Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Protein Sci ; 29(11): 2164-2174, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32797646

RESUMEN

For the field of virology, perhaps one of the most paradigm-shifting events so far in the 21st century was the identification of the giant double-stranded DNA virus that infects amoebae. Remarkably, this virus, known as Mimivirus, has a genome that encodes for nearly 1,000 proteins, some of which are involved in the biosynthesis of unusual sugars. Indeed, the virus is coated by a layer of glycosylated fibers that contain d-glucose, N-acetyl-d-glucosamine, l-rhamnose, and 4-amino-4,6-dideoxy-d-glucose. Here we describe a combined structural and enzymological investigation of the protein encoded by the open-reading frame L780, which corresponds to an l-rhamnose synthase. The structure of the L780/NADP+ /UDP-l-rhamnose ternary complex was determined to 1.45 Å resolution and refined to an overall R-factor of 19.9%. Each subunit of the dimeric protein adopts a bilobal-shaped appearance with the N-terminal domain harboring the dinucleotide-binding site and the C-terminal domain positioning the UDP-sugar into the active site. The overall molecular architecture of L780 places it into the short-chain dehydrogenase/reductase superfamily. Kinetic analyses indicate that the enzyme can function on either UDP- and dTDP-sugars but displays a higher catalytic efficiency with the UDP-linked substrate. Site-directed mutagenesis experiments suggest that both Cys 108 and Lys 175 play key roles in catalysis. This structure represents the first model of a viral UDP-l-rhamnose synthase and provides new details into these fascinating enzymes.


Asunto(s)
Acanthamoeba/virología , Carbohidrato Epimerasas/química , Mimiviridae/enzimología , Azúcares de Uridina Difosfato/química , Proteínas Virales/química , Cristalografía por Rayos X , Mimiviridae/genética , Dominios Proteicos
2.
Glycobiology ; 29(12): 839-846, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31679023

RESUMEN

l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.


Asunto(s)
Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Oryza/enzimología , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Oryza/citología
3.
Molecules ; 24(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443364

RESUMEN

Isorhamnetin-3-O-rhamnoside was synthesized by a highly efficient three-enzyme (rhamnosyltransferase, glycine max sucrose synthase and uridine diphosphate (UDP)-rhamnose synthase) cascade using a UDP-rhamnose regeneration system. The rhamnosyltransferase gene (78D1) from Arabidopsis thaliana was cloned, expressed, and characterized in Escherichia coli. The optimal activity was at pH 7.0 and 45 °C. The enzyme was stable over the pH range of 6.5 to 8.5 and had a 1.5-h half-life at 45 °C. The Vmax and Km for isorhamnetin were 0.646 U/mg and 181 µM, respectively. The optimal pH and temperature for synergistic catalysis were 7.5 and 25 °C, and the optimal concentration of substrates were assayed, respectively. The highest titer of isorhamnetin-3-O-rhamnoside production reached 231 mg/L with a corresponding molar conversion of 100%. Isorhamnetin-3-O-rhamnoside was purified and the cytotoxicity against HepG2, MCF-7, and A549 cells were evaluated. Therefore, an efficient method for isorhamnetin-3-O-rhamnoside production described herein could be widely used for the rhamnosylation of flavonoids.


Asunto(s)
Carbohidrato Epimerasas/química , Técnicas de Química Sintética , Flavonoles/síntesis química , Glucosiltransferasas/química , Hexosiltransferasas/química , Azúcares de Uridina Difosfato/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Catálisis , Línea Celular Tumoral , Flavonoles/farmacología , Humanos
4.
PLoS One ; 13(11): e0207521, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30458018

RESUMEN

SLC35B4 belongs to the solute carrier 35 (SLC35) family whose best-characterized members display a nucleotide sugar transporting activity. Using an experimental model of HepG2 cells and indirect immunofluorescent staining, we verified that SLC35B4 was localized to the endoplasmic reticulum (ER). We demonstrated that dilysine motif, especially lysine at position 329, is crucial for the ER localization of this protein in human cells and therefore one should use protein C-tagging with caution. To verify the importance of the protein in glycoconjugates synthesis, we generated SLC35B4-deficient HepG2 cell line using CRISPR-Cas9 approach. Our data showed that knock-out of the SLC35B4 gene does not affect major UDP-Xyl- and UDP-GlcNAc-dependent glycosylation pathways.


Asunto(s)
Secuencias de Aminoácidos/genética , Retículo Endoplásmico/química , Aparato de Golgi/química , Proteínas de Transporte de Nucleótidos/química , Secuencia de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Dipéptidos/química , Dipéptidos/genética , Retículo Endoplásmico/genética , Glucosamina/análogos & derivados , Glucosamina/química , Glicosilación , Aparato de Golgi/genética , Células Hep G2 , Humanos , Lisina/química , Lisina/genética , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Transducción de Señal , Azúcares de Uridina Difosfato/química
5.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 241-245, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368284

RESUMEN

The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstrate DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.


Asunto(s)
Transferasas Intramoleculares/química , Oryza/química , Proteínas de Plantas/química , Azúcares de Uridina Difosfato/química , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Ditiotreitol/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Oryza/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Subtilisina/química , Azúcares de Uridina Difosfato/metabolismo , Difracción de Rayos X
6.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 510-519, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28192204

RESUMEN

UDP-arabinopyranose mutase (UAM) is a plant enzyme which interconverts UDP-arabinopyranose (UDP-Arap; a six-membered sugar) to UDP-arabinofuranose (UDP-Araf; a five-membered sugar). Plant mutases belong to a small gene family called Reversibly Glycosylated Proteins (RGPs). So far, UAM has been identified in Oryza sativa (Rice), Arabidopsis thaliana and Hordeum vulgare (Barley). The enzyme requires divalent metal ions for catalytic activity. Here, the divalent metal ion dependency of UAMs from O. sativa (rice) and A. thaliana have been studied using HPLC-based kinetic assays. It was determined that UAM from these species had the highest relative activity in a range of 40-80µM Mn2+. Excess Mn2+ ion concentration decreased the enzyme activity. This trend was observed when other divalent metal ions were used to test activity. To gain a perspective of the role played by the metal ion in activity, an ab initio structural model was generated based on the UAM amino acid sequence and a potential metal binding region was identified. Based on our results, we propose that the probable role of the metal in UAM is stabilizing the diphosphate of the substrate, UDP-Arap.


Asunto(s)
Arabidopsis/enzimología , Transferasas Intramoleculares/química , Oryza/enzimología , Azúcares de Uridina Difosfato/química , Sitios de Unión , Catálisis , Pared Celular/enzimología , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Iones/química , Cinética , Metales/química , Unión Proteica , Azúcares de Uridina Difosfato/metabolismo
7.
Plant Cell Rep ; 35(11): 2403-2421, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27591771

RESUMEN

KEY MESSAGE: The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.


Asunto(s)
Carboxiliasas/genética , Genes de Plantas , Familia de Multigenes , Ornithogalum/enzimología , Ornithogalum/genética , Transcriptoma/genética , Azúcares de Uridina Difosfato/metabolismo , Uridina Difosfato Xilosa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Compuestos de Amonio/farmacología , Biocatálisis/efectos de los fármacos , Tampones (Química) , Calcio/farmacología , Carboxiliasas/química , Carboxiliasas/metabolismo , Cromatografía Líquida de Alta Presión , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Ornithogalum/efectos de los fármacos , Espectroscopía de Protones por Resonancia Magnética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Temperatura , Transcriptoma/efectos de los fármacos , Azúcares de Uridina Difosfato/química , Uridina Difosfato Xilosa/química
8.
Protein Sci ; 25(8): 1555-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27171345

RESUMEN

ArnA from Escherichia coli is a key enzyme involved in the formation of 4-amino-4-deoxy-l-arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram-negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N- and C-terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N(10) -formyltetrahydrofolate. Here we describe the structure of the isolated N-terminal domain of ArnA in complex with its UDP-sugar substrate and N(5) -formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.


Asunto(s)
Amino Azúcares/química , Carboxiliasas/química , Coenzimas/química , Escherichia coli/química , Formiltetrahidrofolatos/química , Azúcares de Uridina Difosfato/química , Amino Azúcares/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Clonación Molecular , Coenzimas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Formiltetrahidrofolatos/metabolismo , Expresión Génica , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Azúcares de Uridina Difosfato/metabolismo
9.
Biochemistry ; 53(4): 796-805, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24460375

RESUMEN

Cationic Antimicrobial Peptides (CAMPs) represent a first line of defense against bacterial colonization. When fighting Gram-negative bacteria, CAMPs initially interact electrostatically with the negatively charged phosphate groups in lipid A and are thought to kill bacteria by disrupting their membrane integrity. However, many human pathogens, including Salmonella and Pseudomonas , have evolved lipid A modification mechanisms that result in resistance to CAMPs and related antibiotics such as Colistin. The addition of 4-amino-4-deoxy-l-Arabinose (Ara4N) to a phosphate group in lipid A is one such modification, frequently found in Pseudomonas isolated from cystic fibrosis patients. The pathway for biosynthesis of Ara4N-lipid A requires conversion of UDP-Glucuronic acid into UDP-Ara4N and subsequent transfer of the amino-sugar to lipid A. ArnB is a pyridoxal-phosphate (PLP) dependent transaminase that catalyzes a crucial step in the pathway: synthesis of UDP-Ara4N from UDP-4-keto-pentose. Here we present the 2.3 Å resolution crystal structure of an active site mutant of ArnB (K188A) in complex with the reaction intermediate aldimine formed by UDP-Ara4N and PLP. The sugar-nucleotide binding site is in a cleft between the subunits of the ArnB dimer with the uracil buried at the interface and the UDP ribose and phosphate groups exposed to the solvent. The Ara4N moiety is found in the (4)C1 conformation and its positioning, stabilized by interactions with both the protein and cofactor, is compatible with catalysis. The structure suggests strategies for the development of specific inhibitors that may prove useful in the treatment of resistant bacteria such as Pseudomonas found in cystic fibrosis patients.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/química , Farmacorresistencia Bacteriana , Polimixinas/farmacología , Salmonella typhimurium/enzimología , Transaminasas/química , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Conformación Proteica , Fosfato de Piridoxal/química , Salmonella typhimurium/genética , Especificidad por Sustrato , Azúcares de Uridina Difosfato/química
10.
Anal Chem ; 82(23): 9782-8, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21043458

RESUMEN

We examined the analysis of nucleotides and nucleotide sugars by chromatography on porous graphitic carbon with mass spectrometric detection, a method that evades contamination of the MS instrument with ion pairing reagent. At first, adenosine triphosphate (ATP) and other triphosphate nucleotides exhibited very poor chromatographic behavior on new columns and could hardly be eluted from columns previously cleaned with trifluoroacetic acid. Satisfactory performance of both new and older columns could, however, be achieved by treatment with reducing agent and, unexpectedly, hydrochloric acid. Over 40 nucleotides could be detected in cell extracts including many isobaric compounds such as ATP, deoxyguanosine diphosphate (dGTP), and phospho-adenosine-5'-phosphosulfate or 3',5'-cyclic adenosine 5'-monophosphate (AMP) and its much more abundant isomer 2',3'-cyclic AMP. A fast sample preparation procedure based on solid-phase extraction on carbon allowed detection of very short-lived analytes such as cytidine 5'-monophosphate (CMP)-2-keto-deoxy-octulosonic acid. In animal cells and plant tissues, about 35 nucleotide sugars were detected, among them rarely considered metabolites such as uridine 5'-diphosphate (UDP)-l-arabinopyranose, UDP-L-arabinofuranose, guanosine 5'-diphosphate (GDP)-L-galactofuranose, UDP-L-rhamnose, and adenosine diphosphate (ADP)-sugars. Surprisingly, UDP-arabinopyranose was also found in Chinese hamster ovary (CHO) cells. Due to the unique structural selectivity of graphitic carbon, the method described herein distinguishes more nucleotides and nucleotide sugars than previously reported approaches.


Asunto(s)
Carbono/química , Cromatografía Líquida de Alta Presión/métodos , Nucleótidos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Adenosina Fosfosulfato/química , Adenosina Trifosfato/química , Animales , Células CHO , Cricetinae , Cricetulus , Guanosina Difosfato/química , Isomerismo , Porosidad , Sustancias Reductoras/química , Azúcares de Uridina Difosfato/química
11.
J Bacteriol ; 190(18): 6153-61, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18641143

RESUMEN

Nucleoside 5'-diphosphate-X hydrolases are interesting enzymes to study due to their varied activities and structure-function relationships and the roles they play in the disposal, assimilation, and modulation of the effects of their substrates. Few of these enzymes with a preference for CDP-alcohols are known. In Yersinia intermedia suspensions prepared from cultures on Columbia agar with 5% sheep blood, we found a CDP-alcohol hydrolase liberated to Triton X-100-containing medium. Growth at 25 degrees C was deemed optimum in terms of the enzyme-activity yield. The purified enzyme also displayed 5'-nucleotidase, UDP-sugar hydrolase, and dinucleoside-polyphosphate hydrolase activities. It was identified as the protein product (UshA(Yi)) of the Y. intermedia ushA gene (ushA(Yi)) by its peptide mass fingerprint and by PCR cloning and expression to yield active enzyme. All those activities, except CDP-alcohol hydrolase, have been shown to be the properties of UshA of Escherichia coli (UshA(Ec)). Therefore, UshA(Ec) was expressed from an appropriate plasmid and tested for CDP-alcohol hydrolase activity. UshA(Ec) and UshA(Yi) behaved similarly. Besides being the first study of a UshA enzyme in the genus Yersinia, this work adds CDP-alcohol hydrolase to the spectrum of UshA activities and offers a novel perspective on these proteins, which are viewed here for the first time as highly efficient enzymes with k(cat)/K(m) ratios near the theoretical maximum level of catalytic activities. The results are discussed in the light of the known structures of UshA(Ec) conformers and the respective homology models constructed for UshA(Yi), and also in relation to possible biological functions. Interestingly, every Yersinia species with a sequenced genome contains an intact ushA gene, except Y. pestis, which in all its sequenced biovars contains a ushA gene inactivated by frameshift mutations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Nucleotidasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Yersinia/enzimología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Escherichia coli/química , Escherichia coli/genética , Expresión Génica , Cinética , Datos de Secuencia Molecular , Nucleotidasas/química , Nucleotidasas/genética , Nucleotidasas/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Ratas , Especificidad por Sustrato , Azúcares de Uridina Difosfato/química , Yersinia/química , Yersinia/genética
12.
Glycobiology ; 17(3): 345-54, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17182701

RESUMEN

Plant cell walls constitute the bulk of the earth renewable source of energy and are a component in the diet of humans and herbivores. l-Arabinofuranosyl (Araf) residues are a quantifiably important constituent of these walls. Plants use uridine diphosphate (UDP)-l-arabinofuranose (UDP-Araf) to donate Araf residues in the biosynthesis of Araf-containing polysaccharides, proteoglycans, and glycoproteins. However, little is known about the formation of UDP-Araf. We now describe the purification and partial characterization of a rice UDP-arabinopyranose mutase (UAM) that catalyzes the formation of UDP-Araf from UDP-arabinopyranose (UDP-Arap). The reaction is reversible and at thermodynamic equilibrium the pyranose form is favored over the furanose form (90 : 10). Three related proteins that are encoded by rice gene loci Os03g40270, Os04g56520, and Os07g41360 were identified from partial amino acid sequences of UAM. These proteins have >80% sequence identity with polypeptides that are reversibly glycosylated in the presence of UDP-sugars. The rice mutase and two functionally active recombinant mutases were shown to be reversibly glycosylated in the presence of UDP-Glc. The cofactor, flavin-adenine-dinucleotide (FAD), is required for the catalytic activity of UDP-galactose mutases of prokaryotes, fungi, and protozoa. The plant mutases, which do not require a cofactor, must therefore have a different catalytic mechanism. Putative UAM-encoding genes are present in the green algae Chlamydomonas reinhardtii, the moss Physcomitrella patens, the gymnosperm Pinus taeda (loblolly pine), and in numerous dicots and monocots, indicating that UAMs are widespread in green plants.


Asunto(s)
Transferasas Intramoleculares/química , Oryza/enzimología , Proteínas de Plantas/química , Azúcares de Uridina Difosfato/química , Secuencia de Aminoácidos , Flavina-Adenina Dinucleótido/química , Genes de Plantas , Glicosilación , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/aislamiento & purificación , Datos de Secuencia Molecular , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Plantones/enzimología , Plantones/genética , Uridina Difosfato Glucosa/química , Azúcares de Uridina Difosfato/metabolismo
13.
J Biol Chem ; 280(30): 27604-12, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15929980

RESUMEN

In most members of the Enterobacteriaceae, including Escherichia coli and Salmonella, the lipopolysaccharide core oligosaccharide backbone is modified by phosphoryl groups. The negative charges provided by these residues are important in maintaining the barrier function of the outer membrane. Mutants lacking the core heptose region and the phosphate residues display pleiotrophic defects collectively known as the deep-rough phenotype, characterized by changes in outer membrane structure and function. Klebsiella pneumoniae lacks phosphoryl residues in its core, but instead contains galacturonic acid. The goal of this study was to determine the contribution of galacturonic acid as a critical source of negative charge. A mutant was created lacking all galacturonic acid by targeting UDP-galacturonic acid precursor synthesis through a mutation in gla(KP). Gla(KP) is a K. pneumoniae UDP-galacturonic acid C4 epimerase providing UDP-galacturonic acid for core synthesis. The gla(KP) gene was inactivated and the structure of the mutant lipopolysaccharide was determined by mass spectrometry. The mutant displayed characteristics of a deep-rough phenotype, exhibiting a hypersensitivity to hydrophobic compounds and polymyxin B, an altered outer membrane profile, and the release of the periplasmic enzyme beta-lactamase. These results indicate that the negative charge provided by the carboxyl groups of galacturonic acid do play an equivalent role to the core oligosaccharide phosphate residues in establishing outer membrane integrity in E. coli and Salmonella.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Hexurónicos/metabolismo , Klebsiella pneumoniae/metabolismo , Secuencia de Carbohidratos , ADN/química , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Genotipo , Heptosas/química , Ácidos Hexurónicos/química , Hidrólisis , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis , Mutación , Péptidos/química , Fenotipo , Fosfatos/química , Plásmidos/metabolismo , Polimixina B/química , Unión Proteica , Salmonella/metabolismo , Espectrofotometría , Azúcares de Uridina Difosfato/química , beta-Lactamasas/química , beta-Lactamasas/metabolismo
14.
J Biol Chem ; 277(24): 21610-6, 2002 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-11943783

RESUMEN

The hyaluronan (HA) synthases catalyze the addition of two different monosaccharides from UDP-sugar substrates to the linear heteropolysaccharide chain. To accomplish this task, the HA synthases must be able to bind and to transfer from both UDP-sugar substrates. Until now, it has been impossible to distinguish between these two abilities. We have created a mutant of xlHAS1, a HA synthase from Xenopus laevis, that allows for the examination of the enzyme's ability to bind substrate only. The ability of different compounds to protect the xlHAS1(C337S) mutant enzyme from loss of activity due to treatment with N-ethylmaleimide, a cysteine-modifying reagent, yields information on the relative affinity of a variety of nucleotides and nucleotide-sugars. We have observed that the substrate binding selectivity is more relaxed than the specificity of catalytic transfer. The only attribute that appears to be absolutely required for binding is a nucleotide containing two phosphates complexed with magnesium ion. The role of certain cysteine residues in catalysis was also evaluated. Cys307 of xlHAS1 may play a role in catalysis or in maintaining structure. Mutation of Cys337 raises the UDP-GlcUA Michaelis constant (K(m)), suggesting that this residue participates in UDP-GlcUA substrate binding or in catalytic complex formation.


Asunto(s)
Cisteína/química , Glucuronosiltransferasa/química , Glicosiltransferasas , Proteínas de la Membrana , Transferasas , Azúcares de Uridina Difosfato/química , Proteínas de Xenopus , Animales , Sitios de Unión , Catálisis , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Etilmaleimida/farmacología , Hialuronano Sintasas , Cinética , Mutación , Polisacáridos/química , Unión Proteica , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Reactivos de Sulfhidrilo/farmacología , Xenopus laevis
15.
Biochemistry ; 36(21): 6294-304, 1997 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-9174344

RESUMEN

UDP-galactose 4-epimerase from Escherichia coli catalyzes the interconversion of UDP-galactose and UDP-glucose through the transient reduction of the tightly bound cofactor NAD+. The enzyme is unique among the NAD+-dependent enzymes in that it promotes stereospecific reduction of the cofactor but nonstereospecific hydride return during normal catalysis. In addition to hydride transfer, the reaction mechanism of epimerase involves two key features: the abstraction of a proton from the 4'-hydroxyl group of glucose or galactose by an active site base and the rotation of a 4-ketopyranose intermediate in the active site pocket. To address the second issue of movement within the active site, the X-ray structures of reduced epimerase complexed with UDP-mannose, UDP-4-deoxy-4-fluoro-alpha-D-galactose, or UDP-4-deoxy-4-fluoro-alpha-D-glucose have been determined and refined to 1.65, 1.8, and 1.65 A resolution, respectively. A comparison of these models to that of the previously determined epimerase/NADH/UDP-glucose abortive complex reveals that the active site accommodates the various sugars by simple rearrangements of water molecules rather than by large changes in side chain conformations. In fact, the polypeptide chains for all of the epimerase/NADH/UDP-sugar complexes studied thus far are remarkably similar and can be superimposed with root-mean-square deviations of not greater than 0.24 A. The only significant differences between the various enzyme/UDP-sugar models occur in two of the dihedral angles defining the conformation of the UDP-sugar ligands.


Asunto(s)
Escherichia coli/enzimología , UDPglucosa 4-Epimerasa/química , Uridina Difosfato Galactosa/química , Uridina Difosfato Glucosa/química , Uridina Difosfato/química , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Sustancias Macromoleculares , NAD/química , NAD/metabolismo , Especificidad por Sustrato , UDPglucosa 4-Epimerasa/metabolismo , Uridina Difosfato/metabolismo , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo
16.
J Bacteriol ; 176(19): 6131-3, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7928976

RESUMEN

A membrane preparation from Enterococcus hirae contained UDP and methyl-UDP (mUDP) monosaccharides. This preparation, when incubated with combinations of folic acid, L-serine, and S-adenosyl-L-methionine in a reaction system containing UDP-glucose, promoted synthesis of certain mUDP sugars. Folic acid and serine produced mUDP-glucose and mUDP-rhamnose; S-adenosylmethionine produced mUDP-glucose, mUDP-mannose, and mUDP-fucose.


Asunto(s)
Membrana Celular/metabolismo , Enterococcus/metabolismo , Ácido Fólico/metabolismo , Metionina/metabolismo , Azúcares de Uridina Difosfato/biosíntesis , Fraccionamiento Celular , Sistema Libre de Células , Monosacáridos/análisis , S-Adenosilmetionina/metabolismo , Serina/metabolismo , Uridina Difosfato Glucosa/metabolismo , Azúcares de Uridina Difosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA