Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.829
Filtrar
1.
Sci Signal ; 17(856): eadk2345, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39353037

RESUMEN

The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.


Asunto(s)
Orientación del Axón , Receptor DCC , Proteínas de Drosophila , Netrina-1 , Netrina-1/metabolismo , Netrina-1/genética , Receptor DCC/metabolismo , Receptor DCC/genética , Animales , Humanos , Orientación del Axón/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ratas , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Axones/metabolismo , Axones/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ratones , Neuronas/metabolismo , Células HEK293 , Receptores de Netrina
2.
J Cell Biol ; 223(12)2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39352499

RESUMEN

Successful axonal regeneration following injury requires the effective allocation of energy. How axons withstand the initial disruption in mitochondrial energy production caused by the injury and subsequently initiate regrowth is poorly understood. Transcriptomic data showed increased expression of glycolytic genes after optic nerve crush in retinal ganglion cells with the co-deletion of Pten and Socs3. Using retinal cultures in a multicompartment microfluidic device, we observed increased regrowth and enhanced mitochondrial trafficking in the axons of Pten and Socs3 co-deleted neurons. While wild-type axons relied on mitochondrial metabolism, after injury, in the absence of Pten and Socs3, energy production was supported by local glycolysis. Specific inhibition of lactate production hindered injury survival and the initiation of regrowth while slowing down glycolysis upstream impaired regrowth initiation, axonal elongation, and energy production. Together, these observations reveal that glycolytic ATP, combined with sustained mitochondrial transport, is essential for injury-induced axonal regrowth, providing new insights into the metabolic underpinnings of axonal regeneration.


Asunto(s)
Axones , Glucólisis , Mitocondrias , Regeneración Nerviosa , Células Ganglionares de la Retina , Animales , Axones/metabolismo , Regeneración Nerviosa/genética , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Mitocondrias/metabolismo , Mitocondrias/genética , Ratones , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Ratones Endogámicos C57BL , Adenosina Trifosfato/metabolismo , Metabolismo Energético/genética
3.
Nat Commun ; 15(1): 8837, 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39397028

RESUMEN

Microglia, the primary immune cells in the central nervous system, play a critical role in regulating neuronal function and fate through their interaction with neurons. Despite extensive research, the specific functions and mechanisms of microglia-neuron interactions remain incompletely understood. In this study, we demonstrate that microglia establish direct contact with myelinated axons at Nodes of Ranvier in the spinal cord of mice. The contact associated with neuronal activity occurs in a random scanning pattern. In response to axonal injury, microglia rapidly transform their contact into a robust wrapping form, preventing acute axonal degeneration from extending beyond the nodes. This wrapping behavior is dependent on the function of microglial P2Y12 receptors, which may be activated by ATP released through axonal volume-activated anion channels at the nodes. Additionally, voltage-gated sodium channels (NaV) and two-pore-domain potassium (K2P) channels contribute to the interaction between nodes and glial cells following injury, and inhibition of NaV delays axonal degeneration. Through in vivo imaging, our findings reveal a neuroprotective role of microglia during the acute phase of single spinal cord axon injury, achieved through neuron-glia interaction.


Asunto(s)
Axones , Microglía , Receptores Purinérgicos P2Y12 , Traumatismos de la Médula Espinal , Médula Espinal , Animales , Microglía/metabolismo , Axones/metabolismo , Axones/patología , Ratones , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Nódulos de Ranvier/metabolismo , Ratones Endogámicos C57BL , Femenino , Degeneración Nerviosa/patología , Canales de Sodio Activados por Voltaje/metabolismo , Adenosina Trifosfato/metabolismo , Neuronas/metabolismo
4.
Open Biol ; 14(9): 240138, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226928

RESUMEN

In this study, we develop an in silico model of a neuron's behaviour under demyelination caused by a cytokine storm to investigate the effects of viral infections in the brain. We use a comprehensive model to measure how cytokine-induced demyelination affects the propagation of action potential (AP) signals within a neuron. We analysed the effects of neuron-neuron communications by applying information and communication theory at different levels of demyelination. Our simulations demonstrate that virus-induced degeneration can play a role in the signal power and spiking rate, which compromise the propagation and processing of information between neurons. We propose a transfer function to model the weakening effects on the AP. Our results show that demyelination induced by a cytokine storm not only degrades the signal but also impairs its propagation within the axon. Our proposed in silico model can analyse virus-induced neurodegeneration and enhance our understanding of virus-induced demyelination.


Asunto(s)
Simulación por Computador , Enfermedades Desmielinizantes , Neuronas , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/virología , Neuronas/metabolismo , Humanos , Modelos Neurológicos , Potenciales de Acción , Síndrome de Liberación de Citoquinas , Animales , Citocinas/metabolismo , Axones/metabolismo , Axones/patología
5.
J Neurosci Res ; 102(9): e25382, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39253877

RESUMEN

Neurons establish functional connections responsible for how we perceive and react to the world around us. Communication from a neuron to its target cell occurs through a long projection called an axon. Axon distances can exceed 1 m in length in humans and require a dynamic microtubule cytoskeleton for growth during development and maintenance in adulthood. Stathmins are microtubule-associated proteins that function as relays between kinase signaling and microtubule polymerization. In this review, we describe the prolific role of Stathmins in microtubule homeostasis with an emphasis on emerging roles for Stathmin-2 (Stmn2) in axon integrity and neurodegeneration. Stmn2 levels are altered in Amyotrophic Lateral Sclerosis and loss of Stmn2 provokes motor and sensory neuropathies. There is growing potential for employing Stmn2 as a disease biomarker or even a therapeutic target. Meeting this potential requires a mechanistic understanding of emerging complexity in Stmn2 function. In particular, Stmn2 palmitoylation has a surprising contribution to axon maintenance through undefined mechanisms linking membrane association, tubulin interaction, and axon transport. Exploring these connections will reveal new insight on neuronal cell biology and novel opportunities for disease intervention.


Asunto(s)
Axones , Microtúbulos , Estatmina , Estatmina/metabolismo , Microtúbulos/metabolismo , Humanos , Axones/metabolismo , Axones/fisiología , Animales , Membrana Celular/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología
6.
Theranostics ; 14(14): 5662-5681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310103

RESUMEN

Rationale: Spinal cord injury (SCI)-induced vascular damage causes ischemia and hypoxia at the injury site, which, in turn, leads to profound metabolic disruptions. The effects of these metabolic alterations on neural tissue remodeling and functional recovery have yet to be elucidated. The current study aimed to investigate the consequences of the SCI-induced hypoxic environment at the epicenter of the injury. Methods: This study employed metabolomics to assess changes in energy metabolism after SCI. The use of a lactate sensor identified lactate shuttle between endothelial cells (ECs) and neurons. Reanalysis of single-cell RNA sequencing data demonstrated reduced MCT1 expression in ECs after SCI. Additionally, an adeno-associated virus (AAV) overexpressing MCT1 was utilized to elucidate its role in endothelial-neuronal interactions, tissue repair, and functional recovery. Results: The findings revealed markedly decreased monocarboxylate transporter 1 (MCT1) expression that facilitates lactate delivery to neurons to support their energy metabolism in ECs post-SCI. This decreased expression of MCT1 disrupts lactate transport to neurons, resulting in a metabolic imbalance that impedes axonal regeneration. Strikingly, our results suggested that administering adeno-associated virus specifically to ECs to restore MCT1 expression enhances axonal regeneration and improves functional recovery in SCI mice. These findings indicate a novel link between lactate shuttling from endothelial cells to neurons following SCI and subsequent neural functional recovery. Conclusion: In summary, the current study highlights a novel metabolic pathway for therapeutic interventions in the treatment of SCI. Additionally, our findings indicate the potential benefits of targeting lactate transport mechanisms in recovery from SCI.


Asunto(s)
Axones , Células Endoteliales , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Traumatismos de la Médula Espinal , Simportadores , Traumatismos de la Médula Espinal/metabolismo , Animales , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Células Endoteliales/metabolismo , Ácido Láctico/metabolismo , Ratones , Axones/metabolismo , Simportadores/metabolismo , Simportadores/genética , Recuperación de la Función/fisiología , Dependovirus/genética , Regeneración Nerviosa , Neuronas/metabolismo , Metabolismo Energético , Ratones Endogámicos C57BL , Femenino , Modelos Animales de Enfermedad , Humanos
7.
Nature ; 633(8031): 941-951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39294374

RESUMEN

Subcellular protein localization regulates protein function and can be corrupted in cancers1 and neurodegenerative diseases2,3. The rewiring of localization to address disease-driving phenotypes would be an attractive targeted therapeutic approach. Molecules that harness the trafficking of a shuttle protein to control the subcellular localization of a target protein could enforce targeted protein relocalization and rewire the interactome. Here we identify a collection of shuttle proteins with potent ligands amenable to incorporation into targeted relocalization-activating molecules (TRAMs), and use these to relocalize endogenous proteins. Using a custom imaging analysis pipeline, we show that protein steady-state localization can be modulated through molecular coupling to shuttle proteins containing sufficiently strong localization sequences and expressed in the necessary abundance. We analyse the TRAM-induced relocalization of different proteins and then use nuclear hormone receptors as shuttles to redistribute disease-driving mutant proteins such as SMARCB1Q318X, TDP43ΔNLS and FUSR495X. TRAM-mediated relocalization of FUSR495X to the nucleus from the cytoplasm correlated with a reduction in the number of stress granules in a model of cellular stress. With methionyl aminopeptidase 2 and poly(ADP-ribose) polymerase 1 as endogenous cytoplasmic and nuclear shuttles, respectively, we demonstrate relocalization of endogenous PRMT9, SOS1 and FKBP12. Small-molecule-mediated redistribution of nicotinamide nucleotide adenylyltransferase 1 from nuclei to axons in primary neurons was able to slow axonal degeneration and pharmacologically mimic the genetic WldS gain-of-function phenotype in mice resistant to certain types of neurodegeneration4. The concept of targeted protein relocalization could therefore inspire approaches for treating disease through interactome rewiring.


Asunto(s)
Mapas de Interacción de Proteínas , Transporte de Proteínas , Animales , Humanos , Ratones , Axones/metabolismo , Axones/patología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Mutación con Ganancia de Función , Células HEK293 , Células HeLa , Ligandos , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Gránulos de Estrés/metabolismo , Estrés Fisiológico , Proteína 1A de Unión a Tacrolimus/metabolismo
8.
PLoS Genet ; 20(8): e1011388, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186815

RESUMEN

Most neurons are not replaced after injury and thus possess robust intrinsic mechanisms for repair after damage. Axon injury triggers a calcium wave, and calcium and cAMP can augment axon regeneration. In comparison to axon regeneration, dendrite regeneration is poorly understood. To test whether calcium and cAMP might also be involved in dendrite injury signaling, we tracked the responses of Drosophila dendritic arborization neurons to laser severing of axons and dendrites. We found that calcium and subsequently cAMP accumulate in the cell body after both dendrite and axon injury. Two voltage-gated calcium channels (VGCCs), L-Type and T-Type, are required for the calcium influx in response to dendrite injury and play a role in rapid initiation of dendrite regeneration. The AC8 family adenylyl cyclase, Ac78C, is required for cAMP production after dendrite injury and timely initiation of regeneration. Injury-induced cAMP production is sensitive to VGCC reduction, placing calcium upstream of cAMP generation. We propose that two VGCCs initiate global calcium influx in response to dendrite injury followed by production of cAMP by Ac78C. This signaling pathway promotes timely initiation of dendrite regrowth several hours after dendrite damage.


Asunto(s)
Adenilil Ciclasas , Canales de Calcio Tipo L , Calcio , AMP Cíclico , Dendritas , Animales , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Axones/metabolismo , Axones/fisiología , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Señalización del Calcio/genética , AMP Cíclico/metabolismo , Dendritas/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/genética , Neuronas/metabolismo , Regeneración/genética , Regeneración/fisiología , Transducción de Señal
9.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201743

RESUMEN

Neurodegenerative disorders, including traumatic injuries to the central nervous system (CNS) and neurodegenerative diseases, are characterized by early axonal damage, which does not regenerate in the adult mammalian CNS, leading to permanent neurological deficits. One of the primary causes of the loss of regenerative ability is thought to be a developmental decline in neurons' intrinsic capability for axon growth. Different molecules are involved in the developmental loss of the ability for axon regeneration, including many transcription factors. However, the function of microRNAs (miRNAs), which are also modulators of gene expression, in axon re-growth is still unclear. Among the various miRNAs recently identified with roles in the CNS, miR-17, which is highly expressed during early development, emerges as a promising target to promote axon regeneration. Here, we used adeno-associated viral (AAV) vectors to overexpress miR-17 (AAV.miR-17) in primary cortical neurons and evaluate its effects on neurite and axon regeneration in vitro. Although AAV.miR-17 had no significant effect on neurite outgrowth and arborization, it significantly enhances neurite regeneration after scratch lesion and axon regeneration after axotomy of neurons cultured in microfluidic chambers. Target prediction and functional annotation analyses suggest that miR-17 regulates gene expression associated with autophagy and cell metabolism. Our findings suggest that miR-17 promotes regenerative response and thus could mitigate neurodegenerative effects.


Asunto(s)
Axones , Dependovirus , MicroARNs , Regeneración Nerviosa , Neuritas , MicroARNs/genética , MicroARNs/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Regeneración Nerviosa/genética , Neuritas/metabolismo , Dependovirus/genética , Células Cultivadas , Vectores Genéticos/genética , Ratones , Neuronas/metabolismo
10.
Elife ; 122024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133541

RESUMEN

In a developing nervous system, axonal arbors often undergo complex rearrangements before neural circuits attain their final innervation topology. In the lateral line sensory system of the zebrafish, developing sensory axons reorganize their terminal arborization patterns to establish precise neural microcircuits around the mechanosensory hair cells. However, a quantitative understanding of the changes in the sensory arbor morphology and the regulators behind the microcircuit assembly remain enigmatic. Here, we report that Semaphorin7A (Sema7A) acts as an important mediator of these processes. Utilizing a semi-automated three-dimensional neurite tracing methodology and computational techniques, we have identified and quantitatively analyzed distinct topological features that shape the network in wild-type and Sema7A loss-of-function mutants. In contrast to those of wild-type animals, the sensory axons in Sema7A mutants display aberrant arborizations with disorganized network topology and diminished contacts to hair cells. Moreover, ectopic expression of a secreted form of Sema7A by non-hair cells induces chemotropic guidance of sensory axons. Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.


Asunto(s)
Sistema de la Línea Lateral , Semaforinas , Pez Cebra , Animales , Semaforinas/metabolismo , Semaforinas/genética , Sistema de la Línea Lateral/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Axones/fisiología , Axones/metabolismo , Red Nerviosa/fisiología
11.
J Cell Mol Med ; 28(16): e70012, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39187917

RESUMEN

Neuritin, also known as candidate plasticity gene 15 (CPG15), was first identified as one of the activity-dependent gene products in the brain. Previous studies have been reported that Neuritin induces neuritogenesis, neurite arborization, neurite outgrowth and synapse formation, which are involved in the development and functions of the central nervous system. However, the role of Neuritin in peripheral nerve injury is still unknown. Given the importance and necessity of Schwann cell dedifferentiation response to peripheral nerve injury, we aim to investigate the molecular mechanism of Neuritin steering Schwann cell dedifferentiation during Wallerian degeneration (WD) in injured peripheral nerve. Herein, using the explants of sciatic nerve, an ex vivo model of nerve degeneration, we provided evidences indicating that Neuritin vividly accelerates Schwann cell dedifferentiation. Moreover, we found that Neuritin promotes Schwann cell demyelination as well as axonal degeneration, phagocytosis, secretion capacity. In summary, we first described Neuritin acts as a positive regulator for Schwann cell dedifferentiation and WD after peripheral nerve injury.


Asunto(s)
Desdiferenciación Celular , Neuropéptidos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Células de Schwann , Nervio Ciático , Transducción de Señal , Serina-Treonina Quinasas TOR , Degeneración Walleriana , Células de Schwann/metabolismo , Células de Schwann/patología , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , Animales , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Nervio Ciático/patología , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/genética , Ratas , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Ratas Sprague-Dawley , Axones/metabolismo , Axones/patología , Masculino , Fagocitosis , Ratones
12.
Regen Med ; 19(6): 327-343, 2024 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-38957920

RESUMEN

Background: Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.Materials & methods: PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.Results: Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.Conclusion: PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.


[Box: see text].


Asunto(s)
Axones , Macrófagos , Regeneración Nerviosa , Ratas Wistar , Células de Schwann , Nervio Ciático , Animales , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Axones/efectos de los fármacos , Axones/metabolismo , Ratas , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino
13.
Sci Rep ; 14(1): 17360, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075089

RESUMEN

Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.


Asunto(s)
Anoctamina-1 , Axones , Dinoprostona , Ganglios Espinales , Canal de Sodio Activado por Voltaje NAV1.8 , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Animales , Dinoprostona/farmacología , Dinoprostona/metabolismo , Axones/metabolismo , Axones/efectos de los fármacos , Axones/fisiología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ratas , Anoctamina-1/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Ratas Sprague-Dawley , Células Cultivadas , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , AMP Cíclico/metabolismo
14.
Cell Mol Life Sci ; 81(1): 315, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066803

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Fármacos Neuroprotectores , Vincristina , Vincristina/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Fármacos Neuroprotectores/farmacología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Células Cultivadas , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
15.
Cell Rep ; 43(8): 114537, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39052476

RESUMEN

Various ribonucleoprotein complexes (RNPs) often function in the form of membraneless organelles derived from multivalence-driven liquid-liquid phase separation (LLPS). Post-translational modifications, such as phosphorylation and arginine methylation, govern the assembly and disassembly of membraneless organelles. This study reveals that asymmetric dimethylation of arginine can create extra binding sites for multivalent Tudor domain-containing proteins like survival of motor neuron (SMN) protein, thereby lowering the threshold for LLPS of RNPs, such as fused in sarcoma (FUS). Accordingly, FUS hypomethylation or knockdown of SMN disrupts the formation and transport of neuronal granules in axons. Wild-type SMN, but not the spinal muscular atrophy-associated form of SMN, SMN-Δ7, rescues neuronal defects due to SMN knockdown. Importantly, a fusion of SMN-Δ7 to an exogenous oligomeric protein is sufficient to rescue axon length defects caused by SMN knockdown. Our findings highlight the significant role of arginine methylation-enabled multivalent interactions in LLPS and suggest their potential impact on various aspects of neuronal activities in neurodegenerative diseases.


Asunto(s)
Arginina , Gránulos Citoplasmáticos , Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Arginina/metabolismo , Metilación , Humanos , Animales , Gránulos Citoplasmáticos/metabolismo , Ratones , Neuronas/metabolismo , Axones/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Separación de Fases
16.
Cell Mol Life Sci ; 81(1): 318, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073571

RESUMEN

Nerve regeneration and circuit reconstruction remain a challenge following spinal cord injury (SCI). Corticospinal pyramidal neurons possess strong axon projection ability. In this study, human induced pluripotent stem cells (iPSCs) were differentiated into pyramidal neuronal precursors (PNPs) by addition of small molecule dorsomorphin into the culture. iPSC-derived PNPs were transplanted acutely into a rat contusion SCI model on the same day of injury. Following engraftment, the SCI rats showed significantly improved motor functions compared with vehicle control group as revealed by behavioral tests. Eight weeks following engraftment, the PNPs matured into corticospinal pyramidal neurons and extended axons into distant host spinal cord tissues, mostly in a caudal direction. Host neurons rostral to the lesion site also grew axons into the graft. Possible synaptic connections as a bridging relay may have been formed between host and graft-derived neurons, as indicated by pre- and post-synaptic marker staining and the regulation of chemogenetic regulatory systems. PNP graft showed an anti-inflammatory effect at the injury site and could bias microglia/macrophages towards a M2 phenotype. In addition, PNP graft was safe and no tumor formation was detected after transplantation into immunodeficient mice and SCI rats. The potential to reconstruct a neuronal relay circuitry across the lesion site and to modulate the microenvironment in SCI makes PNPs a promising cellular candidate for treatment of SCI.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Pluripotentes Inducidas/metabolismo , Ratas , Ratas Sprague-Dawley , Células Piramidales/metabolismo , Células Piramidales/patología , Ratones , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Regeneración Nerviosa , Axones/metabolismo
17.
J Biomed Sci ; 31(1): 69, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992696

RESUMEN

BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.


Asunto(s)
Plasticidad Neuronal , Proteínas de Unión al ARN , Transmisión Sináptica , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Ratones Noqueados , Axones/metabolismo , Axones/fisiología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Masculino , Biosíntesis de Proteínas
18.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970101

RESUMEN

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Asunto(s)
Axones , Macrófagos , Nanofibras , Regeneración Nerviosa , Traumatismos de la Médula Espinal , Animales , Axones/metabolismo , Nanofibras/química , Regeneración Nerviosa/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratas , Andamios del Tejido/química , Nanopartículas/química , Ratas Sprague-Dawley , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Ratones Endogámicos C57BL
19.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928119

RESUMEN

The use of acellular nerve allografts (ANAs) to reconstruct long nerve gaps (>3 cm) is associated with limited axon regeneration. To understand why ANA length might limit regeneration, we focused on identifying differences in the regenerative and vascular microenvironment that develop within ANAs based on their length. A rat sciatic nerve gap model was repaired with either short (2 cm) or long (4 cm) ANAs, and histomorphometry was used to measure myelinated axon regeneration and blood vessel morphology at various timepoints (2-, 4- and 8-weeks). Both groups demonstrated robust axonal regeneration within the proximal graft region, which continued across the mid-distal graft of short ANAs as time progressed. By 8 weeks, long ANAs had limited regeneration across the ANA and into the distal nerve (98 vs. 7583 axons in short ANAs). Interestingly, blood vessels within the mid-distal graft of long ANAs underwent morphological changes characteristic of an inflammatory pathology by 8 weeks post surgery. Gene expression analysis revealed an increased expression of pro-inflammatory cytokines within the mid-distal graft region of long vs. short ANAs, which coincided with pathological changes in blood vessels. Our data show evidence of limited axonal regeneration and the development of a pro-inflammatory environment within long ANAs.


Asunto(s)
Aloinjertos , Regeneración Nerviosa , Nervio Ciático , Animales , Ratas , Axones/metabolismo , Masculino , Vasos Sanguíneos , Inflamación/patología , Inflamación/metabolismo , Microambiente Celular , Trasplante Homólogo , Citocinas/metabolismo , Ratas Sprague-Dawley
20.
J Virol ; 98(7): e0056124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869285

RESUMEN

Alpha herpesvirus (α-HV) particles enter their hosts from mucosal surfaces and efficiently maintain fast transport in peripheral nervous system (PNS) axons to establish infections in the peripheral ganglia. The path from axons to distant neuronal nuclei is challenging to dissect due to the difficulty of monitoring early events in a dispersed neuron culture model. We have established well-controlled, reproducible, and reactivateable latent infections in compartmented rodent neurons by infecting physically isolated axons with a small number of viral particles. This system not only recapitulates the physiological infection route but also facilitates independent treatment of isolated cell bodies or axons. Consequently, this system enables study not only of the stimuli that promote reactivation but also the factors that regulate the initial switch from productive to latent infection. Adeno-associated virus (AAV)-mediated expression of herpes simplex-1 (HSV-1) VP16 alone in neuronal cell bodies enabled the escape from silencing of incoming pseudorabies virus (PRV) genomes. Furthermore, the expression of HSV VP16 alone reactivated a latent PRV infection in this system. Surprisingly, the expression of PRV VP16 protein supported neither PRV escape from silencing nor reactivation. We compared transcription transactivation activity of both VP16 proteins in primary neurons by RNA sequencing and found that these homolog viral proteins produce different gene expression profiles. AAV-transduced HSV VP16 specifically induced the expression of proto-oncogenes including c-Jun and Pim2. In addition, HSV VP16 induces phosphorylation of c-Jun in neurons, and when this activity is inhibited, escape of PRV silencing is dramatically reduced.IMPORTANCEDuring latency, alpha herpesvirus genomes are silenced yet retain the capacity to reactivate. Currently, host and viral protein interactions that determine the establishment of latency, induce escape from genome silencing or reactivation are not completely understood. By using a compartmented neuronal culture model of latency, we investigated the effect of the viral transcriptional activator, VP16 on pseudorabies virus (PRV) escape from genome silencing. This model recapitulates the physiological infection route and enables the study of the stimuli that regulate the initial switch from a latent to productive infection. We investigated the neuronal transcriptional activation profiles of two homolog VP16 proteins (encoded by HSV-1 or PRV) and found distinct gene activation signatures leading to diverse infection outcomes. This study contributes to understanding of how alpha herpesvirus proteins modulate neuronal gene expression leading to the initiation of a productive or a latent infection.


Asunto(s)
Proteína Vmw65 de Virus del Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Suido 1 , Neuronas , Activación Viral , Latencia del Virus , Animales , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Neuronas/virología , Neuronas/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/genética , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/genética , Silenciador del Gen , Ratas , Axones/virología , Axones/metabolismo , Dependovirus/genética , Dependovirus/fisiología , Seudorrabia/virología , Seudorrabia/metabolismo , Células Cultivadas , Herpes Simple/virología , Herpes Simple/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA