Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Immunother Cancer ; 11(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419511

RESUMEN

BACKGROUND: Most immunotherapies approved for clinical use rely on the use of recombinant proteins and cell-based approaches, rendering their manufacturing expensive and logistics onerous. The identification of novel small molecule immunotherapeutic agents might overcome such limitations. METHOD: For immunopharmacological screening campaigns, we built an artificial miniature immune system in which dendritic cells (DCs) derived from immature precursors present MHC (major histocompatibility complex) class I-restricted antigen to a T-cell hybridoma that then secretes interleukin-2 (IL-2). RESULTS: The screening of three drug libraries relevant to known signaling pathways, FDA (Food and Drug Administration)-approved drugs and neuroendocrine factors yielded two major hits, astemizole and ikarugamycin. Mechanistically, ikarugamycin turned out to act on DCs to inhibit hexokinase 2, hence stimulating their antigen presenting potential. In contrast, astemizole acts as a histamine H1 receptor (H1R1) antagonist to activate T cells in a non-specific, DC-independent fashion. Astemizole induced the production of IL-2 and interferon-γ (IFN-γ) by CD4+ and CD8+ T cells both in vitro and in vivo. Both ikarugamycin and astemizole improved the anticancer activity of the immunogenic chemotherapeutic agent oxaliplatin in a T cell-dependent fashion. Of note, astemizole enhanced the CD8+/Foxp3+ ratio in the tumor immune infiltrate as well as IFN-γ production by local CD8+ T lymphocytes. In patients with cancer, high H1R1 expression correlated with low infiltration by TH1 cells, as well as with signs of T-cell exhaustion. The combination of astemizole and oxaliplatin was able to cure the majority of mice bearing orthotopic non-small cell lung cancers (NSCLC), then inducing a state of protective long-term immune memory. The NSCLC-eradicating effect of astemizole plus oxaliplatin was lost on depletion of either CD4+ or CD8+ T cells, as well as on neutralization of IFN-γ. CONCLUSIONS: These findings underscore the potential utility of this screening system for the identification of immunostimulatory drugs with anticancer effects.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-2 , Estados Unidos , Ratones , Animales , Interleucina-2/metabolismo , Astemizol/farmacología , Astemizol/uso terapéutico , Astemizol/metabolismo , Oxaliplatino , Inmunidad Celular , Antígenos de Histocompatibilidad Clase I , Interferón gamma/metabolismo
2.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142445

RESUMEN

The hEag1 (Kv10.1) K+ channel is normally found in the brain, but it is ectopically expressed in tumor cells, including osteosarcoma. Based on the pivotal role of ion channels in osteogenesis, we tested whether pharmacological modulation of hEag1 may affect osteogenic differentiation of osteosarcoma cell lines. Using molecular biology (RT-PCR), electrophysiology (patch-clamp) and pharmacology (astemizole sensitivity, IC50 = 0.135 µM) we demonstrated that SaOS-2 osteosarcoma cells also express hEag1 channels. SaOS-2 cells also express to KCa1.1 K+ channels as shown by mRNA expression and paxilline sensitivity of the current. The inhibition of hEag1 (2 µM astemizole) or KCa1.1 (1 mM TEA) alone did not induce Ca2+ deposition in SaOS-2 cultures, however, these inhibitors, at identical concentrations, increased Ca2+ deposition evoked by the classical or pathological (inorganic phosphate, Pi) induction pathway without causing cytotoxicity, as reported by three completer assays (LDH release, MTT assay and SRB protein assay). We observed a similar effect of astemizole on Ca2+ deposition in MG-63 osteosarcoma cultures as well. We propose that the increase in the osteogenic stimuli-induced mineral matrix formation of osteosarcoma cell lines by inhibiting hEag1 may be a useful tool to drive terminal differentiation of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Astemizol/farmacología , Línea Celular Tumoral , Canales de Potasio Éter-A-Go-Go , Humanos , Osteogénesis , Osteosarcoma/tratamiento farmacológico , Fosfatos/metabolismo , ARN Mensajero/genética
3.
J Med Chem ; 64(12): 8194-8207, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34077206

RESUMEN

Disruption of EZH2-embryonic ectoderm development (EED) protein-protein interaction (PPI) is a new promising cancer therapeutic strategy. We have previously reported the discovery of astemizole, a small-molecule inhibitor targeting the EZH2-EED PPI. Herein, we report the cocrystal structure of EED in complex with astemizole at 2.15 Å. The structure elucidates the detailed binding mode of astemizole to EED and provides a structure-guided design for the discovery of a novel EZH2-EED interaction inhibitor, DC-PRC2in-01, with an affinity Kd of 4.56 µM. DC-PRC2in-01 destabilizes the PRC2 complex, thereby leading to the degradation of PRC2 core proteins and the decrease of global H3K27me3 levels in cancer cells. The proliferation of PRC2-driven lymphomas cells is effectively inhibited, and the cell cycle is arrested in the G0/G1 phase. Together, these data demonstrate that DC-PRC2in-01 could be an effective chemical probe for investigating the PRC2-related physiology and pathology and providing a promising chemical scaffold for further development.


Asunto(s)
Astemizol/análogos & derivados , Astemizol/farmacología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Reposicionamiento de Medicamentos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Complejo Represivo Polycomb 2/metabolismo , Relación Estructura-Actividad
4.
J Pharmacol Toxicol Methods ; 105: 106884, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32565325

RESUMEN

INTRODUCTION: Screening compounds for activity on the hERG channel using patch clamp is a crucial part of safety testing. Automated patch clamp (APC) is becoming widely accepted as an alternative to manual patch clamp in order to increase throughput whilst maintaining data quality. In order to standardize APC experiments, we have investigated the effects on IC50 values under different conditions using several devices across multiple sites. METHODS: APC instruments SyncroPatch 384i, SyncroPatch 384PE and Patchliner, were used to record hERG expressed in HEK or CHO cells. Up to 27 CiPA compounds were used to investigate effects of voltage protocol, incubation time, labware and time between compound preparation and experiment on IC50 values. RESULTS: All IC50 values of 21 compounds recorded on the SyncroPatch 384PE correlated well with IC50 values from the literature (Kramer et al., 2013) regardless of voltage protocol or labware, when compounds were used immediately after preparation, but potency of astemizole decreased if prepared in Teflon or polypropylene (PP) compound plates 2-3 h prior to experiments. Slow acting compounds such as dofetilide, astemizole, and terfenadine required extended incubation times of at least 6 min to reach steady state and therefore, stable IC50 values. DISCUSSION: Assessing the influence of different experimental conditions on hERG assay reliability, we conclude that either the step-ramp protocol recommended by CiPA or a standard 2-s step-pulse protocol can be used to record hERG; a minimum incubation time of 5 min should be used and although glass, Teflon, PP or polystyrene (PS) compound plates can be used for experiments, caution should be taken if using Teflon, PS or PP vessels as some adsorption can occur if experiments are not performed immediately after preparation. Our recommendations are not limited to the APC devices described in this report, but could also be extended to other APC devices.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Benchmarking/métodos , Fármacos Cardiovasculares/farmacología , Descubrimiento de Drogas/métodos , Corazón/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Animales , Arritmias Cardíacas/metabolismo , Astemizol/farmacología , Células CHO , Calibración , Fármacos Cardiovasculares/química , Línea Celular , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Fenetilaminas/farmacología , Polipropilenos/química , Politetrafluoroetileno/química , Estándares de Referencia , Reproducibilidad de los Resultados , Sulfonamidas/farmacología , Terfenadina/farmacología
5.
Genes (Basel) ; 11(2)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973216

RESUMEN

Retinoblastoma is the most common pediatric intraocular malignant tumor. Unfortunately, low cure rates and low life expectancy are observed in low-income countries. Thus, alternative therapies are needed for patients who do not respond to current treatments or those with advanced cases of the disease. Ether à-go-go-1 (Eag1) is a voltage-gated potassium channel involved in cancer. Eag1 expression is upregulated by the human papilloma virus (HPV) oncogene E7, suggesting that retinoblastoma protein (pRb) may regulate Eag1. Astemizole is an antihistamine that is suggested to be repurposed for cancer treatment; it targets proteins implicated in cancer, including histamine receptors, ATP binding cassette transporters, and Eag channels. Here, we investigated Eag1 regulation using pRb and Eag1 expression in human retinoblastoma. The effect of astemizole on the cell proliferation of primary human retinoblastoma cultures was also studied. HeLa cervical cancer cells (HPV-positive and expressing Eag1) were transfected with RB1. Eag1 mRNA expression was studied using qPCR, and protein expression was assessed using western blotting and immunochemistry. Cell proliferation was evaluated with an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. RB1 transfection down-regulated Eag1 mRNA and protein expression. The human retinoblastoma samples displayed heterogeneous Eag1 mRNA and protein expression. Astemizole decreased cell proliferation in primary retinoblastoma cultures. Our results suggest that Eag1 mRNA and protein expression was regulated by pRb in vitro, and that human retinoblastoma tissues had heterogeneous Eag1 mRNA and protein expression. Furthermore, our results propose that the multitarget drug astemizole may have clinical relevance in patients with retinoblastoma, for instance, in those who do not respond to current treatments.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Proteína de Retinoblastoma/metabolismo , Retinoblastoma/genética , Astemizol/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Preescolar , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Lactante , Masculino , Oncogenes , ARN Mensajero , Neoplasias de la Retina/genética , Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Transfección
6.
Rev Invest Clin ; 71(3): 186-194, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31184333

RESUMEN

BACKGROUND: Expression and activity of the potassium channel ether-à-go-go-1 (EAG1) are strongly related to carcinogenesis and tumor progression, which can be exploited for therapeutic purposes. EAG1 activity may be reduced by preventing its phosphorylation with epidermal growth factor receptor (EGFR) kinase inhibitors and by astemizole, which blocks the channel pore and downregulates its gene expression. OBJECTIVE: We aimed to study the potential cooperative antiproliferative effect of the EGFR inhibitor gefitinib and the EAG1-blocker astemizole, in breast cancer cells. MATERIALS AND METHODS: The cells were characterized by immunocytochemistry. Inhibitory concentrations were determined by non-linear regression analysis using dose-response curves. The nature of the pharmacological effect was evaluated by the combination index equation while cell cycle analysis was studied by flow cy-tometry. RESULTS: Astemizole and gefitinib inhibited cell proliferation in a concentration-dependent manner, with inhibitory concentrations (IC 50) values of 1.72 µM and 0.51 µM, respectively. All combinations resulted in a synergistic antiproliferative effect. The combination of astemizole and gefitinib diminished the percentage of cells in G2/M and S phases, while increased accumulation in G0/G1 of the cell cycle. CONCLUSIONS: Astemizole and gefitinib synergistically inhibited proliferation in breast cancer cells expressing both EGFR and EAG1. Our results suggest that the combined treatment increased cell death by targeting the oncogenic activity of EAG1.


Asunto(s)
Antineoplásicos/farmacología , Astemizol/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Gefitinib/farmacología , Antineoplásicos/administración & dosificación , Astemizol/administración & dosificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Femenino , Gefitinib/administración & dosificación , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología
7.
Rev. invest. clín ; 71(3): 186-194, May.-Jun. 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1289686

RESUMEN

Abstract Background Expression and activity of the potassium channel ether-à-go-go-1 (EAG1) are strongly related to carcinogenesis and tumor progression, which can be exploited for therapeutic purposes. EAG1 activity may be reduced by preventing its phosphorylation with epidermal growth factor receptor (EGFR) kinase inhibitors and by astemizole, which blocks the channel pore and downregulates its gene expression. Objective We aimed to study the potential cooperative antiproliferative effect of the EGFR inhibitor gefitinib and the EAG1-blocker astemizole, in breast cancer cells. Materials and Methods The cells were characterized by immunocytochemistry. Inhibitory concentrations were determined by non-linear regression analysis using dose-response curves. The nature of the pharmacological effect was evaluated by the combination index equation while cell cycle analysis was studied by flow cytometry. Results Astemizole and gefitinib inhibited cell proliferation in a concentration-dependent manner, with inhibitory concentrations (IC 50) values of 1.72 µM and 0.51 µM, respectively. All combinations resulted in a synergistic antiproliferative effect. The combination of astemizole and gefitinib diminished the percentage of cells in G2/M and S phases, while increased accumulation in G0/G1 of the cell cycle. Conclusions Astemizole and gefitinib synergistically inhibited proliferation in breast cancer cells expressing both EGFR and EAG1. Our results suggest that the combined treatment increased cell death by targeting the oncogenic activity of EAG1.


Asunto(s)
Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Astemizol/farmacología , Gefitinib/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Astemizol/administración & dosificación , Concentración 50 Inhibidora , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Gefitinib/administración & dosificación , Antineoplásicos/administración & dosificación
8.
Int J Cancer ; 145(2): 415-426, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30628724

RESUMEN

Polycomb group proteins are important epigenetic regulators for cell proliferation and differentiation, organ development, as well as initiation and progression of lethal diseases, including cancer. Upregulated Polycomb group proteins, including Enhancer of zeste homolog 2 (EZH2), promote proliferation, migration, invasion and metastasis of cancer cells, as well as self-renewal of cancer stem cells. In our study, we report that EZH2 and embryonic ectoderm development (EED) indicate respective direct interaction with androgen receptor (AR). In the context of AR-positive prostate cancer, EZH2 and EED regulate AR expression levels and AR downstream targets. More importantly, we demonstrate that targeting EZH2 with the small-molecule inhibitor astemizole in cancer significantly represses the EZH2 and AR expression as well as the neoplastic capacities. These results collectively suggest that pharmacologically targeting EZH2 might be a promising strategy for advanced prostate cancer.


Asunto(s)
Astemizol/administración & dosificación , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Animales , Astemizol/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Int Immunopharmacol ; 65: 268-278, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30359933

RESUMEN

In this study, the immunomodulatory effects of astemizole (AST) against lipopolysaccharide (LPS) mediated T cell proliferation and induction of inflammation in RAW macrophages (in vitro), and zebrafish larvae (in vivo) were determined. AST significantly suppressed the phagocytic activity of macrophages (3.303 ±â€¯0.115) and inhibited lysosomal enzyme secretion (13.27 ±â€¯2.52) induced by LPS (100 ng/ml). Moreover, AST subdued the morphological deformities such as yolk sac edema (YSE) and spinal curvature curving (SC) by inhibiting ROS generation in zebrafish larvae 24 h after microinjection of LPS (0.5 mg/ml). AST was also shown to inhibit the production of the major cytokines TNF-α (150.8 ±â€¯0.6), IL-1ß (276.5 ±â€¯1.6), and PGE2 (194.6 ±â€¯0.6) pg/ml in RAW macrophages. It also subdued the ROS induced iNOS and COX-2 generated in response to LPS mediated immune dysfunctions in zebrafish larvae. These results suggested the immunosuppression effect of AST. Furthermore, induction of immune-suppression due to AST resulted in significant down-regulation of innate immunity directed by MAPK (p38, ERK and JNK), which was found to be associated with decreased production of acute inflammatory mediators both in vitro and in vivo. To confirm its activity, splenocytes were prepared using BALB/c mice and a mitogen activated splenocyte proliferation assay was also performed. Our findings suggest that AST has the ability to inhibit T cell proliferation and cytokine secretion both in vitro and in vivo by interfering with MAPK signaling pathway. Taken together, our results showed the potential of AST as a countermeasure to immune dysfunction and suggest its use as immunosuppressant compound in inflammatory disease.


Asunto(s)
Astemizol/farmacología , Inmunosupresores/farmacología , Macrófagos/inmunología , Bazo/inmunología , Linfocitos T/inmunología , Pez Cebra/inmunología , Animales , Proliferación Celular , Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Peces/metabolismo , Larva , Lipopolisacáridos/inmunología , Activación de Linfocitos , Ratones , Células RAW 264.7 , Transducción de Señal , Bazo/patología , Linfocitos T/efectos de los fármacos
10.
Biomed Pharmacother ; 107: 1682-1691, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30257386

RESUMEN

Hepatocellular carcinoma (HCC) accounts for the fifth most common cancer worldwide. Vitamin D and antihistamines have been shown to play an anti-tumor role in various tumors. In the present study, we ought to investigate the synergistic effect of astemizole and Vitamin D in HCC cells. We showed that astemizole enhanced the anti-tumor effect of Vitamin D in HCC both in vitro and in vivo. Astemizole enhanced Vitamin D-induced decrease of cell viability and proliferation, increase of apoptosis, decrease of cell migration and invasion in HCC cells in vitro and decrease of tumor number, mass and incidence in HCC in vivo. Astemizole increased VDR expression both in HCC cells in vitro and in tumor tissues in vivo. Downregulation of VDR significantly inhibited the synergistic effect of Vitamin D and astemizole on HCC cell viability, proliferation, apoptosis, migration and invasion. Bioinformatics analysis identified that miR-125a-5p had a putative binding site in the 3'-UTR of VDR. miR-125a-5p mimics inhibited astemizole-induced increase of VDR and enhancement of the anti-tumor effect of Vitamin D in HCC. Reporter gene assay has confirmed that VDR was regulated by miR-125a-5p. miR-125a-5p inhibitors increased VDR expression and decreased cell viability and proliferation in HCC cells. Moreover, VDR and miR-125a-5p expression in tumor tissues in HCC patients were negatively correlated. We identified that inhibition of miR-125a-5p and subsequent upregulation of VDR was involved in astemizole-induced enhancement of the anti-tumor effect of Vitamin D in HCC. These results highlight the importance of combined treatment of astemizole and Vitamin D and provide novel insights into the role of miR-125a-5p-VDR signaling in HCC.


Asunto(s)
Astemizol/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/genética , Vitamina D/farmacología , Regiones no Traducidas 3'/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Astemizol/administración & dosificación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Receptores de Calcitriol/genética , Regulación hacia Arriba/efectos de los fármacos , Vitamina D/administración & dosificación
11.
Bioorg Med Chem ; 25(24): 6332-6344, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29042223

RESUMEN

Astemizole is a H1-antagonist endowed with antimalarial activity, but has hERG liabilities. Systematic structural modifications of astemizole led to the discovery of analogues that display very potent activity as inhibitors of the growth of the Plasmodium parasite, but show a decreased hERG inhibition, when compared to astemizole. These compounds can be used as starting point for the development of a new class of antimalarials.


Asunto(s)
Antimaláricos/farmacología , Astemizol/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Astemizol/síntesis química , Astemizol/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Relación Estructura-Actividad , Regulador Transcripcional ERG/antagonistas & inhibidores , Regulador Transcripcional ERG/metabolismo
12.
Mol Med Rep ; 15(6): 4286-4290, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28440512

RESUMEN

Astemizole has gained attention as an antineoplastic drug that targets important ion channels. The present study aimed to investigate the protective effects of astemizole against hydrogen peroxide (H2O2)­induced oxidative damage to human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated with astemizole (0.5 and 1 µM) for 12 h, then exposed to H2O2 (200 µM) for 12 h. Cell viability was measured using the MTT assay. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH­Px), reactive oxygen species (ROS) and apoptotic percentage were determined. Additionally, the protein expression of p53, p21Cip1/Waf1 and p16INK4a was measured by western blot analysis The results demonstrated that astemizole (0.5­1 µM) was able to significantly restore the viability of HUVECs under oxidative stress and scavenge intracellular ROS induced by H2O2. Astemizole also suppressed the production of lipid peroxides, such as MDA, and restored the activities of endogenous antioxidants, including SOD and GSH­Px, indicating that cell apoptosis may be inhibited. In addition, astemizole significantly increased p53, p21Cip1/Waf1 and p16INK4a protein expression. In conclusion, astemizole effectively protected endothelial cells against oxidative stress induced by H2O2, a function that may involve ROS/p53/p21Cip1/Waf1/ p16INK4a signaling pathways. The present study therefore served as a preliminary investigation into the ROS­protective effects of astemizole, and may pave the way for future studies into the development of this compound as a novel therapy for atherosclerosis.


Asunto(s)
Astemizol/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glutatión Peroxidasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Malondialdehído/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
13.
Mol Med Rep ; 15(4): 1479-1488, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28259991

RESUMEN

The loss of dopaminergic neurons and the resultant motor impairment are hallmarks of Parkinson's disease. The SH­SY5Y cell line is a model of dopaminergic neurons, and allows for the study of dopaminergic neuronal injury. Previous studies have revealed changes in Ether à go­go 1 (Eag1) potassium channel expression during p53-induced SH­SY5Y apoptosis, and the regulatory involvement of microRNA­34a (miR­34a) was demonstrated. In the present study, the involvement of Eag1 and miR­34a in rotenone­induced SH­SY5Y cell injury was investigated. Rotenone is a neurotoxin, which is often used to generate models of Parkinson's disease, since it causes the death of nigrostriatal neurons by inducing intracellular aggregation of alpha synuclein and ubiquitin. In the present study, rotenone resulted in a dose­dependent decrease in cell viability, as revealed by 3­(4,5­dimethylthiazol­2­yl)­2,5­diphenyltetrazolium bromide (MTT) and trypan blue cell counting assays. In addition, Eag1 was demonstrated to be constitutively expressed by SH­SY5Y cells, and involved in cell viability. Suppression of Eag1 with astemizole resulted in a dose­dependent decrease in cell viability, as revealed by MTT assay. Astemizole also enhanced the severity of rotenone­induced injury in SH­SY5Y cells. RNA interference against Eag1, using synthetic small interfering RNAs (siRNAs), corroborated this finding, as siRNAs potentiated rotenone­induced injury. Eag1­targeted siRNAs (kv10.1­3 or EAG1hum_287) resulted in a statistically significant 16.4­23.5% increase in vulnerability to rotenone. An increased number of apoptotic nuclei were observed in cells transfected with EAG1hum_287. Notably, this siRNA intensified rotenone­induced apoptosis, as revealed by an increase in caspase 3/7 activity. Conversely, a miR­34a inhibitor was demonstrated to exert neuroprotective effects. The viability of cells exposed to rotenone for 24 or 48 h and treated with miR­34a inhibitor was restored by 8.4­8.8%. In conclusion, Eag1 potassium channels and miR­34a are involved in the response to rotenone-induced injury in SH­SY5Y cells. The neuroprotective effect of mir­34a inhibitors merits further investigations in animal models of Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , MicroARNs/metabolismo , Astemizol/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Inmunohistoquímica , MicroARNs/genética , ARN Interferente Pequeño/metabolismo , Rotenona/farmacología , Transfección
14.
Cell Mol Biol (Noisy-le-grand) ; 63(12): 11-13, 2017 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-29307346

RESUMEN

Prostate cancer (PC) is the main cause of cancer mortality in men worldwide. Therefore, novel treatments for PC are needed. Ether à-go-go-1 (Eag1) potassium channels display oncogenic properties, and have been suggested as early tumor markers and therapeutic targets for different cancers. These channels are overexpressed in many human tumors including PC. Astemizole targets several molecules involved in cancer including Eag1 channels, histamine receptors and ABC transporters. Here we studied Eag1 mRNA expression and protein levels in the non-tumorigenic and non-invasive human prostate RWPE-1 cell line, and in the tumorigenic and highly invasive human prostate WPE1-NB26 cell lines. The effect of astemizole on cell proliferation and apoptosis was also studied. The human prostate cell lines RWPE-1 and WPE1-NB26 were cultured following the provider´s instructions. Eag1 mRNA expression and protein levels were studied by real time RT-PCR and immunocytochemistry, respectively. Cell proliferation and apoptosis were studied by a fluorescence AlamarBlue®  assay and flow cytometry, respectively. No difference in Eag1 mRNA expression was observed between the cell lines. However, high Eag1 protein levels were observed in the invasive WPE1-NB26 cells, in contrast to the weak protein expression in RWPE-1 cells. Accordingly, astemizole decreased cell proliferation at nanomolar concentrations only in the invasive WPE1-NB26 cells.  Our results suggest that astemizole may have clinical relevance for prostate cancer treatment in patients with high Eag1 protein levels.


Asunto(s)
Astemizol/farmacología , Proliferación Celular/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Inmunohistoquímica , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
EBioMedicine ; 9: 130-139, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27333030

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Antagonistas de los Receptores Histamínicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Adulto , Apoptosis/efectos de los fármacos , Astemizol/farmacología , Astemizol/uso terapéutico , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Cationes/química , Línea Celular Tumoral , Estudios de Cohortes , Dinamarca , Reposicionamiento de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/farmacología , Humanos , Loratadina/farmacología , Loratadina/uso terapéutico , Neoplasias Pulmonares/mortalidad , Lisosomas/metabolismo , Modelos de Riesgos Proporcionales , Sistema de Registros , Tasa de Supervivencia
16.
Cancer Lett ; 372(1): 89-100, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26739061

RESUMEN

Apoptosis and autophagy are genetically regulated, evolutionarily conserved processes that can jointly seal cancer cell fates, and numerous death stimuli are capable of activating either pathway. Although crosstalk between apoptosis and autophagy is quite complex and sometimes contradictory, it remains a key factor determining the outcomes of death-related pathologies such as cancer. In the present study, exposure of MCF-7 breast cancer cells to HIS and the H1 receptor antagonist AST both alone and together with HIS (AST-HIS) led to generation of intracellular ROS, which induced massive cellular vacuolization through dilation of the ER and mitochondria. Consequently, apoptosis by Bax translocation, cytochrome c release, and caspase activation were triggered. In addition, AST-HIS caused ER stress-induced autophagy in MCF-7 cells, as evidenced by an increased LC3-II/LC3-I ratio, with surprisingly no changes in Beclin-1 expression. Non-canonical autophagy was induced via p53 phosphorylation, which increased p53-p62 interactions to enhance Beclin-1-independent autophagy as evidenced by immunocytochemistry and immunoprecipitation. In the absence of Beclin-1, enhanced autophagy further activated apoptosis through caspase induction. In conclusion, these findings indicate that AST-HIS-induced apoptosis and autophagy can be regulated by ROS-mediated signaling pathways.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Astemizol/farmacología , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Histamina/farmacología , Proteínas de la Membrana/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Beclina-1 , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1 , Transducción de Señal/efectos de los fármacos , Transfección , Proteína p53 Supresora de Tumor/genética
17.
Int J Gynecol Cancer ; 24(5): 824-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24819656

RESUMEN

OBJECTIVE: Cervical cancer is a major cause of mortality among women in developing countries. Thus, it is necessary to offer novel therapies to treat this malignancy. Astemizole has been suggested as a novel and interesting anticancer agent because it targets several proteins involved in cancer including Eag1 (ether à-go-go-1) potassium channels. Eag1 has been proposed as a tumor marker for different types of cancer. Actually, we previously suggested Eag1 channels as cervical cancer and dysplasia markers. Besides, Eag1 has been proposed as a therapeutic target for different malignancies. However, the effect of astemizole in cervical cancer cells is unknown. Therefore, we investigated the effect of astemizole on the proliferation and apoptosis of cervical cancer cells. METHODS: Five cervical cancer cell lines (HeLa, SiHa, CaSki, INBL, and C-33A) were cultured according to manufacturer's instructions. Eag1 protein expression was studied by immunocytochemistry. Cell proliferation was assayed with the MTT method, and apoptosis was investigated by flow cytometry. RESULTS: Eag1 protein expression was observed in different cell lines. Astemizole decreased cell proliferation in up to 40% and increased apoptosis severalfold in all the cell lines studied. CONCLUSIONS: Our results suggest astemizole as a potential therapy for cervical cancer.


Asunto(s)
Antialérgicos/farmacología , Apoptosis/efectos de los fármacos , Astemizol/farmacología , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Biomarcadores de Tumor/metabolismo , Western Blotting , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(17): 7044-9, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23576755

RESUMEN

Prion diseases such as Creutzfeldt-Jakob disease (CJD) are incurable and rapidly fatal neurodegenerative diseases. Because prion protein (PrP) is necessary for prion replication but dispensable for the host, we developed the PrP-FRET-enabled high throughput assay (PrP-FEHTA) to screen for compounds that decrease PrP expression. We screened a collection of drugs approved for human use and identified astemizole and tacrolimus, which reduced cell-surface PrP and inhibited prion replication in neuroblastoma cells. Tacrolimus reduced total cellular PrP levels by a nontranscriptional mechanism. Astemizole stimulated autophagy, a hitherto unreported mode of action for this pharmacophore. Astemizole, but not tacrolimus, prolonged the survival time of prion-infected mice. Astemizole is used in humans to treat seasonal allergic rhinitis in a chronic setting. Given the absence of any treatment option for CJD patients and the favorable drug characteristics of astemizole, including its ability to cross the blood-brain barrier, it may be considered as therapy for CJD patients and for prophylactic use in familial prion diseases. Importantly, our results validate PrP-FEHTA as a method to identify antiprion compounds and, more generally, FEHTA as a unique drug discovery platform.


Asunto(s)
Astemizol/farmacología , Autofagia/efectos de los fármacos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Enfermedades por Prión/tratamiento farmacológico , Priones/metabolismo , Tacrolimus/farmacología , Animales , Astemizol/uso terapéutico , Western Blotting , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Eur J Neurosci ; 36(12): 3628-35, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23050739

RESUMEN

Agents such as sertindole and astemizole affect heart action by inducing long-QT syndrome, suggesting that apart from their neuronal actions through histamine receptors, 5-HT2 serotonin receptors and D2 dopamine receptors they also affect ether-a-go-go channels and particularly ether-a-go-go-related (ERG) potassium (K(+)) channels, comprising the K(v) 11.1, K(v) 11.2 and K(v) 11.3 voltage-gated potassium currents. Changes in ERG K(+) channel expression and activity have been reported and may be linked to schizophrenia [Huffaker, S.J., Chen, J., Nicodemus, K.K., Sambataro, F., Yang, F., Mattay, V., Lipska, B.K., Hyde, T.M., Song, J., Rujescu, D., Giegling, I., Mayilyan, K., Proust, M.J., Soghoyan, A., Caforio, G., Callicott, J.H., Bertolino, A., Meyer-Lindenberg, A., Chang, J., Ji, Y., Egan, M.F., Goldberg, T.E., Kleinman, J.E., Lu, B. & Weinberger DR. (2009). Nat. Med., 15, 509-518; Shepard, P.D., Canavier, C.C. & Levitan, E.S. (2007). Schizophr Bull., 33, 1263-1269]. We have previously shown that histamine H1 blockers augment gamma oscillations (γ) which are thought to be involved in cognition and storage of information. These effects were particularly pronounced for γ induced by acetylcholine. Here we have compared neuronal effects of three agents which interfere with ERG K(+) channels. We found that astemizole and sertindole, but not the K(v) 11 channel blocker E4031, augmented γ induced by acetylcholine in hippocampal slices. Kainate-induced γ were only affected by astemizole. Evoked responses induced by stratum radiatum stimulation in area CA1 revealed that only E4031 augmented stimulus-induced synaptic potentials and neuronal excitability. Our findings suggest that K(v) 11 channels are involved in neuronal excitability without clear effects on γ and that the effect of astemizole is related to actions on H1 receptors.


Asunto(s)
Ondas Encefálicas/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Astemizol/farmacología , Imidazoles/farmacología , Indoles/farmacología , Ácido Kaínico/farmacología , Masculino , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar , Potenciales Sinápticos/efectos de los fármacos
20.
PLoS One ; 7(9): e45063, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984610

RESUMEN

BACKGROUND: Calcitriol antiproliferative effects include inhibition of the oncogenic ether-à-go-go-1 potassium channel (Eag1) expression, which is necessary for cell cycle progression and tumorigenesis. Astemizole, a new promising antineoplastic drug, targets Eag1 by blocking ion currents. Herein, we characterized the interaction between calcitriol and astemizole as well as their conjoint antiproliferative action in SUM-229PE, T-47D and primary tumor-derived breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Molecular markers were studied by immunocytochemistry, Western blot and real time PCR. Inhibitory concentrations were determined by dose-response curves and metabolic activity assays. At clinically achievable drug concentrations, synergistic antiproliferative interaction was observed between calcitriol and astemizole, as calculated by combination index analysis (CI <1). Astemizole significantly enhanced calcitriol's growth-inhibitory effects (3-11 folds, P<0.01). Mean IC(20) values were 1.82 ± 2.41 nM and 1.62 ± 0.75 µM; for calcitriol (in estrogen receptor negative cells) and astemizole, respectively. Real time PCR showed that both drugs alone downregulated, while simultaneous treatment further reduced Ki-67 and Eag1 gene expression (P<0.05). Astemizole inhibited basal and calcitriol-induced CYP24A1 and CYP3A4 mRNA expression (cytochromes involved in calcitriol and astemizole degradation) in breast and hepatoma cancer cells, respectively, while upregulated vitamin D receptor (VDR) expression. CONCLUSIONS/SIGNIFICANCE: Astemizole synergized calcitriol antiproliferative effects by downregulating CYP24A1, upregulating VDR and targeting Eag1. This study provides insight into the molecular mechanisms involved in astemizole-calcitriol combined antineoplastic effect, offering scientific support to test both compounds in combination in further preclinical and clinical studies of neoplasms expressing VDR and Eag1. VDR-negative tumors might also be sensitized to calcitriol antineoplastic effects by the use of astemizole. Herein we suggest a novel combined adjuvant therapy for the management of VDR/Eag1-expressing breast cancer tumors. Since astemizole improves calcitriol bioavailability and activity, decreased calcitriol dosing is advised for conjoint administration.


Asunto(s)
Astemizol/farmacología , Calcitriol/farmacología , Proliferación Celular/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Esteroide Hidroxilasas/metabolismo , Antineoplásicos/farmacología , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Agonistas de los Canales de Calcio/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Modelos Genéticos , Receptores de Calcitriol/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroide Hidroxilasas/genética , Células Tumorales Cultivadas , Regulación hacia Arriba/efectos de los fármacos , Vitamina D3 24-Hidroxilasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA