Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
BMC Microbiol ; 24(1): 211, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877452

RESUMEN

BACKGROUND: This study investigates the effectiveness of the bacteriophage KZag1 against drug-resistant Klebsiella pneumoniae, aiming to assess its potential as a therapeutic agent. The novelty lies in the characterization of KZag1, a Myovirus with specific efficacy against multidrug-resistant K. pneumoniae strains. This highlights the significance of exploring alternative strategies, particularly phage therapy, in addressing biofilm-associated infections. METHODS: KZag1, characterized by a typical Myovirus structure with a 75 ± 5 nm diameter icosahedral head and a 15 ± 5 nm short tail, was evaluated in experimental trials against 15 strains of K. pneumoniae. The infection cycle duration was determined to be 50 min, resulting in an estimated burst size of approximately 83 plaque-forming units per colony-forming unit (PFU/CFU). Stability assessments were conducted within a pH range of 4 to 12 and temperatures ranging from 45°C to 60°C. Biofilm biomass reduction was observed, particularly at a multiplicity of infection (MOI) of 10. RESULTS: KZag1 demonstrated infection efficacy against 12 out of 15 tested K. pneumoniae strains. The phage exhibited stability across a broad pH range and at elevated temperatures. Notably, treatment with KZag1 significantly reduced K. pneumoniae biofilm biomass, emphasizing its potential in combating biofilm formation. Genomic analysis revealed a complete genome of 157,089 base pairs with a GC content of 46.38%, encompassing 203 open reading frames (ORFs) and a cysteine-specific tRNA sequence. Comparison with phage GP4 highlighted similarities, with KZag1 having a longer genome by approximately 4829 base pairs and a higher GC content by approximately 0.93%. Phylogenetic analysis classified KZag1 within the Myoviridae family. CONCLUSION: The efficacy of KZag1 against K. pneumoniae biofilm suggests its potential as a therapeutic candidate, especially for drug-resistant infections. Further clinical research is warranted to explore its synergy with other treatments, elucidate genomic traits, compare with Myoviridae phages, and understand its host interactions. These findings underscore the promising role of KZag1 in addressing drug-resistant bacterial infections.


Asunto(s)
Bacteriófagos , Biopelículas , Genoma Viral , Klebsiella pneumoniae , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/genética , Biopelículas/crecimiento & desarrollo , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Myoviridae/genética , Myoviridae/fisiología , Myoviridae/clasificación , Farmacorresistencia Bacteriana Múltiple/genética , Filogenia , ADN Viral/genética , Composición de Base , Terapia de Fagos
2.
Virology ; 596: 110101, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38754335

RESUMEN

This study characterizes a newly isolated Demerecviridae phage, named vB_SalS_PSa2, belonging to the phage T5 group. The main variations between vB_SalS_PSa2 and T5 concern structural proteins related to morphology and host recognition. vB_SalS_PSa2 is infective to 19 out of the 25 tested Salmonella enterica (including the rare "Sendai" and "Equine" serotypes) and Escherichia coli isolates, most of them being multidrug resistant. vB_SalS_PSa2 displayed good thermal stability (4-60 °C) and broad pH stability (4.0-12.0). It also exhibited antibacterial activity against S. enterica sv. Paratyphi A Enb50 at 4 °C in milk during the whole tested period (5 d), and for 3-6 h at both 25 and 37 °C. Furthermore, vB_SalS_PSa2 was able to inhibit biofilm formation and to show degradation activity on mature biofilms of E. coli K12 and S. enterica sv. Paratyphi Enb50 in both LB and milk. Altogether, these results indicate that phage vB_SalS_PSa2 is a valuable candidate for controlling foodborne S. enterica and E. coli pathogens.


Asunto(s)
Escherichia coli , Salmonella enterica , Salmonella enterica/virología , Escherichia coli/virología , Leche/virología , Animales , Microbiología de Alimentos , Genoma Viral , Biopelículas/crecimiento & desarrollo , Fagos de Salmonella/fisiología , Fagos de Salmonella/aislamiento & purificación , Fagos de Salmonella/clasificación , Fagos de Salmonella/genética , Bacteriófagos/fisiología , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Filogenia , Especificidad del Huésped
3.
Biosens Bioelectron ; 257: 116334, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678788

RESUMEN

Burkholderia pseudomallei, widely distributed in tropical and subtropical ecosystems, is capable of causing the fatal zoonotic disease melioidosis and exhibiting a global trend of dissemination. Rapid and sensitive detection of B. pseudomallei is essential for environmental monitoring as well as infection control. Here, we developed an innovative biosensor for quantitatively detecting B. pseudomallei relies on ATP released triggered by bacteriophage-induced bacteria lysis. The lytic bacteriophage vB_BpP_HN01, with high specificity, is employed alongside magnetic nanoparticles assembly to create a biological receptor, facilitating the capture and enrichment of viable target bacteria. Following a brief extraction and incubation process, the captured target undergoes rapid lysis to release contents including ATP. The EXPAR-CRISPR cascade reaction provides an efficient signal transduction and dual amplification module that allowing the generated ATP to guide the signal output as an activator, ultimately converting the target bacterial amount into a detectable fluorescence signal. The proposed bacteriophage affinity strategy exhibited superior performance for B. pseudomallei detection with a dynamic range from 10^2 to 10^7 CFU mL-1, and a LOD of 45 CFU mL-1 within 80 min. Moreover, with the output signal compatible across various monitoring methods, this work offers a robust assurance for rapid diagnosis and on-site environmental monitoring of B. pseudomallei.


Asunto(s)
Adenosina Trifosfato , Bacteriófagos , Técnicas Biosensibles , Burkholderia pseudomallei , Sistemas CRISPR-Cas , Burkholderia pseudomallei/virología , Técnicas Biosensibles/métodos , Bacteriófagos/química , Bacteriófagos/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análisis , Melioidosis/microbiología , Límite de Detección , Humanos , Nanopartículas de Magnetita/química
4.
J Virol ; 98(3): e0173123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38329345

RESUMEN

In our 2012 genome announcement (J Virol 86:11403-11404, 2012, https://doi.org/10.1128/JVI.01954-12), we initially identified the host bacterium of bacteriophage Enc34 as Enterobacter cancerogenus using biochemical tests. However, later in-house DNA sequencing revealed that the true host is a strain of Hafnia alvei. Capitalizing on our new DNA-sequencing capabilities, we also refined the genomic termini of Enc34, confirming a 60,496-bp genome with 12-nucleotide 5' cohesive ends. IMPORTANCE: Our correction reflects the evolving landscape of bacterial identification, where molecular methods have supplanted traditional biochemical tests. This case underscores the significance of revisiting past identifications, as seemingly known bacterial strains may yield unexpected discoveries, necessitating essential updates to the scientific record. Despite the host identity correction, our genome announcement retains importance as the first complete genome sequence of a Hafnia alvei bacteriophage.


Asunto(s)
Bacteriófagos , Hafnia alvei , Tropismo al Anfitrión , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Enterobacter/química , Enterobacter/virología , Genoma Viral/genética , Hafnia alvei/clasificación , Hafnia alvei/genética , Hafnia alvei/virología , Error Científico Experimental , Análisis de Secuencia de ADN
5.
Braz. j. biol ; 82: 1-7, 2022. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468564

RESUMEN

The emergence of multi-drug resistant (MDR) bacterial strains, which are posing a global health threat has developed the interest of scientists to use bacteriophages instead of conventional antibiotics therapy. In light of an increased interest in the use of phage as a bacterial control agent, the study aimed to isolate and characterize lytic phages from sewage effluent. During the current study, bacteriophage AS1 was isolated from sewage effluent against E.coli S2. The lytic activity of phageAS1 was limited to E.coli S2 strain showing monovalent behavior. The calculated phage titer was 3.5×109 pfu/ml. PhageAS1 was stable at a wide range of pH and temperature. The maximum stability was recorded at 37ºC and pH 7.0, while showing its normal lytic activity at temperature 60ºC and from pH 5.0 to 11.0 respectively. At temperature 70ºC, phage activity was somewhat reduced whereas, further increase in temperature and decrease or increase in pH completely inactivated the phage. From the current study, it was concluded that waste water is a best source for finding bacteriophages against multi-drug resistant bacterial strains and can be used as bacterial control agent.


O surgimento de cepas bacterianas multirresistentes (MDR), que representam uma ameaça global à saúde, desenvolveu o interesse dos cientistas em usar bacteriófagos em vez da terapia convencional com antibióticos. Diante do crescente interesse no uso de fago como agente de controle bacteriano, o estudo visou isolar e caracterizar fagos líticos de efluente de esgoto. Durante o estudo atual, o bacteriófago AS1 foi isolado de efluente de esgoto contra E. coli S2. A atividade lítica de phageAS1 foi limitada à cepa E. coli S2, apresentando comportamento monovalente. O título de fago calculado foi de 3,5 x 109 ufp/ml. PhageAS1 foi estável em uma ampla faixa de pH e temperatura. A estabilidade máxima foi registrada a 37ºC e pH 7,0, enquanto mostrou atividade lítica normal em temperatura de 60ºC e pH 5,0 a 11,0, respectivamente. Na temperatura de 70ºC, a atividade do fago foi um pouco reduzida, enquanto o aumento adicional da temperatura e a diminuição ou aumento do pH inativaram completamente o fago. Com base no estudo atual, concluiu-se que a água residual é a melhor fonte para encontrar bacteriófagos contra cepas bacterianas multirresistentes e pode ser usada como agente de controle bacteriano.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Colifagos/aislamiento & purificación , Escherichia coli , Tipificación de Bacteriófagos/métodos , Aguas Residuales/análisis , Terapia de Fagos
6.
Microbiol Spectr ; 9(3): e0009021, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935421

RESUMEN

With the increasing prevalence of colorectal cancer (CRC), extending the present biomarkers for the diagnosis of colorectal cancer is crucial. Previous studies have highlighted the importance of bacteriophages in gastrointestinal diseases, suggesting the potential value of gut phageome in early CRC diagnostic. Here, based on 317 metagenomic samples of three discovery cohorts collected from China (Hong Kong), Austria, and Japan, five intestinal bacteriophages, including Fusobacterium nucleatum, Peptacetobacter hiranonis, and Parvimonas micra phages were identified as potential CRC biomarkers. The five CRC enriched bacteriophagic markers classified patients from controls with an area under the receiver-operating characteristics curve (AUC) of 0.8616 across different populations. Subsequently, we used a total of 80 samples from China (Hainan) and Italy for validation. The AUC of the validation cohort is 0.8197. Moreover, to further explore the specificity of the five intestinal bacteriophage biomarkers in a broader background, we performed a confirmatory meta-analysis using two inflammatory bowel disease cohorts, ulcerative colitis (UC) and Crohn's disease (CD). Excitingly, we observed that the five CRC-enriched phage markers also exhibited high discrimination in UC (AUC = 78.02%). Unfortunately, the five CRC-rich phage markers did not show high resolution in CD (AUC = 48.00%). The present research expands the potential of microbial biomarkers in CRC diagnosis by building a more accurate classification model based on the human gut phageome, providing a new perspective for CRC gut phagotherapy. IMPORTANCE Worldwide, by 2020, colorectal cancer has become the third most common cancer after lung and breast cancer. Phages are strictly host-specific, and this specificity makes them more accurate as biomarkers, but phage biomarkers for colorectal cancer have not been thoroughly explored. Therefore, it is crucial to extend the existing phage biomarkers for the diagnosis of colorectal cancer. Here, we innovatively constructed a relatively accurate prediction model, including: three discovery cohorts, two additional validation cohorts and two cross-disease cohorts. A total of five possible biomarkers of intestinal bacteriophages were obtained. They are Peptacetobacter hiranonis Phage, Fusobacterium nucleatum animalis 7_1 Phage, Fusobacterium nucleatum polymorphum Phage, Fusobacterium nucleatum animalis 4_8 Phage, and Parvimonas micra Phage. This study aims at identifying fine-scale species-strain level phage biomarkers for colorectal cancer diseases, so as to expand the existing CRC biomarkers and provide a new perspective for intestinal phagocytosis therapy of colorectal cancer.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Neoplasias Colorrectales/virología , Viroma , Austria , Bacteriófagos/clasificación , Bacteriófagos/genética , Biomarcadores de Tumor , China , Estudios de Cohortes , Colitis Ulcerosa/virología , Enfermedad de Crohn/virología , Heces/virología , Tracto Gastrointestinal/virología , Humanos , Japón , Metagenoma
7.
Viruses ; 13(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34960693

RESUMEN

Bovine serum has been widely used as a universal supplement in culture media and other applications, including the manufacture of biological products and the production of synthetic meat. Currently, commercial bovine serum is tested for possible viral contaminants following regional guidelines. Regulatory agencies' established tests focused on detecting selected animal origin viruses and are based on virus isolation, immunofluorescence, and hemadsorption assays. However, these tests may fail to detect new or emerging viruses in biological products. High-throughput sequencing is a powerful option since no prior knowledge of the viral targets is required. In the present study, we evaluate the virome of seven commercial batches of bovine serum from Mexico (one batch), New Zealand (two batches), and the United States (four batches) using a specific preparation and enrichment method for pooled samples and sequencing using an Illumina platform. A variety of circular replicase-encoding single-stranded (CRESS) DNA families (Genomoviridae, Circoviridae, and Smacoviridae) was identified. Additionally, CrAssphage, a recently discovered group of bacteriophage correlated with fecal contamination, was identified in 85% of the tested batches. Furthermore, sequences representing viral families with single-stranded DNA (Parvoviridae), double-stranded DNA (Polyomaviridae and Adenoviridae), single-stranded RNA (Flaviviridae, Picornaviridae, and Retroviridae), and double-stranded RNA (Reoviridae) were identified. These results support that high-throughput sequencing associated with viral enrichment is a robust tool and should be considered an additional layer of safety when testing pooled biologicals to detect viral contaminants overlooked by the current testing protocols.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Productos Biológicos , Bovinos/sangre , Virus ADN/aislamiento & purificación , Virus ARN/aislamiento & purificación , Suero/virología , Viroma , Animales , Bacteriófagos/genética , Virus ADN/genética , Contaminación de Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Virus ARN/genética
8.
Viruses ; 13(10)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34696475

RESUMEN

Since the beginning of the 20th century, bacteriophages (phages), i.e., viruses that infect bacteria, have been used as antimicrobial agents for treating various infections. Phage preparations targeting a number of bacterial pathogens are still in use in the post-Soviet states and are experiencing a revival in the Western world. However, phages have never been used to treat diseases caused by Bacteroides fragilis, the leading agent cultured in anaerobic abscesses and postoperative peritonitis. Enterotoxin-producing strains of B. fragilis have been associated with the development of inflammatory diarrhea and colorectal carcinoma. In this study, we evaluated the molecular biosafety and antimicrobial properties of novel phage species vB_BfrS_VA7 (VA7) lysate, as well as its impact on cytokine IL-8 production in an enterotoxigenic B. fragilis (ETBF)-infected colonic epithelial cell (CEC) culture model. Compared to untreated infected cells, the addition of phage VA7 to ETBF-infected CECs led to significantly reduced bacterial counts and IL-8 levels. This in vitro study confirms the potential of phage VA7 as an antibacterial agent for use in prophylaxis or in the treatment of B. fragilis infections and associated colorectal carcinoma.


Asunto(s)
Bacteriófagos , Infecciones por Bacteroides/terapia , Bacteroides fragilis/virología , Terapia de Fagos , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Colon/patología , Neoplasias Colorrectales , Diarrea , Células Epiteliales , Humanos
9.
Viruses ; 13(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34696512

RESUMEN

Bacterial kiwifruit vine disease (Pseudomonas syringae pv. actinidiae, Psa) and halo blight of bean (P. syringae pv. phaseolicola, Pph) are routinely treated with copper, leading to environmental pollution and bacterial copper resistance. An alternative sustainable control method could be based on bacteriophages, as phage biocontrol offers high specificity and does not result in the spread of toxic residues into the environment or the food chain. In this research, specific phages suitable for phage-based biocontrol strategies effective against Psa and Pph were isolated and characterized. In total, sixteen lytic Pph phage isolates and seven lytic Psa phage isolates were isolated from soil in Piedmont and Veneto in northern Italy. Genome characterization of fifteen selected phages revealed that the isolated Pph phages were highly similar and could be considered as isolates of a novel species, whereas the isolated Psa phages grouped into four distinct clades, two of which represent putative novel species. No lysogeny-, virulence- or toxin-related genes were found in four phages, making them suitable for potential biocontrol purposes. A partial biological characterization including a host range analysis was performed on a representative subset of these isolates. This analysis was a prerequisite to assess their efficacy in greenhouse and in field trials, using different delivery strategies.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Enfermedades de las Plantas/terapia , Pseudomonas syringae/virología , Actinidia/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Frutas/virología , Especificidad del Huésped , Italia , Lisogenia , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/virología , Virulencia
10.
STAR Protoc ; 2(3): 100697, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34382021

RESUMEN

Interactions between bacteriophages and mammalian cells are poorly understood. Establishing common methodologies investigating these interactions is important for advancing our understanding in this area. The protocols presented here provide an overview of key approaches investigating interactions between bacteriophages and eukaryotic cells using a variety of techniques, including transwells, microscopy, and whole-cell analysis. These techniques allow for the direct measurement of phage-cellular interactions and characterization of how the presence of phages affects cellular pathways, cell biology, immunology, and the microbiome. For complete details on the use and execution of this protocol, please refer to Nguyen et al. (2017) and Bichet et al. (2021).


Asunto(s)
Bacteriófagos/aislamiento & purificación , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/virología , Animales , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidad , Células Epiteliales/fisiología , Humanos , Microscopía/métodos , Técnicas de Placa-Clamp/métodos
11.
Exp Biol Med (Maywood) ; 246(11): 1263-1268, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33641443

RESUMEN

Bacteriophages are present in fluids from cirrhosis patients. However, their effect on the immune response is unknown. In this work, we explore the role of phages in the phenotype, function, and cytokine production of monocytes. We stimulated healthy monocytes with five different butanol-purified phage suspensions infective for Gram-negative and Gram-positive bacteria. We studied the expression of the monocyte markers involved in lipopolysaccharide recognition (LPS; CD14), antigen presentation (HLA-DR) and co-stimulation (CD86), and the concentration of induced cytokines (TNF-α, IFN-α, and IL-10) by phages. To confirm the direct role of phages without the interference of contaminating soluble LPS in phage suspensions, polymyxin B was added to the cell cultures. Phagocytosis experiments were assessed by flow cytometry using labeled phage suspensions. We observed that butanol-purified phages reduced the surface levels of CD14 and CD86 in monocytes and increased the secreted levels of TNF-α and IL-10 compared with the control sample containing only butanol buffer. All phage suspensions showed downregulation of HLA-DR expression but only Staphylococcus aureus phage contaminated with Escherichia coli reached statistical significance. The addition of polymyxin B did not restore the monocytic response induced by phages, suggesting that the effect was not caused by the presence of LPS. Monocytes were able to phagocyte phages in a dose- and time-dependent manner. To conclude, the phagocytosis of butanol-purified phages altered the phenotype and cytokine production of monocytes suggesting they become tolerogenic.


Asunto(s)
Bacteriófagos/inmunología , Monocitos/inmunología , Neutrófilos/virología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/patogenicidad , Biomarcadores/metabolismo , Butanoles , Antígenos HLA-DR/metabolismo , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/fisiología , Monocitos/virología , Neutrófilos/metabolismo , Fagocitosis , Polimixina B/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Viruses ; 13(1)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374840

RESUMEN

Double-stranded DNA viruses package their genomes into pre-assembled protein procapsids. This process is driven by macromolecular motors that transiently assemble at a unique vertex of the procapsid and utilize homomeric ring ATPases to couple genome encapsidation to ATP hydrolysis. Here, we describe the biochemical and biophysical characterization of the packaging ATPase from Lactococcus lactis phage asccφ28. Size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small angle X-ray scattering (SAXS), and negative stain transmission electron microscopy (TEM) indicate that the ~45 kDa protein formed a 443 kDa cylindrical assembly with a maximum dimension of ~155 Å and radius of gyration of ~54 Å. Together with the dimensions of the crystallographic asymmetric unit from preliminary X-ray diffraction experiments, these results indicate that gp11 forms a decameric D5-symmetric complex consisting of two pentameric rings related by 2-fold symmetry. Additional kinetic analysis shows that recombinantly expressed gp11 has ATPase activity comparable to that of functional ATPase rings assembled on procapsids in other genome packaging systems. Hence, gp11 forms rings in solution that likely reflect the fully assembled ATPases in active virus-bound motor complexes. Whereas ATPase functionality in other double-stranded DNA (dsDNA) phage packaging systems requires assembly on viral capsids, the ability to form functional rings in solution imparts gp11 with significant advantages for high-resolution structural studies and rigorous biophysical/biochemical analysis.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Fenómenos Químicos , Empaquetamiento del ADN , ADN Viral , Lactococcus lactis/virología , Adenosina Trifosfatasas , Bacteriófagos/ultraestructura , Clonación Molecular , Expresión Génica , Modelos Moleculares , Proteínas Recombinantes , Análisis Espectral , Relación Estructura-Actividad , Estruvita , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/ultraestructura , Ensamble de Virus
13.
Microbiome ; 8(1): 163, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213521

RESUMEN

BACKGROUND: Lake Baikal is the largest body of liquid freshwater on Earth. Previous studies have described the microbial composition of this habitat, but the viral communities from this ecosystem have not been characterized in detail. RESULTS: Here, we describe the viral diversity of this habitat across depth and seasonal gradients. We discovered 19,475 bona fide viral sequences, which are derived from viruses predicted to infect abundant and ecologically important taxa that reside in Lake Baikal, such as Nitrospirota, Methylophilaceae, and Crenarchaeota. Diversity analysis revealed significant changes in viral community composition between epipelagic and bathypelagic zones. Analysis of the gene content of individual viral populations allowed us to describe one of the first bacteriophages that infect Nitrospirota, and their extensive repertoire of auxiliary metabolic genes that might enhance carbon fixation through the reductive TCA cycle. We also described bacteriophages of methylotrophic bacteria with the potential to enhance methanol oxidation and the S-adenosyl-L-methionine cycle. CONCLUSIONS: These findings unraveled new ways by which viruses influence the carbon cycle in freshwater ecosystems, namely, by using auxiliary metabolic genes that act upon metabolisms of dark carbon fixation and methylotrophy. Therefore, our results shed light on the processes through which viruses can impact biogeochemical cycles of major ecological relevance. Video Abstract.


Asunto(s)
Ecosistema , Lagos , Metagenoma/genética , Metagenómica , Virus/genética , Virus/metabolismo , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/metabolismo , Ciclo del Carbono/genética , Ciclo del Ácido Cítrico/genética , Genes Virales , Federación de Rusia , Estaciones del Año , Virus/clasificación , Virus/aislamiento & purificación
14.
Med Microbiol Immunol ; 209(6): 693-703, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32995957

RESUMEN

Microbial translocation (MT) and altered gut microbiota have been described in acute leukemic patients and contribute to immune activation and inflammation. However, phage translocation has not been investigated in leukemia patients yet. We recruited 44 leukemic patients and 52 healthy adults and quantified the levels of 3 phages in peripheral blood, which were the most positive phages screened from fecal samples. The content of 16S rRNA in plasma was detected by qPCR to assess the intestinal mucosa of these patients. Spearman's rank correlation was used to analyze the relationship between phage load and the relevant clinical data. We found the most prevalent phages in fecal samples were λ phage, Wphi phage, and P22 phage, and λ phage had the highest detection rate in plasma (68%). Phage content was affected by chemotherapy and course of disease and correlated with the levels of CRP (r = 0.43, p = 0.003), sCD14 (r = 0.37, p = 0.014), and sCD163 (r = 0.44, p = 0.003). Our data indicate that plasma phage load is a promising marker for gut barrier damage and that gut phage translocation correlates with monocyte/macrophage activation and systemic inflammatory response in leukemic patients.


Asunto(s)
Traslocación Bacteriana , Bacteriófagos/aislamiento & purificación , Microbioma Gastrointestinal , Mucosa Intestinal/efectos de los fármacos , Leucemia Mieloide Aguda/sangre , ARN Bacteriano/sangre , ARN Ribosómico 16S/sangre , Viremia/diagnóstico , Adulto , Anciano , Antígenos CD/sangre , Antígenos de Diferenciación Mielomonocítica/sangre , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Proteína C-Reactiva/análisis , Femenino , Humanos , Mucosa Intestinal/microbiología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/microbiología , Leucemia Mieloide Aguda/virología , Receptores de Lipopolisacáridos/sangre , Activación de Macrófagos , Masculino , Persona de Mediana Edad , Permeabilidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/microbiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/virología , Receptores de Superficie Celular/sangre , Viremia/etiología
15.
Food Environ Virol ; 12(3): 209-217, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32578012

RESUMEN

Leachate from solid waste landfill is a dark liquid of variable composition and possible source of contamination of groundwater and surface waters. This study aims to assess skimmed milk flocculation and ultracentrifugation as viral concentration methods associated to different nucleic acid extraction protocols in order to establish a methodology for virus recovery from sanitary landfill leachate. Spiking experiments using human adenovirus (HAdV) and bacteriophage PP7 revealed the association of QIAamp Fast DNA Stool mini kit® nucleic acid extraction and ultracentrifugation as an effective method for recovering HAdV (346.18%) and PP7 (523.97%) when compared to organic flocculation method (162.64% for HAdV and 0.61% for PP7) that presented PCR inhibition in all undiluted samples. Ultracentrifugation applied in three landfill samples confirm efficiency of the methodology detecting HAdV in all samples with a mean of 3.44E + 06 ± 1.56E + 06 genomic copies/mL. Nucleotide sequencing characterized HAdV as belonging to group B and F. JC polyomavirus (JCPyV) was also investigated in those samples; however, detection was not observed. Methodologies for detection of viruses in leachate can be useful to generate data for future health risk analysis of workers who have contact with solid urban waste, as well as populations exposed to different environmental matrices contaminated by these effluents.


Asunto(s)
Adenovirus Humanos/aislamiento & purificación , Bacteriófagos/aislamiento & purificación , Virología/métodos , Contaminantes Químicos del Agua/análisis , Adenovirus Humanos/clasificación , Adenovirus Humanos/genética , Bacteriófagos/clasificación , Bacteriófagos/genética , Monitoreo del Ambiente , Dosificación de Gen , Genoma Viral , Humanos , Reacción en Cadena de la Polimerasa , Residuos Sólidos/análisis
16.
PLoS One ; 15(6): e0234636, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32555720

RESUMEN

The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics.


Asunto(s)
Actinobacteria/virología , Bacteriófagos/genética , Variación Genética , Genoma Viral , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Composición de Base , ADN Viral/genética , Genes Virales , Genómica , Filogenia , Proteínas Virales de Fusión/genética
17.
Int J Hyg Environ Health ; 226: 113482, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32087504

RESUMEN

The bacteriophages of E. faecalis strains AIM06 (DSM100702) and SR14 (DSM100701) have previously been validated as human-specific microbial source tracking (MST) markers in Thailand. In this study, their spatial and temporal distribution in a freshwater river was investigated for the first time (n = 48). The abundance of enterococci as a standard microbial water quality parameter was evaluated by both the qPCR detection assay with primers and a hydrolysis probe according to the US EPA Method 1611 and the US EPA Method 1600 membrane filtration culture method. AIM06 and SR14 phages were detected by a double layer agar assay and were present in 87.5% and 81.3% of all samples with a co-presence of 92.9% of phage-positive samples. After spiking the representative phages, the ranges of recovery efficiencies were 57.9-99.6% and 49.6-99.9% (n = 48) for AIM06 and SR14 phages, respectively. The absolute abundance of AIM06 and SR14 phages ranged from 0.25 to 221.94 and from 0.25 to 76.66 PFU/100 mL, respectively. Enterococci DNA copies and CFU were detected in all samples ranging from 3.24 to 6.32 log10 copies/100 mL and 100.00 to 1593 CFU/100 mL, respectively. Enterococci in the qPCR assay also showed a moderate correlation with the culture method. The AIM06 and SR14 phage results indicated continuing human faecal pollution along the river with no significant different levels among stations. Interestingly, the higher levels of enterococci in downstream stations for both the qPCR and culture methods along with the significant correlation with other faecal indicator organisms and non-human MST markers implied non-human faecal pollution. In conclusion, this study provides insightful information that could lead to effective water quality management and public health risk reduction from exposure to faecally-contaminated water.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Enterococcus/aislamiento & purificación , Contaminantes del Agua/aislamiento & purificación , ADN Bacteriano/análisis , Enterococcus/genética , Enterococcus/virología , Monitoreo del Ambiente/métodos , Heces , Humanos , Ríos/microbiología , Tailandia , Clima Tropical , Microbiología del Agua , Calidad del Agua , Abastecimiento de Agua
18.
Arch Virol ; 165(4): 959-962, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32052194

RESUMEN

Bacillus velezensis FZB42 is a Gram-positive, endospore-forming rhizobacterium that is associated with plant roots and promotes plant growth. It was used as host to isolate phage vB_BveM-Goe7 (Goe7). Goe7 exhibits a Myoviridae morphology with a contractile tail and an icosahedral head. Its genome is 158,674 bp in size and contains 5137-bp-long terminal repeats (LTRs). It also contains five tRNA-encoding genes and 251 coding DNA sequences (CDS), of which 65 were annotated. The adsorption constant of Goe7 is 6.1 ± 0.24 × 10-8 ml/min, with a latency period of 75 min and a burst size of 114 particles per burst. A BLASTn sequence comparison against the non-redundant nucleotide database of NCBI revealed that Goe7 is most similar to Bacillus subtilis phage vB_BsuM-Goe3.


Asunto(s)
Bacillus/virología , Bacteriófagos/aislamiento & purificación , Myoviridae/aislamiento & purificación , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/ultraestructura , Genoma Viral , Myoviridae/clasificación , Myoviridae/genética , Myoviridae/ultraestructura , Sistemas de Lectura Abierta , Filogenia
19.
Exp Parasitol ; 210: 107830, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31917970

RESUMEN

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Péptidos/farmacología , Trypanosoma cruzi/efectos de los fármacos , Secuencia de Aminoácidos , Bacteriófagos/aislamiento & purificación , Bioprospección , Biotinilación , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/prevención & control , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Microscopía Confocal , Microscopía Fluorescente , Biblioteca de Péptidos , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Temperatura , Trypanosoma cruzi/genética
20.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31704685

RESUMEN

Viruses influence microbial community structure and biogeochemical cycles in marine environments. Viral attachment to nonhost surfaces could influence host viral infection rates; however, the prevalence of such viral attachment is not investigated quantitatively. We used coastal seawater viral assemblages and, as models, marine vibriophage (SIO-2) and enterobacteriophages (T2 and T4) to investigate their attachment to probable nonhost marine bacteria. We also studied viral attachment to colloids and other abiotic surfaces in seawater. Centrifugation experiments with bacterium-virus mixtures showed substantial viral loss in the supernatant presumably due to the viral attachment to bacteria. This attachment (0.04 to 24 viruses µm-2 [bacterial surface area]) varied with bacterium-virus combinations. Surprisingly, filtering seawater on 0.2-µm Anodisc or polycarbonate filters retained ∼12 to 84% of viruses presumably attached to ≥0.2-µm-sized particles and/or the filter surface. Enzymatic digestion followed by epifluorescence and atomic force microscopy suggested that 7 to 25% of the total viruses were attached via ß-glycosidic linkages. Furthermore, a substantial proportion (7 to 48%) of viruses became attached to model abiotic surfaces (polycarbonate, polypropylene, and glass), and this has significance for laboratory protocols as well as studies of virus ecology in particle-rich marine environments. Substantial attachment of viruses to nonhost surfaces could influence virus-driven biogeochemical cycles and microbial community structure.IMPORTANCE Viruses play important roles in altering microbial community structure and biogeochemical cycles in marine environments. Viral attachment to nonhost surfaces can influence host viral infection rates; however, the prevalence of viral attachment to nonhost surfaces and the ratio of attached viruses to total viruses are little known. We used coastal seawater viral assemblages and used marine vibriophage (SIO-2) and enterobacteriophages (T2 and T4) as models to investigate their attachment to abiotic and biotic surfaces in seawater. Viral attachment was observed on several surfaces, such as nonhost bacteria, polymers, filters, cover glasses, and tube surfaces. This study cautions against commonly used protocols that require viral incubation and seawater fractionation. More importantly, these results could influence virus-driven biogeochemical cycles and microbial community structure in the ocean.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Microbiota , Agua de Mar/virología , Acoplamiento Viral , Coloides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA