Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 284: 116892, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153279

RESUMEN

Citrobacter sp. XT1-2-2, a functional microorganism with potential utilization, has the ability to immobilize soil cadmium. In this study, the regulatory gene cysH, as a rate-limiting enzyme in the sulfur metabolic pathway, was selected for functional analysis affecting cadmium immobilization in soil. To verify the effect of APS reductase on CdS formation, the ΔAPS and ΔAPS-com strains were constructed by conjugation transfer. Through TEM analysis, it was found that the adsorption of Cd2+ was affected by the absence of APS reductase in XT1-2-2 strain. The difference analysis of biofilm formation indicated that APS reductase was necessary for cell aggregation and biofilm formation. The p-XRD, XPS and FT-IR analysis revealed that APS reductase played an important role in the cadmium immobilization process of XT1-2-2 strain and promoting the formation of CdS. According to the pot experiments, the cadmium concentration of roots, culms, leaves and grains inoculated with ΔAPS strain was significantly higher than that of wild-type and ΔAPS-com strains, and the cadmium removal ability of ΔAPS strain was significantly lower than that of wild-type strain. The study provided insights into the exploration of new bacterial assisted technique for the remediation and safe production of rice in cadmium-contaminated paddy soils.


Asunto(s)
Cadmio , Citrobacter , Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Cadmio/toxicidad , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Biopelículas , Biodegradación Ambiental , Arseniato Reductasas/metabolismo , Arseniato Reductasas/genética
2.
Mol Microbiol ; 122(2): 201-212, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922722

RESUMEN

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.


Asunto(s)
Arseniato Reductasas , Bacteroidetes , Dominio Catalítico , Oxidación-Reducción , Arseniato Reductasas/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/química , Bacteroidetes/enzimología , Bacteroidetes/genética , Arseniatos/metabolismo , Cinética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/química , Catálisis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Arsenitos/metabolismo
3.
Arch Microbiol ; 204(1): 46, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34932145

RESUMEN

The present study characterized aresenate reductase of Bacillus thuringiensis KPWP1, tolerant to salt, arsenate and a wide range of pH during growth. Interestingly, it was found that arsC, arsB and arsR genes involved in arsenate tolerance are distributed in the genome of strain KPWP1. The inducible arsC gene was cloned, expressed and the purified ArsC protein showed profound enzyme activity with the KM and Kcat values as 25 µM and 0.00119 s-1, respectively. In silico studies revealed that in spite of 19-26% differences in gene sequences, the ArsC proteins of Bacillus thuringiensis, Bacillus subtilis and Bacillus cereus are structurally conserved and ArsC structure of strain KPWP1 is close to nature. Docking and analysis of the binding site showed that arsenate ion interacts with three cysteine residues of ArsC and predicts that the ArsC from B. thuringiensis KPWP1 reduces arsenate by using the triple Cys redox relay mechanism.


Asunto(s)
Arseniato Reductasas , Bacillus thuringiensis , Arseniato Reductasas/genética , Arseniatos , Arsénico , Bacillus cereus , Bacillus subtilis , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Concentración de Iones de Hidrógeno , Tolerancia a la Sal
4.
Sci Signal ; 12(609)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772124

RESUMEN

The yeast stress-activated protein kinase Hog1 is best known for its role in mediating the response to osmotic stress, but it is also activated by various mechanistically distinct environmental stressors, including heat shock, endoplasmic reticulum stress, and arsenic. In the osmotic stress response, the signal is sensed upstream and relayed to Hog1 through a kinase cascade. Here, we identified a mode of Hog1 function whereby Hog1 senses arsenic through a direct physical interaction that requires three conserved cysteine residues located adjacent to the catalytic loop. These residues were essential for Hog1-mediated protection against arsenic, were dispensable for the response to osmotic stress, and promoted the nuclear localization of Hog1 upon exposure of cells to arsenic. Hog1 promoted arsenic detoxification by stimulating phosphorylation of the transcription factor Yap8, promoting Yap8 nuclear localization, and stimulating the transcription of the only known Yap8 targets, ARR2 and ARR3, both of which encode proteins that promote arsenic efflux. The related human kinases ERK1 and ERK2 also bound to arsenic in vitro, suggesting that this may be a conserved feature of some members of the mitogen-activated protein kinase (MAPK) family. These data provide a mechanistic basis for understanding how stress-activated kinases can sense distinct threats and perform highly specific adaptive responses.


Asunto(s)
Arsénico/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Arch Microbiol ; 201(9): 1285-1293, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31256199

RESUMEN

Aiming at revealing the arsenic (As) resistance of the endophytic Kocuria strains isolated from roots and stems of Sphaeralcea angustifolia grown at mine tailing, four strains belonging to different clades of Kocuria based upon the phylogeny of 16S rRNA genes were screened for minimum inhibitory concentration (MIC). Only the strain NE1RL3 was defined as an As-resistant bacterium with MICs of 14.4/0.0125 mM and 300/20.0 mM for As3+ and As5+, respectively, in LB/mineral media. This strain was identified as K. palustris based upon analyses of cellular chemical compositions (cellular fatty acids, isoprenoides, quinones, and sugars), patterns of carbon source, average nucleotide identity of genome and digital DNA-DNA relatedness. Six genes coding to enzymes or proteins for arsenate reduction and arsenite-bumping were detected in the genome, demonstrating that this strain is resistant to As possibly by reducing As5+ to As3+, and then bumping As3+ out of the cell. However, this estimation was not confirmed since no arsenate reduction was detected in a subsequent assay. This study reported for the first time the presence of phylogenetically distinct arsenate reductase genes in a Kocuria strain and evidenced the possible horizontal transfer of these genes among the endophytic bacteria.


Asunto(s)
Arseniato Reductasas/genética , Arseniatos/metabolismo , Micrococcaceae/enzimología , Micrococcaceae/genética , Arsénico/farmacología , Arsenitos/metabolismo , Pruebas de Sensibilidad Microbiana , Micrococcaceae/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Tracheophyta/microbiología
6.
J Mol Model ; 25(1): 15, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610463

RESUMEN

Arsenic prevalence in the environment impelled many organisms to develop resistance over the course of evolution. Tolerance to arsenic, either as the pentavalent [As(V)] form or the trivalent form [As(III)], by bacteria has been well studied in prokaryotes, and the mechanism of action is well defined. However, in the rod-shaped arsenic tolerant Deinococcus indicus DR1, the key enzyme, arsenate reductase (ArsC) has not been well studied. ArsC of D. indicus belongs to the Grx-linked prokaryotic arsenate reductase family. While it shares homology with the well-studied ArsC of Escherichia coli having a catalytic cysteine (Cys 12) and arginine triad (Arg 60, 94, and 107), the active site of D.indicus ArsC contains four residues Glu 9, Asp 53, Arg 86, and Glu 100, and with complete absence of structurally equivalent residue for crucial Cys 12. Here, we report that the mechanism of action of ArsC of D. indicus is different as a result of convergent evolution and most likely able to detoxify As(V) using a mix of positively- and negatively-charged residues in its active site, unlike the residues of E. coli. This suggests toward the possibility of an alternative mechanism of As (V) degradation in bacteria.


Asunto(s)
Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Proteínas Bacterianas/metabolismo , Deinococcus/enzimología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Arseniato Reductasas/clasificación , Arseniato Reductasas/genética , Arsénico/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Deinococcus/genética , Simulación de Dinámica Molecular , Filogenia , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido
7.
New Phytol ; 217(1): 206-218, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28857170

RESUMEN

Arsenic (As) is an important environmental and food-chain toxin. We investigated the key components controlling As accumulation and tolerance in Arabidopsis thaliana. We tested the effects of different combinations of gene knockout, including arsenate reductase (HAC1), γ-glutamyl-cysteine synthetase (γ-ECS), phytochelatin synthase (PCS1) and phosphate effluxer (PHO1), and the heterologous expression of the As-hyperaccumulator Pteris vittata arsenite efflux (PvACR3), on As tolerance, accumulation, translocation and speciation in A. thaliana. Heterologous expression of PvACR3 markedly increased As tolerance and root-to-shoot As translocation in A. thaliana, with PvACR3 being localized to the plasma membrane. Combining PvACR3 expression with HAC1 mutation led to As hyperaccumulation in the shoots, whereas combining HAC1 and PHO1 mutation decreased As accumulation. Mutants of γ-ECS and PCS1 were hypersensitive to As and had higher root-to-shoot As translocation. Combining γ-ECS or PCS1 with HAC1 mutation did not alter As tolerance or accumulation beyond the levels observed in the single mutants. PvACR3 and HAC1 have large effects on root-to-shoot As translocation. Arsenic hyperaccumulation can be engineered in A. thaliana by knocking out the HAC1 gene and expressing PvACR3. PvACR3 and HAC1 also affect As tolerance, but not to the extent of γ-ECS and PCS1.


Asunto(s)
Arabidopsis/genética , Arsénico/metabolismo , Proteínas de Plantas/metabolismo , Pteris/genética , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Transporte Biológico , Técnicas de Inactivación de Genes , Mutación , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(42): E8930-E8939, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973940

RESUMEN

Jasmonoyl-isoleucine (JA-Ile), the active form of the plant hormone jasmonate (JA), is sensed by the F-box protein CORONATINE INSENSITIVE 1 (COI1), a component of a functional Skp-Cullin-F-box E3 ubiquitin ligase complex. Sensing of JA-Ile by COI1 rapidly triggers genome-wide transcriptional changes that are largely regulated by the basic helix-loop-helix transcription factor MYC2. However, it remains unclear how the JA-Ile receptor protein COI1 relays hormone-specific regulatory signals to the RNA polymerase II general transcriptional machinery. Here, we report that the plant transcriptional coactivator complex Mediator directly links COI1 to the promoters of MYC2 target genes. MED25, a subunit of the Mediator complex, brings COI1 to MYC2 target promoters and facilitates COI1-dependent degradation of jasmonate-ZIM domain (JAZ) transcriptional repressors. MED25 and COI1 influence each other's enrichment on MYC2 target promoters. Furthermore, MED25 physically and functionally interacts with HISTONE ACETYLTRANSFERASE1 (HAC1), which plays an important role in JA signaling by selectively regulating histone (H) 3 lysine (K) 9 (H3K9) acetylation of MYC2 target promoters. Moreover, the enrichment and function of HAC1 on MYC2 target promoters depend on COI1 and MED25. Therefore, the MED25 interface of Mediator links COI1 with HAC1-dependent H3K9 acetylation to activate MYC2-regulated transcription of JA-responsive genes. This study exemplifies how a single Mediator subunit integrates the actions of both genetic and epigenetic regulators into a concerted transcriptional program.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Nucleares/metabolismo , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Co-Represoras , Ciclopentanos/metabolismo , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Oxilipinas/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Nicotiana/genética
9.
J Hazard Mater ; 339: 409-417, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28686931

RESUMEN

Dissimilatory arsenate-respiring prokaryotes (DARPs) play key roles in the mobilization and release of arsenic from mineral phase into groundwater; however, little is known about how environmental factors influence these processes. This study aimed to explore the effects of sulfate on the dissolution and release of insoluble arsenic. We collected high-arsenic sediment samples from different depths in Jianghan Plain. Microcosm assays indicated that the microbial communities from the samples significantly catalyzed the dissolution, reduction and release of arsenic and iron from the sediments. Remarkably, when sulfate was added into the microcosms, the microorganisms-mediated release of arsenic and iron was significantly increased. To further explore the mechanism of this finding, we isolated a novel DARP, Citrobacter sp. JH001, from the samples. Arsenic release assays showed that JH001 can catalyze the dissolution, reduction and release of arsenic and iron from the sediments, and the presence of sulfate in the microcosms also caused a significant increase in the JH001-mediated dissolution and release of arsenic and iron. Quantitative PCR analysis for the functional gene abundances showed that sulfate significantly increased the arsenate-respiring reductase gene abundances in the microcosms. Thus, it can be concluded that sulfate significantly enhances the arsenate-respiring bacteria-mediated arsenic contamination in groundwater.


Asunto(s)
Arseniatos/metabolismo , Citrobacter/efectos de los fármacos , Sulfatos/farmacología , Arseniato Reductasas/genética , Arsénico/análisis , Citrobacter/genética , Citrobacter/metabolismo , Sedimentos Geológicos/análisis , Agua Subterránea/análisis , Hierro/análisis , Oxidación-Reducción , ARN Ribosómico 16S , Contaminantes Químicos del Agua/análisis
10.
Biochim Biophys Acta Gene Regul Mech ; 1860(4): 472-481, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28188921

RESUMEN

Response to arsenic stress in Saccharomyces cerevisiae is orchestrated by the regulatory protein Yap8, which mediates transcriptional activation of ACR2 and ACR3. This study contributes to the state of art knowledge of the molecular mechanisms underlying yeast stress response to arsenate as it provides the genetic and biochemical evidences that Yap8, through cysteine residues 132, 137, and 274, is the sensor of presence of arsenate in the cytosol. Moreover, it is here reported for the first time the essential role of the Mediator complex in the transcriptional activation of ACR2 by Yap8. Based on our data, we propose an order-of-function map to recapitulate the sequence of events taking place in cells injured with arsenate. Modification of the sulfhydryl state of these cysteines converts Yap8 in its activated form, triggering the recruitment of the Mediator complex to the ACR2/ACR3 promoter, through the interaction with the tail subunit Med2. The Mediator complex then transfers the regulatory signals conveyed by Yap8 to the core transcriptional machinery, which culminates with TBP occupancy, ACR2 upregulation and cell adaptation to arsenate stress. Additional co-factors are required for the transcriptional activation of ACR2 by Yap8, particularly the nucleosome remodeling activity of SWI/SNF and SAGA complexes.


Asunto(s)
Arseniato Reductasas/genética , Arseniatos/toxicidad , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Complejo Mediador/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional/genética , Arseniato Reductasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Cisteína/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/efectos de los fármacos
11.
ISME J ; 10(1): 197-209, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26151644

RESUMEN

The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.


Asunto(s)
Arsénico/metabolismo , Prochlorococcus/genética , Prochlorococcus/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Arseniatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genómica , Metilación , Filogenia , Prochlorococcus/clasificación , Prochlorococcus/aislamiento & purificación
12.
Mol Cell Biol ; 36(6): 913-22, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26711267

RESUMEN

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


Asunto(s)
Arsénico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arseniato Reductasas/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/análisis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Unión Proteica , Conformación Proteica/efectos de los fármacos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional/efectos de los fármacos
13.
J Biol Chem ; 290(36): 22262-73, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26224634

RESUMEN

Evolution of enzymes plays a crucial role in obtaining new biological functions for all life forms. Arsenate reductases (ArsC) are several families of arsenic detoxification enzymes that reduce arsenate to arsenite, which can subsequently be extruded from cells by specific transporters. Among these, the Synechocystis ArsC (SynArsC) is structurally homologous to the well characterized thioredoxin (Trx)-coupled ArsC family but requires the glutaredoxin (Grx) system for its reactivation, therefore classified as a unique Trx/Grx-hybrid family. The detailed catalytic mechanism of SynArsC is unclear and how the "hybrid" mechanism evolved remains enigmatic. Herein, we report the molecular mechanism of SynArsC by biochemical and structural studies. Our work demonstrates that arsenate reduction is carried out via an intramolecular thiol-disulfide cascade similar to the Trx-coupled family, whereas the enzyme reactivation step is diverted to the coupling of the glutathione-Grx pathway due to the local structural difference. The current results support the hypothesis that SynArsC is likely a molecular fossil representing an intermediate stage during the evolution of the Trx-coupled ArsC family from the low molecular weight protein phosphotyrosine phosphatase (LMW-PTPase) family.


Asunto(s)
Arseniato Reductasas/metabolismo , Arseniatos/metabolismo , Proteínas Bacterianas/metabolismo , Synechocystis/enzimología , Secuencia de Aminoácidos , Arseniato Reductasas/química , Arseniato Reductasas/genética , Arseniatos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Disulfuros/metabolismo , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Compuestos de Sulfhidrilo/metabolismo , Synechocystis/genética , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
Environ Sci Technol ; 49(7): 4138-46, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25738639

RESUMEN

Microbe-mediated arsenic (As) biotransformation in paddy soils determines the fate of As in soils and its availability to rice plants, yet little is known about the microbial communities involved in As biotransformation. Here, we revealed wide distribution, high diversity, and abundance of arsenite (As(III)) oxidase genes (aioA), respiratory arsenate (As(V)) reductase genes (arrA), As(V) reductase genes (arsC), and As(III) S-adenosylmethionine methyltransferase genes (arsM) in 13 paddy soils collected across Southern China. Sequences grouped with As biotransformation genes are mainly from rice rhizosphere bacteria, such as some Proteobacteria, Gemmatimonadales, and Firmicutes. A significant correlation of gene abundance between arsC and arsM suggests that the two genes coexist well in the microbial As resistance system. Redundancy analysis (RDA) indicated that soil pH, EC, total C, N, As, and Fe, C/N ratio, SO4(2-)-S, NO3(-)-N, and NH4(+)-N were the key factors driving diverse microbial community compositions. This study for the first time provides an overall picture of microbial communities involved in As biotransformation in paddy soils, and considering the wide distribution of paddy fields in the world, it also provides insights into the critical role of paddy fields in the As biogeochemical cycle.


Asunto(s)
Arseniato Reductasas/genética , Arsénico/metabolismo , Genes Bacterianos , Consorcios Microbianos , Oxidorreductasas/genética , Microbiología del Suelo , Arseniatos/metabolismo , Arsenitos/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Biodiversidad , Biotransformación , China , Oryza , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis
15.
ACS Chem Biol ; 10(3): 875-82, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25517993

RESUMEN

Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase.


Asunto(s)
Arseniato Reductasas/deficiencia , Arseniatos/metabolismo , Escherichia coli/metabolismo , Glutatión Transferasa/metabolismo , Glutatión/química , Arseniato Reductasas/genética , Arseniatos/toxicidad , Arsenitos/metabolismo , Dominio Catalítico , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Prueba de Complementación Genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/química , Glutatión Transferasa/genética , Cinética , Modelos Moleculares , Oxidación-Reducción , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Transformación Bacteriana
16.
PLoS Biol ; 12(12): e1002009, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25464340

RESUMEN

Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Estudio de Asociación del Genoma Completo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Arseniato Reductasas/genética , Epistasis Genética , Genes de Plantas , Sitios Genéticos , Modelos Biológicos , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína
17.
Appl Microbiol Biotechnol ; 98(10): 4625-36, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24573606

RESUMEN

The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.


Asunto(s)
Antibacterianos/farmacología , Arseniato Reductasas/metabolismo , Azospirillum brasilense/efectos de los fármacos , Azospirillum brasilense/enzimología , Farmacorresistencia Bacteriana , Metiltransferasas/metabolismo , Antibacterianos/metabolismo , Arseniato Reductasas/genética , Azospirillum brasilense/genética , Cloranfenicol/metabolismo , Cloranfenicol/farmacología , Clindamicina/metabolismo , Clindamicina/farmacología , Clonación Molecular , Diterpenos/metabolismo , Diterpenos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Metiltransferasas/genética , Mutagénesis Insercional , Ribosomas/metabolismo
18.
Biochim Biophys Acta ; 1834(10): 2071-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23800470

RESUMEN

Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20mM and 15mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram+bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2×10(4)M(-1)s(-1). It also exhibited weak phosphatase activity with a kcat/KM value of 2.7×10(-4)M(-1)s(-1). The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural-functional characterization of a thermophilic arsenate reductase.


Asunto(s)
Arseniato Reductasas/química , Arseniatos/química , Arsenitos/química , Proteínas Bacterianas/química , Thermus thermophilus/química , Tiorredoxinas/química , Secuencia de Aminoácidos , Arseniato Reductasas/genética , Arseniato Reductasas/aislamiento & purificación , Arseniatos/metabolismo , Arsenitos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Pruebas de Enzimas , Escherichia coli/genética , Expresión Génica , Calor , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Operón , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Termodinámica , Thermus thermophilus/enzimología , Tiorredoxinas/genética , Tiorredoxinas/aislamiento & purificación
19.
Biochim Biophys Acta ; 1824(2): 392-403, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22155275

RESUMEN

The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (E(m)) value of -165mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, E(m) value of -220mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8Å resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.


Asunto(s)
Arseniato Reductasas/química , Proteínas Bacterianas/química , Glutarredoxinas/química , Synechocystis/enzimología , Arseniato Reductasas/genética , Arseniatos/metabolismo , Biocatálisis , Clonación Molecular , Cisteína/química , Glutatión/química , Datos de Secuencia Molecular , Oxidación-Reducción , Homología de Secuencia de Aminoácido
20.
Mol Microbiol ; 82(4): 998-1014, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22032722

RESUMEN

Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat)/K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.


Asunto(s)
Arseniato Reductasas/metabolismo , Arsénico/toxicidad , Corynebacterium glutamicum/efectos de los fármacos , Corynebacterium glutamicum/enzimología , Estrés Fisiológico , Secuencia de Aminoácidos , Arseniato Reductasas/genética , Arsénico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , Cinética , Redes y Vías Metabólicas/genética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA