Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
1.
BMC Microbiol ; 24(1): 283, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085808

RESUMEN

BACKGROUND: The guts of mammals are home to trillions of microbes, forming a complex and dynamic ecosystem. Gut microbiota is an important biological barrier for maintaining immune homeostasis. Recently, the use of antibiotics to clear gut microbiota has gained popularity as a low cost and easy-to-use alternative to germ-free animals. However, the effect of the duration of the antibiotic cocktail on the gut microbiome is unclear, and more importantly, the effect of dramatic changes in the gut microbiota on intestinal tissue morphology and local immune response is rarely reported. RESULTS: We observed a significant reduction in fecal microbiota species and abundance after 1 week of exposure to an antibiotic cocktail, gavage twice daily by intragastric administration. In terms of composition, Bacteroidetes and Firmicutes were replaced by Proteobacteria. Extending antibiotic exposure to 2-3 weeks did not significantly improve the overall efficiency of microbiotal consumption. No significant histomorphological changes were observed in the first 2 weeks of antibiotic cocktail exposure, but the expression of inflammatory mediators in intestinal tissue was increased after 3 weeks of antibiotic cocktail exposure. Mendelian randomization analysis showed that Actinobacteria had a significant causal association with the increase of IL-1ß (OR = 1.65, 95% CI = 1.23 to 2.21, P = 0.007) and TNF-α (OR = 1.81, 95% CI = 1.26 to 2.61, P = 0.001). CONCLUSIONS: Our data suggest that treatment with an antibiotic cocktail lasting 1 week is sufficient to induce a significant reduction in gut microbes. 3 weeks of antibiotic exposure can lead to the colonization of persistant microbiota and cause changes in intestinal tissue and local immune responses.


Asunto(s)
Antibacterianos , Heces , Microbioma Gastrointestinal , Antibacterianos/farmacología , Animales , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Interleucina-1beta/genética , Ratones , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Bacteroidetes/efectos de los fármacos , Firmicutes/efectos de los fármacos
2.
BMC Microbiol ; 24(1): 245, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970021

RESUMEN

BACKGROUND: The phylum Bacteroidota represents a significant proportion of heterotrophic bacteria found in marine ecosystems. Members of the phylum Bacteroidota are actively involved in the degradation of biopolymers such as polysaccharides and proteins. Bacteroidota genomes exhibit a significant enrichment of various enzymes, including carbohydrate-active enzymes (CAZymes), carboxypeptidases, esterases, isomerases, peptidases, phosphatases, and sulfatases. The genus Marivirga, a member of the family Marivirgaceae within the phylum Bacteroidota, comprises six documented species. During a microbial diversity study, three novel Marivirga strains (BKB1-2 T, ABR2-2, and BDSF4-3 T) were isolated from the West Sea, Republic of Korea. RESULTS: To explore the taxonomic status and genomic characteristics of the novel isolates, we employed a polyphasic taxonomic approach, which included phylogenetic, chemotaxonomic and comprehensive genome analysis. The three isolates were Gram-stain-negative, aerobic, rod-shaped, moderately halophilic, and had a gliding motility. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among the two isolates, BKB1-2 T and BDSF4-3 T, and the six reference strains were 70.5-76.5% for ANI and 18.1-25.7% for dDDH. Interestingly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the strains harbor genes for a comprehensive pathway for dissimilatory nitrate reduction to ammonium (DNRA), as well as other nitrogen pathways for the reduction of nitrite, nitric oxide, and nitrous oxide. Additionally, the antiSMASH analysis indicated that the strains contained three to eight biosynthetic gene clusters (BGCs) associated with the synthesis of secondary metabolites. Furthermore, the strains carried a high number of CAZyme ranging from 53 to 152, which was also demonstrated by an in vitro analysis of degradation of the polysaccharide cellulose, chitin, laminarin, starch, and xylan. Additionally, all the strains carried genes for the metabolism of heavy metals, and exhibited tolerance to heavy metals, with minimum inhibitory concentrations (MICs) in millimoles (mM) in ranges of Co2+ (3-6), Cu2+ (0.2-0.4), Ni2+ (3-5), Zn2+ (2-4), Mn2+ (20-50), and Hg2+ (0.3). CONCLUSIONS: Based on polyphasic taxonomic approach, the three isolated strains represent two novel species names Marivirga arenosa sp. nov. (BKB1-2 T = KCTC 82989 T = InaCC B1618T), and Marivirga salinae sp. nov. (BDSF4-3 T = KCTC 82973 T = InaCC B1619T).


Asunto(s)
ADN Bacteriano , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S , República de Corea , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/clasificación , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico
3.
BMC Microbiol ; 24(1): 237, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961326

RESUMEN

OBJECTIVE: Bladder cancer(BCa) was a disease that seriously affects patients' quality of life and prognosis. To address this issue, many researches suggested that the gut microbiota modulated tumor response to treatment; however, this had not been well-characterized in bladder cancer. In this study, our objective was to determine whether the diversity and composition of the gut microbiota or the density of specific bacterial genera influence the prognosis of patients with bladder cancer. METHODS: We collected fecal samples from a total of 50 bladder cancer patients and 22 matched non-cancer individuals for 16S rDNA sequencing to investigate the distribution of Parabacteroides in these two groups. Further we conducted follow-up with cancer patients to access the impact of different genera of microorganisms on patients survival. We conducted a Fecal Microbiota Transplantation (FMT) and mono-colonization experiment with Parabacteroides distasonis to explore its potential enhancement of the efficacy of anti-PD-1 immunotherapy in MB49 tumor-bearing mice. Immunohistochemistry, transcriptomics and molecular experiment analyses were employed to uncover the underlying mechanisms. RESULTS: The 16S rDNA showed that abundance of the genus Parabacteroides was elevated in the non-cancer control group compared to bladder cancer group. The results of tumor growth curves showed that a combination therapy of P. distasonis and ICIs treatment significantly delayed tumor growth and increased the intratumoral densities of both CD4+T and CD8+T cells. The results of transcriptome analysis demonstrated that the pathways associated with antitumoral immune response were remarkably upregulated in the P. distasonis gavage group. CONCLUSION: P. distasonis delivery combined with α-PD-1 mAb could be a new strategy to enhance the effect of anti-PD-1 immunotherapy. This effect might be achieved by activating immune and antitumor related pathways.


Asunto(s)
Bacteroidetes , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Inmunoterapia , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/microbiología , Animales , Humanos , Ratones , Inmunoterapia/métodos , Bacteroidetes/genética , Bacteroidetes/inmunología , Femenino , Masculino , ARN Ribosómico 16S/genética , Heces/microbiología , Persona de Mediana Edad , Anciano , Ratones Endogámicos C57BL
4.
Microbiome ; 12(1): 125, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004755

RESUMEN

BACKGROUND: Soybean cyst nematodes (SCN) as animal parasites of plants are not usually interested in killing the host but are rather focused on completing their life cycle to increase population, resulting in substantial yield losses. Remarkably, some agricultural soils after long-term crop monoculture show a significant decline in SCN densities and suppress disease in a sustainable and viable manner. However, relatively little is known about the microbes and mechanisms operating against SCN in such disease-suppressive soils. RESULTS: Greenhouse experiments showed that suppressive soils (S) collected from two provinces of China and transplantation soils (CS, created by mixing 10% S with 90% conducive soils) suppressed SCN. However, SCN suppressiveness was partially lost or completely abolished when S soils were treated with heat (80 °C) and formalin. Bacterial community analysis revealed that the specific suppression in S and CS was mainly associated with the bacterial phylum Bacteroidetes, specifically due to the enrichment of Chitinophaga spp. and Dyadobacter sp., in the cysts. SCN cysts colonized by Chitinophaga spp. showed dramatically reduced egg hatching, with unrecognizable internal body organization of juveniles inside the eggshell due to chitinase activity. Whereas, Dyadobacter sp. cells attached to the surface coat of J2s increased soybean resistance against SCN by triggering the expression of defence-associated genes. The disease-suppressive potential of these bacteria was validated by inoculating them into conducive soil. The Dyadobacter strain alone or in combination with Chitinophaga strains significantly decreased egg densities after one growing cycle of soybeans. In contrast, Chitinophaga strains alone required more than one growing cycle to significantly reduce SCN egg hatching and population density. CONCLUSION: This study revealed how soybean monoculture for decades induced microbiota homeostasis, leading to the formation of SCN-suppressive soil. The high relative abundance of antagonistic bacteria in the cyst suppressed the SCN population both directly and indirectly. Because uncontrolled proliferation will likely lead to quick demise due to host population collapse, obligate parasites like SCN may have evolved to modulate virulence/proliferation to balance these conflicting needs. Video Abstract.


Asunto(s)
Glycine max , Microbiota , Enfermedades de las Plantas , Microbiología del Suelo , Tylenchoidea , Animales , Glycine max/parasitología , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Suelo/parasitología , China , Bacteroidetes/genética , Bacterias/clasificación , Bacterias/genética
5.
Microbiome ; 12(1): 128, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020382

RESUMEN

BACKGROUND: Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS: Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS: This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.


Asunto(s)
Bacteroidetes , Enfermedades de los Peces , Microbioma Gastrointestinal , Infecciones por Rhabdoviridae , Rhabdoviridae , Temperatura , Pez Cebra , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/virología , Rhabdoviridae/fisiología , Rhabdoviridae/patogenicidad , Bacteroidetes/patogenicidad , Agua , Virus de la Necrosis Hematopoyética Infecciosa/patogenicidad
6.
Int J Biol Macromol ; 277(Pt 1): 133726, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084973

RESUMEN

Epidemiological and preclinical studies have indicated a factual association between gut microbiota dysbiosis and high incidence of colitis. Dietary polysaccharides can specifically shift the composition of gut microbiome response to colitis. Here we validated the preventive role of polysaccharides from Pericarpium Citri Reticulatae 'Chachiensis' (PCRCP), a well-known traditional Chinese medicine, in colitis induced by dextrose sodium sulfate (DSS) in both rats and mice. We found that treatment with PCRCP not only significantly reduced DSS-induced colitis via down-regulating colonic inflammatory signaling pathways including PI3K-Akt, NLRs and NF-κB, but also enhanced colonic barrier integrity in rats. These protective activities of PCRCP against DSS-induced injuries in rats were in part due to the modulation of the gut microbiota revealed by both broad-spectrum antibiotic (ABX)-deleted bacterial and non-oral treatments. Furthermore, the improvement of PCRCP on colitis was impaired by intestinal neomycin-sensitive bacteria in DSS-exposed mice. Specifically, in vivo and in vitro treatment with PCRCP led to a highly sensible enrichment in the gut commensal Parabacteroides goldsteinii. Administration of Parabacteroides goldsteinii significantly alleviated typical symptoms of colitis and suppressed the activation of PI3K-Akt-involved inflammatory response in DSS-exposed mice. The anti-colitic effects of Parabacteroides goldsteinii were abolished after the activation of PI3K-Akt signaling pathway by lipopolysaccharide treatment in mice exposed to DSS. This study provides new insights into an anti-colitic mechanism driven by PCRCP and highlights the potential prebiotic of Parabacteroides goldsteinii for the prevention of ulcerative colitis.


Asunto(s)
Colitis , Lipopolisacáridos , Fosfatidilinositol 3-Quinasas , Polisacáridos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Ratones , Transducción de Señal/efectos de los fármacos , Ratas , Bacteroidetes/efectos de los fármacos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Sulfato de Dextran , Citrus/química , Modelos Animales de Enfermedad
7.
Gut Microbes ; 16(1): 2350150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841888

RESUMEN

Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Metagenómica , Operón , Ratones , Animales , Humanos , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/genética , Bacteroidetes/genética , Bacteroidetes/clasificación , Antígenos Bacterianos/genética , Genoma Bacteriano , Enterobacteriaceae/genética , Enterobacteriaceae/clasificación
8.
Mol Microbiol ; 122(2): 201-212, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922722

RESUMEN

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.


Asunto(s)
Arseniato Reductasas , Bacteroidetes , Dominio Catalítico , Oxidación-Reducción , Arseniato Reductasas/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/química , Bacteroidetes/enzimología , Bacteroidetes/genética , Arseniatos/metabolismo , Cinética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/química , Catálisis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Arsenitos/metabolismo
9.
Obes Surg ; 34(8): 2835-2843, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38913272

RESUMEN

BACKGROUND: Bariatric surgery, a significant intervention for obesity, may influence weight loss through changes in gut microbiota, particularly the Firmicutes and Bacteroidetes. This study explores these potential shifts and their metabolic implications. MATERIALS: We conducted a cross-sectional study involving patients who had undergone bariatric surgery. Stool samples were collected at baseline, 3 months, and 6 months post-operation. We performed DNA extraction and quantified the bacterial phyla Firmicutes and Bacteroidetes to assess changes in the gut microbiota over time. RESULTS: Our research revealed a significant alteration in the gut microbiota following bariatric surgery. In diabetic individuals, there was a marked increase in the average number of Firmicutes bacteria at both 3 and 6 months post-operation, compared to pre-surgery levels. In contrast, non-diabetic subjects experienced a notable decrease in Firmicutes during the same timeframe. Regarding Bacteroidetes bacteria, the trend was reversed; diabetic patients showed a significant reduction, while non-diabetics exhibited an increase after the surgery. These findings highlight the dynamic changes in gut microbiota composition associated with bariatric surgery and its potential link to metabolic changes post-operation. CONCLUSION: These findings suggest that obesity alters the gut's microbial composition. The observed bacterial fluctuations, particularly in the dominant Firmicutes and Bacteroidetes groups, are likely contributors to the weight loss experienced post-surgery. This alteration in gut bacteria underscores the complex interplay between microbiota and metabolic health, highlighting potential avenues for therapeutic intervention.


Asunto(s)
Bacteroidetes , Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidad Mórbida , Pérdida de Peso , Humanos , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal/fisiología , Estudios Transversales , Femenino , Masculino , Adulto , Persona de Mediana Edad , Obesidad Mórbida/cirugía , Obesidad Mórbida/microbiología , Bacteroidetes/aislamiento & purificación , Heces/microbiología , Firmicutes/aislamiento & purificación
10.
Sci Rep ; 14(1): 13819, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879636

RESUMEN

Culture-dependent and metagenomic binning techniques were employed to gain an insight into the diversification of gut bacteria in Rhinopithecius bieti, a highly endangered primate endemic to China. Our analyses revealed that Bacillota_A and Bacteroidota were the dominant phyla. These two phyla species are rich in carbohydrate active enzymes, which could provide nutrients and energy for their own or hosts' survival under different circumstances. Among the culturable bacteria, one novel bacterium, designated as WQ 2009T, formed a distinct branch that had a low similarity to the known species in the family Sphingobacteriaceae, based on the phylogenetic analysis of its 16S rRNA gene sequence or phylogenomic analysis. The ANI, dDDH and AAI values between WQ 2009T and its most closely related strains S. kitahiroshimense 10CT, S. pakistanense NCCP-246T and S. faecium DSM 11690T were significantly lower than the accepted cut-off values for microbial species delineation. All results demonstrated that WQ 2009T represent a novel genus, for which names Rhinopithecimicrobium gen. nov. and Rhinopithecimicrobium faecis sp. nov. (Type strain WQ 2009T = CCTCC AA 2021153T = KCTC 82941T) are proposed.


Asunto(s)
Microbioma Gastrointestinal , Metagenómica , Filogenia , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/genética , Metagenómica/métodos , ARN Ribosómico 16S/genética , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/clasificación
11.
PeerJ ; 12: e17450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860210

RESUMEN

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Asunto(s)
Microbioma Gastrointestinal , Larva , ARN Ribosómico 16S , Spodoptera , Animales , Microbioma Gastrointestinal/genética , Spodoptera/microbiología , Spodoptera/genética , Larva/microbiología , ARN Ribosómico 16S/genética , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Enterococcus/genética , Bacteroides/genética , Simbiosis
12.
Sci Rep ; 14(1): 12827, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834834

RESUMEN

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Lipopolisacáridos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Animales , FN-kappa B/metabolismo , Humanos , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/microbiología , Ratones , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/microbiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Línea Celular Tumoral , Invasividad Neoplásica , Inflamación/metabolismo , Inflamación/patología , Bacteroidetes , Microbioma Gastrointestinal , Movimiento Celular/efectos de los fármacos , Masculino , Metástasis de la Neoplasia , Proliferación Celular , Femenino
13.
Sci China Life Sci ; 67(9): 1970-1988, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38913237

RESUMEN

We previously demonstrated that lipopolysaccharide (LPS) injection-induced immune stress could impair muscle growth in weaned piglets, but the precise mechanisms behind this remain elusive. Here, we found that chronic immune stress induced by LPS resulted in a significant reduction of 36.86% in the total muscle mass of piglets at 5 d post-treatment compared with the control group. At 1 d, prior to muscle mass loss, multiple alterations were noted in response to LPS treatment. These included a reduction in the abundance of Bacteroidetes, an increase in serum concentrations of pro-inflammatory cytokines, compromised mitochondrial morphology, and an upregulation in the expression of dynamin-related protein 1 (Drp1), a critical protein involved in mitochondrial fission. We highlight a strong negative correlation between Bacteroidetes abundance and the levels of serum pro-inflammatory cytokines, corroborated by in vivo intervention strategies in the musculature of both pig and mouse models. Mechanistically, the effects of Bacteroidetes on inflammation and muscle mass loss may involve the signaling pathway of the tauro-ß-muricholic acid-fibroblast growth factor 15. Furthermore, the induction of overexpression of inflammatory cytokines, achieved without LPS treatment through oral administration of recombinant human IL-6 (rhIL-6), led to increased levels of circulating cytokines, subsequently causing a decrease in muscle mass. Notably, pre-treatment with Mdivi-1, an inhibitor of Drp-1, markedly attenuated the LPS-induced elevation in reactive oxygen species levels and rescued the associated decline in muscle mass. Collectively, these data indicate that LPS-induced muscle mass loss was linked to the reduction of Bacteroidetes abundance, increased inflammation, and the disruption of mitochondrial morphology. These insights offer promising avenues for the identification of potential therapeutic targets aimed at mitigating muscle mass loss.


Asunto(s)
Bacteroidetes , Citocinas , Inflamación , Lipopolisacáridos , Animales , Porcinos , Citocinas/metabolismo , Músculo Esquelético/patología , Destete , Mitocondrias/metabolismo , Dinaminas/metabolismo , Dinaminas/genética , Ratones , Humanos , Dinámicas Mitocondriales , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Transducción de Señal
14.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38573825

RESUMEN

Ferriphaselus amnicola GF-20 is the first Fe-oxidizing bacterium isolated from the continental subsurface. It was isolated from groundwater circulating at 20 m depth in the fractured-rock catchment observatory of Guidel-Ploemeur (France). Strain GF-20 is a neutrophilic, iron- and thiosulfate-oxidizer and grows autotrophically. The strain shows a preference for low oxygen concentrations, which suggests an adaptation to the limiting oxygen conditions of the subsurface. It produces extracellular stalks and dreads when grown with Fe(II) but does not secrete any structure when grown with thiosulfate. Phylogenetic analyses and genome comparisons revealed that strain GF-20 is affiliated with the species F. amnicola and is strikingly similar to F. amnicola strain OYT1, which was isolated from a groundwater seep in Japan. Based on the phenotypic and phylogenetic characteristics, we propose that GF-20 represents a new strain within the species F. amnicola.


Asunto(s)
Agua Subterránea , Hierro , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S , Tiosulfatos , Agua Subterránea/microbiología , Tiosulfatos/metabolismo , Hierro/metabolismo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Francia , Genoma Bacteriano , Análisis de Secuencia de ADN , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/clasificación , Bacteroidetes/metabolismo
15.
Antonie Van Leeuwenhoek ; 117(1): 66, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607563

RESUMEN

The pink-colored and strictly aerobic bacterium strain, designated as TK19036T, was isolated from mesopelagic layer of the Southwest Indian Ocean. This novel isolate can grow at 10-45 °C (optimum, 30 °C), pH 6.0-8.0 (optimum, pH 7.0), and 2-14% NaCl concentrations (w/v) (optimum, 6%). The predominant respiratory quinone was Menaquinone-7. Major polar lipid profiles contained two aminolipids, aminophospholipid, two glycolipids, phosphatidylethanolamine, and three unknown polar lipids. The preponderant cellular fatty acids were iso-C15:0, C16:1 ω5c and iso-C17:0 3-OH. Phylogenetic analyses based on 16S rRNA gene sequence uncovered that the strain TK19036T pertained to the family Catalinimonadaceae under phylum Bacteroidota, and formed a distinct lineage with the closed species Tunicatimonas pelagia NBRC 107804T. The up-to-bacteria-core gene phylogenetic trees also demonstrated a deep and novel branch formed by the strain TK19036T within the family Catalinimonadaceae. Based on chemotaxonomic, phylogenetic and genomic features presented above, strain TK19036T represents a novel species from a novel genus of the family Catalinimonadaceae, for which the name Roseihalotalea indica gen. nov. sp. nov. is proposed. The type strain is TK19036T (= CGMCC 1.18940T = NBRC 116371T).


Asunto(s)
Bacteroidetes , Ácidos Grasos , Océano Índico , Filogenia , ARN Ribosómico 16S/genética , Bacteroidetes/genética
16.
Nature ; 629(8013): 901-909, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658756

RESUMEN

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.


Asunto(s)
Colangitis Esclerosante , Microbioma Gastrointestinal , Inflamación , Hígado , Macrófagos , Enfermedad del Hígado Graso no Alcohólico , Simbiosis , Animales , Femenino , Humanos , Masculino , Ratones , Bacteroidetes/metabolismo , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/microbiología , Colangitis Esclerosante/patología , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Perfilación de la Expresión Génica , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Hígado/inmunología , Hígado/patología , Hígado/microbiología , Macrófagos/citología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Vena Porta , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/metabolismo , Análisis de la Célula Individual , Simbiosis/inmunología
17.
BMC Genomics ; 25(1): 245, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443809

RESUMEN

We investigated whole blood and hepatic mRNA expressions of immune genes and rumen microbiome of crossbred beef steers with divergent residual feed intake phenotype to identify relevant biological processes underpinning feed efficiency in beef cattle. Low-RFI beef steers (n = 20; RFI = - 1.83 kg/d) and high-RFI beef steers (n = 20; RFI = + 2.12 kg/d) were identified from a group of 108 growing crossbred beef steers (average BW = 282 ± 30.4 kg) fed a high-forage total mixed ration after a 70-d performance testing period. At the end of the 70-d testing period, liver biopsies and blood samples were collected for total RNA extraction and cDNA synthesis. Rumen fluid samples were also collected for analysis of the rumen microbial community. The mRNA expression of 84 genes related to innate and adaptive immunity was analyzed using pathway-focused PCR-based arrays. Differentially expressed genes were determined using P-value ≤ 0.05 and fold change (FC) ≥ 1.5 (in whole blood) or ≥ 2.0 (in the liver). Gene ontology analysis of the differentially expressed genes revealed that pathways related to pattern recognition receptor activity, positive regulation of phagocytosis, positive regulation of vitamin metabolic process, vascular endothelial growth factor production, positive regulation of epithelial tube formation and T-helper cell differentiation were significantly enriched (FDR < 0.05) in low-RFI steers. In the rumen, the relative abundance of PeH15, Arthrobacter, Moryella, Weissella, and Muribaculaceae was enriched in low-RFI steers, while Methanobrevibacter, Bacteroidales_BS11_gut_group, Bacteroides and Clostridium_sensu_stricto_1 were reduced. In conclusion, our study found that low-RFI beef steers exhibit increased mRNA expression of genes related to immune cell functions in whole blood and liver tissues, specifically those involved in pathogen recognition and phagocytosis regulation. Additionally, these low-RFI steers showed differences in the relative abundance of some microbial taxa which may partially account for their improved feed efficiency compared to high-RFI steers.


Asunto(s)
Rumen , Factor A de Crecimiento Endotelial Vascular , Animales , Bovinos , Fenotipo , Bacteroidetes , Ingestión de Alimentos , ARN Mensajero
18.
Sci Total Environ ; 922: 171339, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38428595

RESUMEN

Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.


Asunto(s)
Microalgas , Scenedesmus , Rayos Ultravioleta , Anaerobiosis , Bacterias , Biomasa , Nitrógeno , Bacteroidetes , Lípidos
19.
Front Immunol ; 15: 1363664, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476231

RESUMEN

The balance of the microbiome, which is sensitive to temperature changes, plays a crucial role in maintaining overall health and reducing the risk of diseases. However, the specific mechanisms by which immunity and microbiota interact to adapt to cold stress have yet to be addressed. In this study, Nanjiang Yellow goats were chosen as a model and sampled during the cold (winter, cold stress) and warm (spring) seasons, respectively. Analyses of serum immune factors, as well as the composition of rumen and fecal microbial communities, were conducted to explore the crosstalk between microbiota and innate immunity under cold stress. Significantly increased levels of IgA (P < 0.01) were observed in the cold season compared to the warm season. Conversely, the levels of IL-2 (P = 0.02) and IL-6 (P < 0.01) diminished under cold stress. However, no significant differences were observed in IgG (P = 0.89), IgM (P = 0.42), and IL-4 (P = 0.56). While there were no significant changes in the diversity of bacterial communities between the warm and cold seasons, positive correlations between serum IgA, IL-2, IL-6 concentrations and several genera were observed. Furthermore, the weighted gene co-expression network analysis indicated that the microbiota enriched in the MEbrown module positively correlated with IgA, while the microbiota enriched in the MEblue module positively correlated with IL-2 and IL-6. The strong correlation between certain probiotics, including Alistipes, Bacteroides, Blautia, and Prevotellaceae_UCG.004, and the concentration of IL-2, and IL-6 suggests their potential role in immunomodulatory properties. This study provides valuable insights into the crosstalk between microbial communities and immune responses under the challenge of cold stress. Further studies on the immunomodulatory properties of these probiotics would contribute to the development of strategies to enhance the stress resistance of animals for improved overall health and survival.


Asunto(s)
Respuesta al Choque por Frío , Microbiota , Animales , Rumen , Cabras , Interleucina-2 , Interleucina-6 , Inmunidad Innata , Bacteroidetes , Inmunoglobulina A
20.
Sci Rep ; 14(1): 5585, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454103

RESUMEN

A dataset comprising metagenomes of outpatients (n = 28) with acute leukemia (AL) and healthy controls (n = 14) was analysed to investigate the associations between gut microbiota composition and metabolic activity and AL. According to the results obtained, no significant differences in the microbial diversity between AL outpatients and healthy controls were found. However, significant differences in the abundance of specific microbial clades of healthy controls and AL outpatients were found. We found some differences at taxa level. The relative abundance of Enterobacteriaceae, Prevotellaceae and Rikenellaceae was increased in AL outpatients, while Bacteirodaceae, Bifidobacteriaceae and Lachnospiraceae was decreased. Interestingly, the abundances of several taxa including Bacteroides and Faecalibacterium species showed variations based on recovery time from the last cycle of chemotherapy. Functional annotation of metagenome-assembled genomes (MAGs) revealed the presence of functional domains corresponding to therapeutic enzymes including L-asparaginase in a wide range of genera including Prevotella, Ruminococcus, Faecalibacterium, Alistipes, Akkermansia. Metabolic network modelling revealed potential symbiotic relationships between Veillonella parvula and Levyella massiliensis and several species found in the microbiota of AL outpatients. These results may contribute to develop strategies for the recovery of microbiota composition profiles in the treatment of patients with AL.


Asunto(s)
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Heces/microbiología , Bacterias/genética , Bacteroidetes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA