in the promoter region. TUSC1 expression in EJC was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot (WB), and immunohistochemistry. Methylation-specific PCR was employed to detect the methylation level of TUSC1. To analyze the effects of TUSC1 and 5-AZA-2 on tumor cell proliferation, migration, invasion, cell cycle, and apoptosis, several assays including CCK-8, colony formation, transwell, and flow cytometry were conducted. The expression of MDM2 was assessed using qRT-PCR and WB. WB detected the expression of p53, and p-p53, markers for EJC cell proliferation, epithelial-mesenchymal transition, and apoptosis. The role of TUSC1 in tumor occurrence in vivo was examined using a xenograft mouse model. RESULTS: TUSC1 expression was significantly downregulated in EJC. Overexpression of TUSC1 and treatment with 5-AZA-2 inhibited the malignant progression of EJC cells. In EJC, low methylation levels promoted the expression of TUSC1. Upregulation of TUSC1 suppressed the expression of MDM2 and activated the p53 signaling pathway. Inactivation of this pathway attenuated the inhibitory effect of TUSC1 overexpression on EJC cell proliferation, migration, invasion, and other behaviors. Animal experiments demonstrated that TUSC1 overexpression inhibited EJC tumor growth and metastasis in vivo. CONCLUSION: TUSC1 was commonly downregulated in EJC and regulated by methylation. It repressed the malignant progression of EJC tumors by mediating the p53 pathway, suggesting its potential as a diagnostic and therapeutic target for EJC.


Asunto(s)
Proliferación Celular , Metilación de ADN , Neoplasias Esofágicas , Regulación Neoplásica de la Expresión Génica , Proteínas Supresoras de Tumor , Humanos , Metilación de ADN/genética , Animales , Proteínas Supresoras de Tumor/genética , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Progresión de la Enfermedad , Unión Esofagogástrica/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Apoptosis/genética , Regiones Promotoras Genéticas/genética , Proteína p53 Supresora de Tumor/genética , Masculino , Movimiento Celular/genética , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Ratones Desnudos
6.
J Cell Mol Med ; 28(14): e18546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046458

RESUMEN

Heart failure (HF) prognosis depends on various regulatory factors; microRNA-128 (miR-128) is identified as a regulator of cardiac fibrosis, contributing to HF. MyoD family inhibitor (MDFI), which is reported to be related with Wnt/ß-catenin pathway, is supposed to be regulated by miR-128. This study investigates the interaction between miR-128 and MDFI in cardiomyocyte development and elucidates its role in heart injury. Gene expression profiling assessed miR-128's effect on MDFI expression in HF using qPCR and Western blot analysis. Luciferase assays studied the direct interaction between miR-128 and MDFI. MTT, transwell, and immunohistochemistry evaluated the effects of miR-128 and MDFI on myocardial cells in mice HF. Genescan and luciferase assays validated the interaction between miR-128 and MDFI sequences. miR-128 mimics significantly reduced MDFI expression at mRNA and protein levels with decrease rate of 55%. Overexpression of miR-128 promoted apoptosis with the increase rate 65% and attenuated cardiomyocyte proliferation, while MDFI upregulation significantly enhanced proliferation. Elevated miR-128 levels upregulated Wnt1 and ß-catenin expression, whereas increased MDFI levels inhibited these expressions. Histological analysis with haematoxylin and eosin staining revealed that miR-128 absorption reduced MDFI expression, hindering cell proliferation and cardiac repair, with echocardiography showing corresponding improvements in cardiac function. Our findings suggest miR-128 interacts with MDFI, playing a crucial role in HF management by modulating the Wnt1/ß-catenin pathway. Suppression of miR-128 could promote cardiomyocyte proliferation, highlighting the potential value of the miR-128/MDFI interplay in HF treatment.


Asunto(s)
Apoptosis , Cardiomegalia , Proliferación Celular , Insuficiencia Cardíaca , MicroARNs , Miocitos Cardíacos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proliferación Celular/genética , Ratones , Masculino , Humanos , Vía de Señalización Wnt/genética , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , beta Catenina/metabolismo , beta Catenina/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1389-1396, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39051085

RESUMEN

OBJECTIVE: To explore the role of ferroptosis-related genes in regulating ferroptosis of esophageal squamous cell carcinoma (ESCC). METHODS: ESCC datasets GSE161533 and GSE20347 were downloaded from the Gene Expression Omnibus (GEO) to identify the differentially expressed genes (DEGs) using R software. ESCC ferroptosis-related genes obtained by intersecting the DEGs with ferroptosis-related genes from FerrDb were analyzed using GO and KEGG analyses, protein-protein interaction (PPI) network analysis, and core gene identification through Cytoscape. The identified ferroptosis suppressor genes were validated using TCGA database, and their expression levels were detected using RT-qPCR in cultured normal esophageal cells and ESCC cells. Six ferroptosis suppressor genes (RRM2, GCLC, TFRC, TXN, SLC7A11, and EZH2) were downregulated with siRNA in ESCC cells, and the changes in cell proliferation and apoptosis were assessed with CCK8 assay and flow cytometry; Western blotting was performed to examine the changes in ferroptosis progression of the cells. RESULTS: We identified a total of 58 ESCC ferroptosis-related genes, which involved such biological processes as glutathione transmembrane transport, iron ion transport, and apoptosis and the ferroptosis, glutathione metabolism, and antifolate resistance pathways. The PPI network included 54 nodes and 74 edges with a clustering coefficient of 0.522 and PPI enrichment P<0.001. Cytoscape identified 6 core ferroptosis suppressor genes (RRM2, TFRC, TXN, EZH2, SLC7A11, and GCLC), which were highly expressed in ESCC tissues in the TCGA dataset and in ESCC cell lines. Downregulating these genes in ESCC TE1 cells significantly inhibited cell proliferation, promoted cell apoptosis, reduced the expression levels of ferroptosis markers GPX4 and FIH1, and increased the expression of ACSL4. CONCLUSION: High expression of ferroptosis suppressor genes in ESCC may cause arrest of ferroptosis progression to facilitate tumor development, and inhibiting these genes can restore ferroptosis and promote cell apoptosis, suggesting their value as potential therapeutic targets for ESCC.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Humanos , Ferroptosis/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Proliferación Celular/genética , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Mapas de Interacción de Proteínas/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Genes Supresores de Tumor , Antígenos CD
8.
Technol Cancer Res Treat ; 23: 15330338241261616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051528

RESUMEN

Objectives: To investigate the effects and the related signaling pathway of miR-362-3p on OS. Methods: The bioinformatics analysis approaches were employed to investigate the target pathway of miR-362-3p. After the 143B and U2OS cells and nu/nu male mice were randomly divided into blank control (BC) group, normal control (NC) group, and overexpression group (OG), the CCK-8, EdU staining, wound healing assay, Transwell assay, and TUNEL staining were adopted to respectively determine the effects of overexpressed miR-362-3p on the cell viability, proliferation, migration, invasion, and apoptosis of 143B and U2OS cells in vitro, tumor area assay and hematoxylin and eosin staining were employed to respectively determine the effects of overexpressed miR-362-3p on the growth and pathological injury of OS tissue in vivo. The qRT-PCR, Western blot, and immunohistochemical staining were applied to respectively investigate the effects of overexpressed miR-362-3p on the IL6ST/JAK2/STAT3 pathway in OS in vivo and in vitro. Results: The bioinformatics analysis approaches combined qRT-PCR indicated that the IL6ST/JAK2/STAT3 is one of the target pathways of miR-362-3p. Compared with NC, the cell viability, proliferation, migration, and invasion of 143B and U2OS cells were dramatically (P < 0.01) inhibited but the apoptosis was prominently (P <0 .0001) promoted in OG. Compared with NC, the growth of OS tissue was significantly (P < 0.05) suppressed and the pathological injury of OS tissue was substantially aggravated in OG. The gene expression levels of IL6ST, JAK2, and STAT3 and the protein expression levels of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 in 143B and U2OS cells were memorably (P < 0.0001) lower in OG than those in NC. In addition, the positively stained areas of proteins of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 of OS tissue in OG were markedly (P < 0.01) reduced compared with those in NC. Conclusion: The overexpression of miR362-3p alleviates OS by inhibiting the IL6ST/JAK2/STAT3 pathway in vivo and in vitro.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Janus Quinasa 2 , MicroARNs , Osteosarcoma , Factor de Transcripción STAT3 , Transducción de Señal , MicroARNs/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Humanos , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Apoptosis/genética , Masculino , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Biología Computacional/métodos , Modelos Animales de Enfermedad , Supervivencia Celular/genética
9.
Aging (Albany NY) ; 16(13): 10997-11017, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968580

RESUMEN

To get a systematic assessment of disulfidptosis-related genes across human cancers and explore the predictive role of disulfidptosis in cancer drug sensitivity. We developed a score-level model to quantify the level of disulfidptosis in 33 human cancers using TCGA data. The mRNA expression and protein levels of disulfidptosis-related genes in human cancer cells and tissues were detected and retrieved from the Human Protein Atlas. Multiomics bioinformatic analyses were performed to evaluate disulfidptosis-related gene characteristics as well as the effect of disulfidptosis on the cancer immune microenvironment and drug resistance. Thirty cancers showed significantly different expression levels of disulfidptosis-related genes between normal and tumor samples. The mRNA expression and protein level of disulfidptosis-related genes were consistent with TCGA databases in lung cancer and hepatocellular carcinoma. We also found that altered levels of the disulfidptosis score expression were usually related to patient prognosis, and high expression of disulfidptosis-related genes was associated with drug resistance in different cancer types. Our study illustrates the characterization of disulfidptosis in multiple cancer types and highlights its potential value as a predictive biomarker of drug response, which can pave the way for further investigation of the prognostic and therapeutic potential of disulfidptosis.


Asunto(s)
Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional , Apoptosis/efectos de los fármacos , Apoptosis/genética
10.
Aging (Albany NY) ; 16(13): 11103-11116, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38990159

RESUMEN

Homeobox C4 (HOXC4) is a member of homeobox family and acts as a transcription factor in regulating morphological development. The current study aimed to determine its role in pancreatic cancer (PC). Bioinformatics analysis was employed to assess the expression and clinical significance of HOXC4 in PC, while the expression of HOXC4 was further confirmed in PC tissues through quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The impact of HOXC4 on PC cell proliferation was evaluated using various assays including Cell Counting Kit-8, colony formation, apoptosis detection, cell cycle analysis, and subcutaneous tumorigenesis. Extracellular acidification rate, glucose uptake, and lactate production measurements were detected to examine the impact of HOXC4 on glycolysis. The relationship between HOXC4 and lactate dehydrogenase A (LDHA) was investigated using CHIP assay, luciferase reporter assay, and western blot. Notably, there was a substantial increase in HOXC4 expression in PC, and patients with elevated HOXC4 levels exhibited shorter survival durations. HOXC4 knockdown resulted in significantly reduced proliferation and colony formation in PC cells, accompanied by increased apoptosis and G1 phase arrest. The overexpression of HOXC4 resulted in contrasting effects. In vivo, the proliferation of PC cells was diminished upon the knockdown of HOXC4. HOXC4 exhibited an increase in LDHA expression by binding to its promoter. The suppressive effects of HOXC4 knockdown on PC cells were counteracted upon the restoration of LDHA. In conclusion, HOXC4 promoted the proliferation of PC cells by increasing LDHA-mediated glycolysis. HOXC4 can act as a target for PC therapy.


Asunto(s)
Proliferación Celular , Glucólisis , Proteínas de Homeodominio , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proliferación Celular/genética , Glucólisis/genética , Línea Celular Tumoral , Animales , Ratones , Regulación Neoplásica de la Expresión Génica , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Apoptosis/genética , Masculino , Femenino , Ratones Desnudos
11.
Reprod Biol Endocrinol ; 22(1): 86, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044215

RESUMEN

Reproductive aging not only affects the fertility and physical and mental health of women but also accelerates the aging process of other organs. There is an urgent need newfor novel mechanisms, targets, and drugs to break the vicious cycle of mitochondrial dysfunction, redox imbalance, and germ cell apoptosis associated with ovarian aging. Autophagy, recognized as a longevity mechanism, has recently become a focal point in anti-aging research. Although mitophagy is a type of autophagy, its role and regulatory mechanisms in ovarian aging, particularly in age-related ovarian function decline, remain unclear. Nerve growth factor inducible gene B (Nur77) is an early response gene that can be stimulated by oxidative stress, DNA damage, metabolism, and inflammation. Recent evidence recommends that decreased expression of Nur77 is associated with age-related myocardial fibrosis, renal dysfunction, and Parkinson's disease; however, its association with ovarian aging has not been studied yet. We herein identified Nur77 as a regulator of germ cell senescence, apoptosis, and mitophagy and found that overexpression of Nur77 can activate mitophagy, improve oxidative stress, reduce apoptosis, and ultimately enhance ovarian reserve in aged mice ovaries. Furthermore, we discovered an association between Nur77 and the AKT pathway through String and molecular docking analyses. Experimental confirmation revealed that the AKT/mTOR signaling pathway is involved in the regulation of Nur77 in ovarian function. In conclusion, our results suggest Nur77 as a promising target for preventing and treating ovarian function decline related to reproductive aging.


Asunto(s)
Envejecimiento , Apoptosis , Mitofagia , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Ovario , Animales , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Femenino , Mitofagia/fisiología , Ratones , Apoptosis/fisiología , Apoptosis/genética , Ovario/metabolismo , Envejecimiento/fisiología , Envejecimiento/genética , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Reserva Ovárica/fisiología , Reproducción/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL
12.
Discov Med ; 36(186): 1430-1440, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054714

RESUMEN

BACKGROUND: Keloid, a fibroproliferative disorder, significantly impacts patients' quality of life, yet effective therapies remain elusive. This study explored the role of silent information regulator 6 (SIRT6) in modulating the proliferation, invasion, and collagen synthesis of keloid fibroblasts. METHODS: Keloid and normal skin specimens were collected, and fibroblasts were isolated from the keloid tissue. SIRT6 recombinant adenovirus (Ad) was constructed to infect keloid fibroblasts to overexpress SIRT6. This study entails three groups: Control group, adenovirus-Negative Control (Ad-NC) group, and Ad-SIRT6 group. SIRT6 protein and mRNA levels were measured via Western blotting and Quantitative reverse transcription polymerase chain reaction (qRT-PCR), respectively. Cell viability was determined using 5-ethynyl-2'-deoxyuridine (EdU) assay. Flow cytometry was exploited to measure cell apoptosis. To investigate cell migration, wound healing assay and Transwell assay were employed. Western blotting was also utilized to study the expression levels of apoptotic proteins, collagen deposition-related proteins, and Mitogen-Activated Protein Kinases (MAPK)/extracellular regulated protein kinases (ERK) pathway-related proteins. RESULTS: Compared to the control and Ad-NC groups, the Ad-SIRT6 group exhibited significantly elevated SIRT6 level; diminished cell proliferation, migration and invasion; reduced protein levels of α-smooth muscle actin (α-SMA), collagen I, collagen III, phospho SMAD Family Member 3 (p-Smad3), transforming growth factor-ß 1 (TGF-ß1), and MAPK/ERK pathway proteins (phospho extracellular signal-regulated protein kinase 1/2 (p-ERK1/2), phospho MAP kinase-ERK kinase (p-MEK) and phospho-c-Raf (p-c-Raf)). Treatment with epidermal growth factor (EGF), an MAPK/ERK pathway agonists, reversed the inhibitory effect of SIRT6 on cell activity and inhibited apoptosis in keloid fibroblasts. CONCLUSION: SIRT6 overexpression in keloid fibroblasts attenuates proliferation, invasion, and collagen synthesis, while fostering apoptosis, likely through the suppression of MAPK/ERK pathway activity. This suggests a potential therapeutic target for keloid treatment.


Asunto(s)
Proliferación Celular , Colágeno , Fibroblastos , Queloide , Sistema de Señalización de MAP Quinasas , Sirtuinas , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Queloide/patología , Queloide/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Colágeno/biosíntesis , Colágeno/metabolismo , Apoptosis/genética , Movimiento Celular , Masculino , Femenino , Células Cultivadas , Adulto
13.
Cell Death Dis ; 15(7): 485, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971772

RESUMEN

The discovery of novel oncotargets for glioma is of immense significance. We here explored the expression patterns, biological functions, and underlying mechanisms associated with ORC6 (origin recognition complex 6) in glioma. Through the bioinformatics analyses, we found a significant increase in ORC6 expression within human glioma tissues, correlating with poorer overall survival, higher tumor grade, and wild-type isocitrate dehydrogenase status. Additionally, ORC6 overexpression is detected in glioma tissues obtained from locally-treated patients and across various primary/established glioma cells. Further bioinformatics scrutiny revealed that genes co-expressed with ORC6 are enriched in multiple signaling cascades linked to cancer. In primary and immortalized (A172) glioma cells, depleting ORC6 using specific shRNA or Cas9-sgRNA knockout (KO) significantly decreased cell viability and proliferation, disrupted cell cycle progression and mobility, and triggered apoptosis. Conversely, enhancing ORC6 expression via a lentiviral construct augmented malignant behaviors in human glioma cells. ORC6 emerged as a crucial regulator for the expression of key oncogenic genes, including Cyclin A2, Cyclin B2, and DNA topoisomerase II (TOP2A), within glioma cells. Silencing or KO of ORC6 reduced the mRNA and protein levels of these genes, while overexpression of ORC6 increased their expression in primary glioma cells. Bioinformatics analyses further identified RBPJ as a potential transcription factor of ORC6. RBPJ shRNA decreased ORC6 expression in primary glioma cells, while its overexpression increased it. Additionally, significantly enhanced binding between the RBPJ protein and the proposed ORC6 promoter region was detected in glioma tissues and cells. In vivo experiments demonstrated a significant reduction in the growth of patient-derived glioma xenografts in the mouse brain subsequent to ORC6 KO. ORC6 depletion, inhibited proliferation, decreased expression of Cyclin A2/B2/TOP2A, and increased apoptosis were detected within these ORC6 KO intracranial glioma xenografts. Altogether, RBPJ-driven ORC6 overexpression promotes glioma cell growth, underscoring its significance as a promising therapeutic target.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma , Complejo de Reconocimiento del Origen , Animales , Humanos , Masculino , Ratones , Apoptosis/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ciclina A2/metabolismo , Ciclina A2/genética , Ciclina B2/metabolismo , Ciclina B2/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Glioma/genética , Glioma/patología , Glioma/metabolismo , Ratones Desnudos , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética
14.
Reprod Biol Endocrinol ; 22(1): 82, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010074

RESUMEN

BACKGROUND: Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS: Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS: Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3ß-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS: Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.


Asunto(s)
Proliferación Celular , Forminas , Células Germinativas , Gónadas , Ratones Noqueados , Animales , Ratones , Femenino , Masculino , Forminas/genética , Forminas/metabolismo , Proliferación Celular/genética , Gónadas/metabolismo , Células Germinativas/metabolismo , Apoptosis/genética , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Testículo/citología , Movimiento Celular/genética , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Ratones Endogámicos C57BL
15.
J Cell Mol Med ; 28(13): e18524, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39011666

RESUMEN

Clear cell renal cell carcinoma (ccRCC), a prevalent kidney cancer form characterised by its invasiveness and heterogeneity, presents challenges in late-stage prognosis and treatment outcomes. Programmed cell death mechanisms, crucial in eliminating cancer cells, offer substantial insights into malignant tumour diagnosis, treatment and prognosis. This study aims to provide a model based on 15 types of Programmed Cell Death-Related Genes (PCDRGs) for evaluating immune microenvironment and prognosis in ccRCC patients. ccRCC patients from the TCGA and arrayexpress cohorts were grouped based on PCDRGs. A combination model using Lasso and SuperPC was constructed to identify prognostic gene features. The arrayexpress cohort validated the model, confirming its robustness. Immune microenvironment analysis, facilitated by PCDRGs, employed various methods, including CIBERSORT. Drug sensitivity analysis guided clinical treatment decisions. Single-cell data enabled Programmed Cell Death-Related scoring, subsequent pseudo-temporal and cell-cell communication analyses. A PCDRGs signature was established using TCGA-KIRC data. External validation in the arrayexpress cohort underscored the model's superiority over traditional clinical features. Furthermore, our single-cell analysis unveiled the roles of PCDRG-based single-cell subgroups in ccRCC, both in pseudo-temporal progression and intercellular communication. Finally, we performed CCK-8 assay and other experiments to investigate csf2. In conclusion, these findings reveal that csf2 inhibit the growth, infiltration and movement of cells associated with renal clear cell carcinoma. This study introduces a PCDRGs prognostic model benefiting ccRCC patients while shedding light on the pivotal role of programmed cell death genes in shaping the immune microenvironment of ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Aprendizaje Automático , Microambiente Tumoral , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Microambiente Tumoral/genética , Pronóstico , Neoplasias Renales/genética , Neoplasias Renales/patología , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Apoptosis/genética , Análisis de la Célula Individual/métodos
16.
Front Immunol ; 15: 1427661, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015570

RESUMEN

Background: Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method: We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result: In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes-CLTCL1, EDIL3, and SQLE-resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion: The five genes constituting the OS-PCDS model-CLTCL1, MTM1, MLH1, EDIL3, and SQLE-were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.


Asunto(s)
Apoptosis , Neoplasias Óseas , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/mortalidad , Osteosarcoma/patología , Humanos , Apoptosis/genética , Pronóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Aprendizaje Automático , Perfilación de la Expresión Génica , Transcriptoma , Proliferación Celular/genética , Bases de Datos Genéticas , Biología Computacional/métodos
17.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000337

RESUMEN

Few efficacious treatment options are available for patients with small cell lung carcinoma (SCLC), indicating the need to develop novel therapeutic approaches. In this study, we explored kinesin family member 11 (KIF11), a potential therapeutic target in SCLC. An analysis of publicly available data suggested that KIF11 mRNA expression levels are significantly higher in SCLC tissues than in normal lung tissues. When KIF11 was targeted by RNA interference or a small-molecule inhibitor (SB743921) in two SCLC cell lines, Lu-135 and NCI-H69, cell cycle progression was arrested at the G2/M phase with complete growth suppression. Further work suggested that the two cell lines were more significantly affected when both KIF11 and BCL2L1, an anti-apoptotic BCL2 family member, were inhibited. This dual inhibition resulted in markedly decreased cell viability. These findings collectively indicate that SCLC cells are critically dependent on KIF11 activity for survival and/or proliferation, as well as that KIF11 inhibition could be a new strategy for SCLC treatment.


Asunto(s)
Supervivencia Celular , Cinesinas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Cinesinas/metabolismo , Cinesinas/genética , Cinesinas/antagonistas & inhibidores , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proliferación Celular , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Benzamidas , Quinazolinas
18.
Mol Cancer ; 23(1): 143, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992675

RESUMEN

BACKGROUND: Emerging evidence indicates the pivotal involvement of circular RNAs (circRNAs) in cancer initiation and progression. Understanding the functions and underlying mechanisms of circRNAs in tumor development holds promise for uncovering novel diagnostic indicators and therapeutic targets. In this study, our focus was to elucidate the function and regulatory mechanism of hsa-circ-0003764 in hepatocellular carcinoma (HCC). METHODS: A newly discovered hsa-circ-0003764 (circPTPN12) was identified from the circbase database. QRT-PCR analysis was utilized to assess the expression levels of hsa-circ-0003764 in both HCC tissues and cells. We conducted in vitro and in vivo experiments to examine the impact of circPTPN12 on the proliferation and apoptosis of HCC cells. Additionally, RNA-sequencing, RNA immunoprecipitation, biotin-coupled probe pull-down assays, and FISH were employed to confirm and establish the relationship between hsa-circ-0003764, PDLIM2, OTUD6B, P65, and ESRP1. RESULTS: In HCC, the downregulation of circPTPN12 was associated with an unfavorable prognosis. CircPTPN12 exhibited suppressive effects on the proliferation of HCC cells both in vitro and in vivo. Mechanistically, RNA sequencing assays unveiled the NF-κB signaling pathway as a targeted pathway of circPTPN12. Functionally, circPTPN12 was found to interact with the PDZ domain of PDLIM2, facilitating the ubiquitination of P65. Furthermore, circPTPN12 bolstered the assembly of the PDLIM2/OTUD6B complex by promoting the deubiquitination of PDLIM2. ESRP1 was identified to bind to pre-PTPN12, thereby fostering the generation of circPTPN12. CONCLUSIONS: Collectively, our findings indicate the involvement of circPTPN12 in modulating PDLIM2 function, influencing HCC progression. The identified ESRP1/circPTPN12/PDLIM2/NF-κB axis shows promise as a novel therapeutic target in the context of HCC.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas con Dominio LIM , Neoplasias Hepáticas , FN-kappa B , ARN Circular , Proteínas de Unión al ARN , Transducción de Señal , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , ARN Circular/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , FN-kappa B/metabolismo , Ratones , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Apoptosis/genética , Pronóstico , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Masculino , Femenino , Ratones Desnudos
19.
J Biochem Mol Toxicol ; 38(8): e23770, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39016041

RESUMEN

This study aimed to investigate the relationship and potential mechanisms of miR-200c-5p in colorectal cancer (CRC) progression. Differentially expressed miRNAs were screened using the TCGA database. Subsequently, univariate analysis was performed to identify CRC survival-related miRNAs. Survival and receiver operator characteristic curves were generated. The target genes of miR-200c-5p and the relevant signaling pathways or biological processes were predicted by the miRNet database and enrichment analyses. The miR-200c-5p expression was detected using quantitative reverse-transcription polymerase chain reaction, Cell Counting Kit-8, Transwell, and cell apoptosis experiments were performed to determine miR-200c-5p's impact on CRC cell viability, invasiveness, and apoptosis. Finally, we constructed a CRC mouse model with inhibited miR-200c-5p to evaluate its impact on tumors. miR-200c-5p was upregulated in CRC, implying a favorable prognosis. Gene set enrichment analysis revealed that miR-200c-5p may participate in signaling pathways such as the TGF-ß signaling pathway, RIG-I-like receptor signaling pathway, renin-angiotensin system, and DNA replication. miR-200c-5p potentially targeted mRNAs, including KCNE4 and CYP1B1, exhibiting a negative correlation with their expression. Furthermore, these mRNAs may participate in biological processes like the regulation of intracellular transport, cAMP-dependent protein kinase regulatory activity, ubiquitin protein ligase binding, MHC class II protein complex binding, and regulation of apoptotic signaling pathway. Lastly, miR-200c-5p overexpression repressed the viability and invasiveness of CRC cells but promoted apoptosis. The tumor size, weight, and volume were significantly increased by inhibiting miR-200c-5p (p < 0.05). miR-200c-5p is upregulated in CRC, serving as a promising biomarker for predicting CRC prognosis.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Animales , Ratones , Pronóstico , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Masculino , Línea Celular Tumoral , Ratones Desnudos , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Femenino , Ratones Endogámicos BALB C
20.
PeerJ ; 12: e17690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006030

RESUMEN

Background: Esophageal squamous cell carcinoma (ESCC) is a deadly type of esophageal cancer. Programmed cell death (PCD) is an important pathway of cellular self-extermination and is closely involved in cancer progression. A detailed study of its mechanism may contribute to ESCC treatment. Methods: We obtained expression profiling data of ESCC patients from public databases and genes related to 12 types of PCD from previous studies. Hub genes in ESCC were screened from PCD-related genes applying differential expression analysis, machine learning analysis, linear support vector machine (SVM), random forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. In addition, based on the HTFtarget and TargetScan databases, transcription factors (TFs) and miRNAs interacting with the hub genes were selected. The relationship between hub genes and immune cells were analyzed using the CIBERSORT algorithm. Finally, to verify the potential impact of the screened hub genes on ESCC occurrence and development, a series of in vitro cell experiments were conducted. Results: We screened 149 PCD-related DEGs, of which five DEGs (INHBA, LRRK2, HSP90AA1, HSPB8, and EIF2AK2) were identified as the hub genes of ESCC. The area under the curve (AUC) of receiver operating characteristic (ROC) curve of the integrated model developed using the hub genes reached 0.997, showing a noticeably high diagnostic accuracy. The number of TFs and miRNAs regulating hub genes was 105 and 22, respectively. INHBA, HSP90AA1 and EIF2AK2 were overexpressed in cancer tissues and cells of ESCC. Notably, INHBA knockdown suppressed ECSS cell migration and invasion and altered the expression of important apoptotic and survival proteins. Conclusion: This study identified significant molecules with promising accuracy for the diagnosis of ESCC, which may provide a new perspective and experimental basis for ESCC research.


Asunto(s)
Apoptosis , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , MicroARNs , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , Perfilación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Línea Celular Tumoral , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA