Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Eur J Pharmacol ; 975: 176647, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754534

RESUMEN

The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC50 value of 2.3 µM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.


Asunto(s)
Antineoplásicos , Autoantígeno Ku , Humanos , Autoantígeno Ku/metabolismo , Animales , Línea Celular Tumoral , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Daño del ADN/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ensayos Antitumor por Modelo de Xenoinjerto , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Etopósido/farmacología , Descubrimiento de Drogas , Roturas del ADN de Doble Cadena/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos
2.
In Vivo ; 38(3): 1470-1476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688633

RESUMEN

BACKGROUND/AIM: Automated measurement of immunostained samples can enable more convenient and objective prediction of treatment outcome from radiotherapy. We aimed to validate the performance of the QuPath image analysis software in immune cell markers detection by comparing QuPath cell counting results with those of physician manual cell counting. PATIENTS AND METHODS: CD8- and FoxP3-stained cervical, CD8-stained oropharyngeal, and Ku70-stained prostate cancer tumor sections were analyzed in 104 cervical, 92 oropharyngeal, and 58 prostate cancer patients undergoing radiotherapy at our Institution. RESULTS: QuPath and manual counts were highly correlated. When divided into two groups using ROC curves, the agreement between QuPath and manual counts was 89.4% for CD8 and 88.5% for FoxP3 in cervical cancer, 87.0% for CD8 in oropharyngeal cancer and 80.7% for Ku70 in prostate cancer. In cervical cancer, the high CD8 group based on QuPath counts had a better prognosis and the low CD8 group had a significantly worse prognosis [p=0.0003; 5-year overall survival (OS), 65.9% vs. 34.7%]. QuPath counts were more predictive than manual counts. Similar results were observed for FoxP3 in cervical cancer (p=0.002; 5-year OS, 62.1% vs. 33.6%) and CD8 in oropharyngeal cancer (p=0.013; 5-year OS, 80.2% vs. 47.2%). In prostate cancer, high Ku70 group had worse and low group significantly better outcome [p=0.007; 10-year progression-free survival (PFS), 56.0% vs. 93.8%]. CONCLUSION: QuPath showed a strong correlation with manual counting, confirming its utility and accuracy and potential applicability in clinical practice.


Asunto(s)
Programas Informáticos , Humanos , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Biomarcadores de Tumor/metabolismo , Adulto , Autoantígeno Ku/metabolismo , Factores de Transcripción Forkhead/metabolismo , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Curva ROC , Antígenos CD8/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Neoplasias/radioterapia , Neoplasias/metabolismo , Neoplasias/patología
3.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589496

RESUMEN

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína Fosfatasa 1 , Tolerancia a Radiación , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Tolerancia a Radiación/genética , Pronóstico , Línea Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Animales , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Ratones Desnudos , Femenino , Masculino , Reparación del ADN , Ratones
4.
BMC Cancer ; 24(1): 519, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654216

RESUMEN

BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4-5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. METHODS: Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. RESULTS: PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. CONCLUSIONS: Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.


Asunto(s)
Daño del ADN , Melanoma , Microambiente Tumoral , Neoplasias de la Úvea , Animales , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/mortalidad , Ratones , Melanoma/genética , Melanoma/patología , Melanoma/metabolismo , Melanoma/terapia , Células Madre Embrionarias/metabolismo , Reparación del ADN por Unión de Extremidades , Línea Celular Tumoral , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Pronóstico , Masculino , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Transducción de Señal , Reparación del ADN
5.
Cell Signal ; 119: 111164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583745

RESUMEN

The development of resistance to cisplatin (CDDP) in bladder cancer presents a notable obstacle, with indications pointing to the substantial role of circular RNAs (circRNAs) in this resistance. Nevertheless, the precise mechanisms through which circRNAs govern resistance are not yet fully understood. Our findings demonstrate that circUGGT2 is significantly upregulated in bladder cancer, facilitating cancer cell migration and invasion. Additionally, our analysis of eighty patient outcomes revealed a negative correlation between circUGGT2 expression levels and prognosis. Using circRNA pull-down assays, mass spectrometry analyses, and RNA Immunoprecipitation (RIP), it was shown that circUGGT2 interacts with the KU heterodimer, consisting of KU70 and KU80. Both KU70 and KU80 are critical components of the non-homologous end joining (NHEJ) pathway, which plays a role in CDDP resistance. Flow cytometry was utilized in this study to illustrate the impact of circUGGT2 on the sensitivity of bladder cancer cell lines to CDDP through its interaction with KU70 and KU80. Additionally, a reduction in the levels of DNA repair factors associated with the NHEJ pathway, such as KU70, KU80, DNA-PKcs, and XRCC4, was observed in chromatin of bladder cancer cells following circUGGT2 knockdown post-CDDP treatment, while the levels of DNA repair factors in total cellular proteins remained constant. Thus, the promotion of CDDP resistance by circUGGT2 is attributed to its facilitation of repair factor recruitment to DNA breaks via interaction with the KU heterodimer. Furthermore, our study demonstrated that knockdown of circUGGT2 resulted in reduced levels of γH2AX, a marker of DNA damage response, in CDDP-treated bladder cancer cells, implicating circUGGT2 in the NHEJ pathway for DNA repair.


Asunto(s)
Cisplatino , Reparación del ADN por Unión de Extremidades , Resistencia a Antineoplásicos , Autoantígeno Ku , ARN Circular , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , ARN Circular/metabolismo , ARN Circular/genética , Línea Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad
6.
Anticancer Drugs ; 35(2): 163-176, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37948318

RESUMEN

Chemotherapy is the main treatment option for acute myeloid leukemia (AML), but acquired resistance of leukemic cells to chemotherapeutic agents often leads to difficulties in AML treatment and disease relapse. High calcitonin receptor-like (CALCRL) expression is closely associated with poorer prognosis in AML patients. Therefore, this study was performed by performing CALCRL overexpression constructs in AML cell lines HL-60 and Molm-13 with low CALCRL expression. The results showed that overexpression of CALCRL in HL-60 and Molm-13 could confer resistance properties to AML cells and reduce the DNA damage and cell cycle G0/G1 phase blocking effects caused by daunorubicin (DNR) and others. Overexpression of CALCRL also reduced DNR-induced apoptosis. Mechanistically, the Cancer Clinical Research Database analyzed a significant positive correlation between XRCC5 and CALCRL in AML patients. Therefore, the combination of RT-PCR and Western blot studies further confirmed that the expression levels of XRCC5 and PDK1 genes and proteins were significantly upregulated after overexpression of CALCRL. In contrast, the phosphorylation levels of AKT/PKCε protein, a downstream pathway of XRCC5/PDK1, were significantly upregulated. In the response study, transfection of overexpressed CALCRL cells with XRCC5 siRNA significantly upregulated the drug sensitivity of AML to DNR. The expression levels of PDK1 protein and AKT/PKCε phosphorylated protein in the downstream pathway were inhibited considerably, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were upregulated. Animal experiments showed that the inhibitory effect of DNR on the growth of HL-60 cells and the number of bone marrow invasions were significantly reversed after overexpression of CALCRL in nude mice. However, infection of XCRR5 shRNA lentivirus in HL-60 cells with CALCRL overexpression attenuated the effect of CALCRL overexpression and upregulated the expression of apoptosis-related proteins induced by DNR. This study provides a preliminary explanation for the relationship between high CALCRL expression and poor prognosis of chemotherapy in AML patients. It offers a more experimental basis for DNR combined with molecular targets for precise treatment in subsequent studies.


Asunto(s)
Daunorrubicina , Leucemia Mieloide Aguda , Animales , Ratones , Humanos , Daunorrubicina/farmacología , Regulación hacia Arriba , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células HL-60 , Apoptosis , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/farmacología , TYK2 Quinasa/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/farmacología , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Janus Quinasa 1/farmacología , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo
7.
Nucleic Acids Res ; 51(15): 7972-7987, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37395399

RESUMEN

DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas Quinasas , ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo , Humanos
8.
J Biol Chem ; 299(8): 105032, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437887

RESUMEN

Radiotherapy is one of the mainstay treatments for hepatocellular carcinoma (HCC). However, a substantial number of patients with HCC develop radioresistance and eventually suffer from tumor progression or relapse, which is a major impediment to the use of radiotherapy. Therefore, elucidating the mechanisms underlying radioresistance and identifying novel therapeutic targets to improve patient prognosis are important in HCC management. In this study, using in vitro and in vivo models, laser microirradiation and live cell imaging methods, and coimmunoprecipitation assays, we report that a DNA repair enhancer, human positive cofactor 4 (PC4), promotes nonhomologous end joining-based DNA repair and renders HCC cells resistant to radiation. Mechanistically, PC4 interacts with poly (ADP-ribose) polymerase 1 and directs Ku complex PARylation, resulting in the successful recruitment of the Ku complex to damaged chromatin and increasing the efficiency of nonhomologous end joining repair. Clinically, PC4 is highly expressed in tumor tissues and is correlated with poor prognosis in patients with HCC. Taken together, our data suggest that PC4 is a DNA repair driver that can be targeted to radiosensitize HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Daño del ADN , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Neoplasias Hepáticas/genética , Recurrencia Local de Neoplasia , Poli ADP Ribosilación , Tolerancia a Radiación
9.
Thorac Cancer ; 14(24): 2504-2514, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429610

RESUMEN

BACKGROUND: Many long noncoding RNAs (lncRNAs) are the key regulators for cancer progression, including breast cancer (BC). RUSC1 antisense 1 (RUSC1-AS1) has been found to be highly expressed in BC, but its role and potential molecular mechanism in BC remain to be further elucidated. METHODS: Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was utilized to measure RUSC1-AS1, microRNA (miR)-326 and X-ray repair cross-complementing group 5 (XRCC5) expression. Cell proliferation, metastasis, cell cycle, apoptosis and angiogenesis were determined by cell counting kit-8, colony formation, transwell, flow cytometry and tube formation assays. Protein expression was detected by western blot analysis. The targeted relationship between miR-326 and RUSC1-AS1 or XRCC5 was validated using dual-luciferase reporter assay and RIP assay. Xenograft models were constructed to uncover the effect of RUSC1-AS1 on BC tumorigenesis. RESULTS: RUSC1-AS1 was upregulated in BC, and its downregulation suppressed BC proliferation, metastasis, cell cycle, angiogenesis, and tumor growth. MiR-326 was confirmed to be sponged by RUSC1-AS1, and its inhibitor reversed the regulation of RUSC1-AS1 silencing on BC progression. XRCC5 could be targeted by miR-326. Overexpression of XRCC5 reversed the inhibitory impacts of miR-326 on BC progression. CONCLUSION: RUSC1-AS1 could serve as a sponge of miR-326 to promote BC progression by targeting XRCC5, suggesting that RUSC1-AS1 might be a target for BC treatment.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/patología , MicroARNs/genética , Línea Celular Tumoral , Proliferación Celular/genética , Ciclo Celular , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
10.
Sci Adv ; 9(24): eade6624, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315132

RESUMEN

DNA damage repair (DDR) is a double-edged sword with different roles in cancer susceptibility and drug resistance. Recent studies suggest that DDR inhibitors affect immune surveillance. However, this phenomenon is poorly understood. We report that methyltransferase SMYD2 plays an essential role in nonhomologous end joining repair (NHEJ), driving tumor cells adaptive to radiotherapy. Mechanically, in response to DNA damage, SMYD2 is mobilized onto chromatin and methylates Ku70 at lysine-74, lysine-516, and lysine-539, leading to increased recruitment of Ku70/Ku80/DNA-PKcs complex. Knockdown of SMYD2 or its inhibitor AZ505 results in persistent DNA damage and improper repair, which sequentially leads to accumulation of cytosolic DNA, and activation of cGAS-STING pathway and triggers antitumor immunity via infiltration and activation of cytotoxic CD8+ T cells. Our study reveals an unidentified role of SMYD2 in regulating NHEJ pathway and innate immune responses, suggesting that SMYD2 is a promising therapeutic target for cancer treatment.


Asunto(s)
Linfocitos T CD8-positivos , Reparación del ADN por Unión de Extremidades , N-Metiltransferasa de Histona-Lisina , Autoantígeno Ku , Cromatina , Lisina , Autoantígeno Ku/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo
11.
Phytomedicine ; 116: 154876, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37210962

RESUMEN

BACKGROUND: Targeting DNA damage response and DNA repair proficiency of cancers is an important anticancer strategy. Kaempferol (Kae), a natural flavonoid, displays potent antitumor properties in some cancers. However, the precise underlying mechanism of Kae regulates DNA repair system are poorly understood. PURPOSE: We aim to evaluate the efficacy of Kae in the treatment of human glioma as well as the molecular mechanism regarding DNA repair. STUDY DESIGN: Effects of Kae on glioma cells were detected using CCK-8 and EdU labeling assays. The molecular mechanism of Kae on glioma was determined using RNAseq. The inhibition effects of Kae on DNA repair were verified using Immunoprecipitation, immunofluorescence, and pimEJ5-GFP report assays. For in vivo study, orthotopic xenograft models were established and treated with Kae or vehicle. Glioma development was monitored by bioluminescence imaging, Magnetic Resonance Imaging (MRI), and brain sections Hematoxylin/Eosin (HE) staining. Immunohistochemical (IHC) analysis was used to detect expression of Ku80, Ki67 and γH2AX in engrafted glioma tissue. RESULTS: We found that Kae remarkably inhibits viability of glioma cells and decreases its proliferation. Mechanistically, Kae regulates multiple functional pathways associated with cancer, including non-homologous end joining (NHEJ) repair. Further studies revealed that Kae inhibits release of Ku80 from the double-strand breaks (DSBs) sites via reducing ubiquitylation and degradation of Ku80. Therefore, Kae significantly suppresses NHEJ repair and induces accumulation of DSBs in glioma cells. Moreover, Kae displays a dramatic inhibition effects on glioma growth in an orthotopic transplantation model. These data demonstrate that Kae can induce deubiquitination of Ku80, suppress NHEJ repair and inhibit glioma growth. CONCLUSION: Our findings indicate that inhibiting release of Ku80 from the DSBs by Kae may be a potential effective approach for glioma treatment.


Asunto(s)
Roturas del ADN de Doble Cadena , Glioma , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Quempferoles/farmacología , Reparación del ADN por Unión de Extremidades , Glioma/tratamiento farmacológico
12.
Neurochem Int ; 166: 105534, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061192

RESUMEN

BACKGROUND: Increasing evidences have reported the critical roles of circular RNA (circRNA) in gliomas. Whereas, the role of circXRCC5 in glioma and its underlying molecular mechanism has not been reported. METHODS: The RNA transcripts and protein levels were detected using qRT-PCR, immunohistochemistry (IHC) and in situ hybridization (ISH) assays. Cell proliferation was characterized by CCK-8 and clone formation assays. The formation of NLRP3-inflammasomes was identified using immunofluorescence (IF) and Western blot assays. The cytokines were determined using immunosorbent assay (ELISA) and Western blot assays. The molecular interactions were validated using RIP and pull-down assays. RESULTS: circXRCC5 was over-expressed in glioma and positively related to the shorter survival rate, advanced TNM stage and larger tumor volume. circXRCC5 knockdown inhibited cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. Subsequently, we found that circXRCC5 maintained mRNA stability of CLC3 by binding to IGF2BP2. Furthermore, CLC3 accelerated SGK1 expression via PI3K/PDK1/AKT pathway. The rescue experiments showed that both overexpression of CLC3 or SGK1 dramatically alleviated circXRCC5 knockdown-induced inhibition of cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. In vivo, our study proved that circXRCC5 accelerated glioma growth by regulating CLC3/SGK1 axis. CONCLUSION: Our data concluded that circXRCC5 formed a complex with IGF2BP2 to regulate inflammasome activation and tumor growth via CLC3/SGK1 axis.


Asunto(s)
Glioma , ARN Circular , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Inflamasomas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Circular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
Nat Struct Mol Biol ; 30(2): 148-158, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747093

RESUMEN

Enhancer activation serves as the main mechanism regulating signal-dependent transcriptional programs, ensuring cellular plasticity, yet central questions persist regarding their mechanism of activation. Here, by successfully mapping topoisomerase I-DNA covalent complexes genome-wide, we find that most, if not all, acutely activated enhancers, including those induced by 17ß-estradiol, dihydrotestosterone, tumor necrosis factor alpha and neuronal depolarization, are hotspots for topoisomerase I-DNA covalent complexes, functioning as epigenomic signatures read by the classic DNA damage sensor protein, Ku70. Ku70 in turn nucleates a heterochromatin protein 1 gamma (HP1γ)-mediator subunit Med26 complex to facilitate acute, but not chronic, transcriptional activation programs. Together, our data uncover a broad, unappreciated transcriptional code, required for most, if not all, acute signal-dependent enhancer activation events in both mitotic and postmitotic cells.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Elementos de Facilitación Genéticos , ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Autoantígeno Ku/metabolismo
14.
Nutrients ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235593

RESUMEN

Oxidative stress induces DNA damage which can be repaired by DNA repair proteins, such as Ku70/80. Excess reactive oxygen species (ROS) stimulate the activation of caspase-3, which degrades Ku 70/80. Cells with decreased Ku protein levels undergo apoptosis. Astaxanthin exerts antioxidant activity by inducing the expression of catalase, an antioxidant enzyme, in gastric epithelial cells. Therefore, astaxanthin may inhibit oxidative stress-induced DNA damage by preventing Ku protein degradation and thereby suppressing apoptosis. Ku proteins can be degraded via ubiquitination and neddylation which adds ubiquitin-like protein to substrate proteins. We aimed to determine whether oxidative stress decreases Ku70/80 expression through the ubiquitin-proteasome pathway to induce apoptosis and whether astaxanthin inhibits oxidative stress-induced changes in gastric epithelial AGS cells. We induced oxidative stress caused by the treatment of ß-D-glucose (G) and glucose oxidase (GO) in the cells. As a result, the G/GO treatment increased ROS levels, decreased nuclear Ku protein levels and Ku-DNA-binding activity, and induced the ubiquitination of Ku80. G/GO increased the DNA damage marker levels (γ-H2AX; DNA fragmentation) and apoptosis marker annexin V-positive cells and cell death. Astaxanthin inhibited G/GO-induced alterations, including Ku degradation in AGS cells. MLN4924, a neddylation inhibitor, and MG132, a proteasome inhibitor, suppressed G/GO-mediated DNA fragmentation and decreased cell viability. These results indicated that G/GO-induced oxidative stress causes Ku protein loss through the ubiquitin-proteasome pathway, resulting in DNA fragmentation and apoptotic cell death. Astaxanthin inhibited oxidative stress-mediated apoptosis via the reduction of ROS levels and inhibition of Ku protein degradation. In conclusion, dietary astaxanthin supplementation or astaxanthin-rich food consumption may be effective for preventing or delaying oxidative stress-mediated cell damage by suppressing Ku protein loss and apoptosis in gastric epithelial cells.


Asunto(s)
Antioxidantes , Complejo de la Endopetidasa Proteasomal , Anexina A5/metabolismo , Anexina A5/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Caspasa 3/metabolismo , Catalasa/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/farmacología , Autoantígeno Ku/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacología , Xantófilas
15.
Cell Death Dis ; 13(9): 754, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050295

RESUMEN

Ivermectin is a widely used antiparasitic drug and shows promising anticancer activity in various cancer types. Although multiple signaling pathways modulated by ivermectin have been identified in tumor cells, few studies have focused on the exact target of ivermectin. Herein, we report the pharmacological effects and targets of ivermectin in prostate cancer. Ivermectin caused G0/G1 cell cycle arrest, induced cell apoptosis and DNA damage, and decreased androgen receptor (AR) signaling in prostate cancer cells. Further in vivo analysis showed ivermectin could suppress 22RV1 xenograft progression. Using integrated omics profiling, including RNA-seq and thermal proteome profiling, the forkhead box protein A1 (FOXA1) and non-homologous end joining (NHEJ) repair executer Ku70/Ku80 were strongly suggested as direct targets of ivermectin in prostate cancer. The interaction of ivermectin and FOXA1 reduced the chromatin accessibility of AR signaling and the G0/G1 cell cycle regulator E2F1, leading to cell proliferation inhibition. The interaction of ivermectin and Ku70/Ku80 impaired the NHEJ repair ability. Cooperating with the downregulation of homologous recombination repair ability after AR signaling inhibition, ivermectin increased intracellular DNA double-strand breaks and finally triggered cell death. Our findings demonstrate the anticancer effect of ivermectin in prostate cancer, indicating that its use may be a new therapeutic approach for prostate cancer.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito , Ivermectina , Autoantígeno Ku , Neoplasias de la Próstata , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Factor Nuclear 3-alfa del Hepatocito/efectos de los fármacos , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Ivermectina/farmacología , Ivermectina/uso terapéutico , Autoantígeno Ku/efectos de los fármacos , Autoantígeno Ku/metabolismo , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo
16.
Theranostics ; 12(12): 5258-5271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910805

RESUMEN

Rationale: Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase that selectively marks cancer stem-like cells (CSCs) and promotes malignant progression in colorectal cancer (CRC). However, the exact molecular mechanism by which DCLK1 drives the aggressive phenotype of cancer cells is incompletely determined. Methods: Here, we performed comprehensive genomics and proteomics analyses to identify binding proteins of DCLK1 and discovered X-ray repair cross-complementing 5 (XRCC5). Thus, we explored the biological role and downstream events of the DCLK1/XRCC5 axis in human CRC cells and CRC mouse models. Results: The results of comprehensive bioinformatics analyses suggested that DCLK1-driven CRC aggressiveness is linked to inflammation. Mechanistically, DCLK1 bound and phosphorylated XRCC5, which in turn transcriptionally activated cyclooxygenase-2 expression and enhanced prostaglandin E2 production; these events collectively generated the inflammatory tumor microenvironment and enhanced the aggressive behavior of CRC cells. Consistent with the discovered mechanism, inhibition of DCLK1 kinase activity strongly impaired the tumor seeding and growth capabilities in CRC mouse models. Conclusion: Our study illuminates a novel mechanism that mediates the pro-inflammatory function of CSCs in driving the aggressive phenotype of CRC, broadening the biological function of DCLK1 in CRC.


Asunto(s)
Neoplasias Colorrectales , Quinasas Similares a Doblecortina , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Complemento C5/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Quinasas Similares a Doblecortina/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Autoantígeno Ku/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral/genética , Rayos X
17.
J Exp Clin Cancer Res ; 41(1): 235, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35918767

RESUMEN

BACKGROUND: Radiation therapy (RT) with androgen deprivation therapy (ADT) is an effective therapy to suppress the locally advanced prostate cancer (PCa). However, we unexpectedly found that RT could also induce the androgen receptor splice variant 7 (ARv7) expression to decrease the radiosensitivity. METHODS: The study was designed to target ARv7 expression with Quercetin or ARv7-shRNA that leads to enhancing and increasing the radiation sensitivity to better suppress the PCa that involved the modulation of the circNHS/miR-512-5p/XRCC5 signaling. RESULTS: Mechanism studies revealed that RT-induced ARv7 may function via altering the circNHS/miR-512-5p/XRCC5 signaling to decrease the radiosensitivity. Results from preclinical studies using multiple in vitro cell lines and in vivo mouse models concluded that combining RT with the small molecule of Quercetin to target full-length AR and ARv7 could lead to better efficacy to suppress PCa progression. CONCLUSION: Together, these results suggest that ARv7 may play key roles to alter the PCa radiosensitivity, and targeting this newly identified ARv7 mediated circNHS/miR-512-5p/XRCC5 signaling with Quercetin may help physicians to develop a novel RT to better suppress the progression of PCa.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Antagonistas de Andrógenos , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia , Quercetina/farmacología , Tolerancia a Radiación , Receptores Androgénicos/metabolismo
18.
Dis Markers ; 2022: 9313680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903292

RESUMEN

Background: Hepatocellular carcinoma (HCC) is one of the most common and fatal malignancies in human beings. Studies have shown that long non-coding RNAs (lncRNAs) play key parts in the occurrence and development of HCC. Although many lncRNAs have been studied in the HCC specifically for DNA damage repair, the role of LINC01419 in cellular DNA damage repair has not yet been studied. Objective: This study is aimed at exploring the biological role of LINC01419 and its potential mechanism in HCC. Methods: qRT-PCR was used to detect the expression level of LINC01419 in HCC tissues and cells, the proteins which were involved were detected by Western blot. Effect of LINC01419 knockdown on cell cycle, apoptosis, DNA damage, cell proliferation, wound healing, colony formation, and migration of HCC cells was studied in vitro. Results: The analysis showed that LINC01419 was overexpressed in HCC tissues and cells. Silencing of LINC01419 expression significantly inhibited the proliferation and migration ability of the HCC cells and resulted in cell cycle arrest at G0/G1 phase. Furthermore, the knockdown of LINC01419 increased the DNA damage, and to some extent, promoted sensitivity of HCC cells to doxorubicin. In addition, we performed RIP analysis which showed XRCC5 as a potential protein related to DNA damage repair in hepatoma cells. Conclusion: In conclusion, the LINC01419 acts as an oncogene in HCC and regulates DNA damage repair through XRCC5 in HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Neoplasias Hepáticas/patología , Fosforilación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
19.
Gastric Cancer ; 25(5): 879-895, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35715658

RESUMEN

BACKGROUND: CENPK is a novel oncogene which is aberrantly expression in some malignant tumors. However, the role and mechanisms of CENPK in gastric cancer have not been explored. METHODS: In this study, we use RT-PCR and IHC to study CENPK expression in gastric cancer cells and tissues. In addition, we constructed the two kinds of CENPK siRNA lentivirus to knock down CENPK. Then, we use High content living cell imaging System, Cell Counting Kit-8, colony formation, wound healing and Transwell assays to demonstrate the function of CENPK on gastric cancer cells AGS and MKN45. Meanwhile, we use flow cytometry assay to study CENPK function on gastric cancer cell apoptosis and cell cycle arrest. Subcutaneous tumorigenesis in nude mice was also performed to confirm CENPK function on gastric cancer. Finally, we use Co-IP, LC-MS and function rescue assay to study the downstream interaction molecular of CENPK. RESULTS: We demonstrated that CENPK expression were up-regulated in GC cell lines. Poor differentiation and III-IV stage had more percentages of high CENPK expression. Knocking down CENPK could significantly suppress GC cells proliferation, migration and invasion, and induce GC cells apoptosis and G1/S phase transition arrest. Subcutaneous tumorigenesis confirmed the tumor-promoting effects of CENPK in vivo. Remarkably, we found for the first time that XRCC5 might be interacted with CENPK through Co-IP, LC-MS and rescue study. CONCLUSION: CENPK promotes GC cell proliferation and migration via interacting with XRCC5 and may be a novel prognostic factor or therapeutic target for CENPK.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Gástricas , Animales , Proteínas de la Membrana Bacteriana Externa , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Neoplasias Gástricas/patología
20.
Neuroscience ; 494: 104-118, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35436516

RESUMEN

Circular RNAs (circRNAs), forming a covalently closed loop, are identified as a special subgroup of non-coding RNAs. Herein, we investigated the function and underlying mechanism of circXRCC5, generated from the XRCC5 gene, in glioma progression. Bioinformatics analysis was employed to determine the genomic information of circXRCC5 derived from XRCC5 pre-mRNA. Quantitative real-time PCR was conducted to examine the expression of circXRCC5 in glioma tissues and cells. Stable knockdown of circXRCC5 in U87 and U251 cells was established to assess its' biological functions. Cell Counting Kit-8, EdU incorporation, flow cytometry and transwell assay were performed to evaluate cell proliferation, apoptosis, migration and invasion, respectively. The circRNA-miRNA-mRNA regulatory network was verified using luciferase reporter assay and RNA immunoprecipitation. The samples were subjected to CHIP to ascertain the transcriptional regulation of XRCC5 at the promoter region of CLC3. Up-regulation of circXRCC5 was observed in glioma tissues and cell lines, and indicated poor prognosis of glioma patients. Knockdown of circXRCC5 suppressed cell proliferation, migration and invasion, while facilitated apoptosis. Mechanistically, circXRCC5 acted as a molecular sponge for miR-490-3p in a sequence-specific manner. There was a reciprocal negative feedback between circXRCC5 and miR-490-3p in an Argonaute2-dependent manner. Moreover, circXRCC5 acted as a sponge of miR-490-3p to regulate the expression of downstream target gene XRCC5, thus activating the transcription of CLC3, which fostered the progression of glioma. Collectively, circXRCC5 promoted glioma progression via the miR-490-3p/XRCC5/CLC3 ceRNA network, providing a novel prognostic biomarker and a prospective target for glioma treatment.


Asunto(s)
Glioma , MicroARNs , ARN Circular , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estudios Prospectivos , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA