Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Nat Commun ; 15(1): 4097, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755144

RESUMEN

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is essential for the development of new organ systems, but transcriptional control of angiogenesis remains incompletely understood. Here we show that FOXC1 is essential for retinal angiogenesis. Endothelial cell (EC)-specific loss of Foxc1 impairs retinal vascular growth and expression of Slc3a2 and Slc7a5, which encode the heterodimeric CD98 (LAT1/4F2hc) amino acid transporter and regulate the intracellular transport of essential amino acids and activation of the mammalian target of rapamycin (mTOR). EC-Foxc1 deficiency diminishes mTOR activity, while administration of the mTOR agonist MHY-1485 rescues perturbed retinal angiogenesis. EC-Foxc1 expression is required for retinal revascularization and resolution of neovascular tufts in a model of oxygen-induced retinopathy. Foxc1 is also indispensable for pericytes, a critical component of the blood-retina barrier during retinal angiogenesis. Our findings establish FOXC1 as a crucial regulator of retinal vessels and identify therapeutic targets for treating retinal vascular disease.


Asunto(s)
Barrera Hematorretinal , Células Endoteliales , Factores de Transcripción Forkhead , Neovascularización Retiniana , Animales , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Ratones , Células Endoteliales/metabolismo , Barrera Hematorretinal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Pericitos/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Vasos Retinianos/metabolismo , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Retina/metabolismo , Masculino , Angiogénesis
2.
FASEB J ; 38(9): e23638, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713098

RESUMEN

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Asunto(s)
Barrera Hematorretinal , Diabetes Mellitus Experimental , Retinopatía Diabética , Interleucina-10 , Macrófagos , Animales , Humanos , Masculino , Ratones , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/patología , Polaridad Celular/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Estreptozocina
3.
J Neuroinflammation ; 21(1): 105, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649885

RESUMEN

BACKGROUND: NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS: Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS: We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS: Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.


Asunto(s)
Barrera Hematorretinal , Presión Intraocular , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , Enfermedades Neuroinflamatorias , Animales , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Ratones , Barrera Hematorretinal/patología , Barrera Hematorretinal/metabolismo , Presión Intraocular/fisiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones Noqueados , Proliferación Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Neuroglía/metabolismo , Neuroglía/patología , Hipertensión Ocular/patología , Hipertensión Ocular/metabolismo , Glaucoma/patología , Glaucoma/metabolismo , Estrés Oxidativo/fisiología
4.
FASEB J ; 38(5): e23512, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430220

RESUMEN

The robust integrity of the retinal pigment epithelium (RPE), which contributes to the outer brain retina barrier (oBRB), is compromised in several retinal degenerative and vascular disorders, including diabetic macular edema (DME). This study evaluates the role of a new generation of histone deacetylase inhibitor (HDACi), ITF2357, in regulating outer blood-retinal barrier function and investigates the underlying mechanism of action in inhibiting TNFα-induced damage to RPE integrity. Using the immortalized RPE cell line (ARPE-19), ITF2357 was found to be non-toxic between 50 nM and 5 µM concentrations. When applied as a pre-treatment in conjunction with an inflammatory cytokine, TNFα, the HDACi was safe and effective in preventing epithelial permeability by fortifying tight junction (ZO-1, -2, -3, occludin, claudin-1, -2, -3, -5, -19) and adherens junction (E-cadherin, Nectin-1) protein expression post-TNFα stress. Mechanistically, ITF2357 depicted a late action at 24 h via attenuating IKK, IκBα, and p65 phosphorylation and ameliorated the expression of IL-1ß, IL-6, and MCP-1. Also, ITF2357 delayed IκBα synthesis and turnover. The use of Bay 11-7082 and MG132 further uncovered a possible role for ITF2357 in non-canonical NF-κB activation. Overall, this study revealed the protection effects of ITF2357 by regulating the turnover of tight and adherens junction proteins and modulating NF-κB signaling pathway in the presence of an inflammatory stressor, making it a potential therapeutic application for retinal vascular diseases such as DME with compromised outer blood-retinal barrier.


Asunto(s)
Retinopatía Diabética , Ácidos Hidroxámicos , Edema Macular , Humanos , FN-kappa B/metabolismo , Retinopatía Diabética/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Edema Macular/metabolismo , Transducción de Señal , Epitelio Pigmentado de la Retina/metabolismo , Barrera Hematorretinal/metabolismo , Uniones Estrechas/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Pigmentos Retinianos/uso terapéutico
5.
Mol Pharm ; 20(11): 5877-5887, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37883694

RESUMEN

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 µg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Clorhidrato de Erlotinib , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Barrera Hematorretinal/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neoplasias de la Mama/metabolismo
6.
Diabetes ; 72(12): 1841-1852, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722135

RESUMEN

Hemopexin (HPX) is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. The aim of this study was to evaluate whether HPX blockade by specific antibodies (aHPX) could avoid vascular leakage in vivo and microvascular angiogenesis in vitro and ex vivo. For this purpose, the effect of intravitreal (IVT) injections of aHPX on vascular leakage was evaluated in db/db mice and rats with streptozotocin-induced diabetes using the Evans Blue method. Retinal neurodegeneration and inflammation were also evaluated. The antiangiogenic effect of aHPX on human retinal endothelial cells (HRECs) was tested by scratch wound healing and tube formation using standardized methods, as well as by choroidal sprouting assays from retinal explants obtained in rats. We found that IVT injection of aHPX significantly reduced vascular leakage, retinal neurodegeneration, and inflammation. In addition, treatment with aHPX significantly reduced HREC migration and tube formation induced by high glucose concentration and suppressed choroidal sprouting even after vascular endothelial growth factor stimulation, with this effect being higher than obtained with bevacizumab. The antipermeability and antiangiogenic effects of IVT injection of aHPX suggest the blockade or inhibition of HPX as a new strategy for the treatment of advanced stages of diabetic retinopathy. ARTICLE HIGHLIGHTS: Hemopexin (HPX) is the best-characterized permeability factor in steroid-sensitive nephrotic syndrome. We have previously reported that HPX is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. Here, we report that intravitreal injection of anti-HPX antibodies significantly reduces vascular leakage, retinal neurodegeneration, and inflammation in diabetic murine models and that the immunoneutralization of HPX exerts a significant antiangiogenic effect in vitro and in retinal explants. The blockade of HPX can be considered as a new therapy for advanced stages of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratas , Humanos , Ratones , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Hemopexina/metabolismo , Hemopexina/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Retina/metabolismo , Barrera Hematorretinal/metabolismo , Anticuerpos/farmacología , Diabetes Mellitus Experimental/metabolismo , Inflamación/metabolismo
7.
Peptides ; 168: 171065, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495040

RESUMEN

During diabetic retinopathy (DR) progression, the retina undergoes various metabolic changes, including hypoxia-signalling cascade induction in the cells of retinal pigmented epithelium (RPE). The overexpression of hypoxic inducible factors causes transcription of many target genes including vascular endothelial growth factor (VEGF). The RPE cells form the outer blood retinal barrier (oBRB), a specialized structure that regulates ions and metabolites flux into the retina to maintain a suitable quality of its extracellular microenvironment. VEGF worsens retinal condition since its secretion from the basolateral compartment of RPE cells compromises the barrier's integrity and induces choroidal neovascularization. In this work, we hypothesized that PACAP prevents the damage to oBRB and controls choroidal neovascularization through the induction of ADNP. Firstly, we demonstrated that ADNP is expressed in Streptozotocin (STZ)-induced diabetic animals. To validate our hypothesis, we cultured endothelial cells (H5V) forming vessels-like structures, in a conditioned medium (CM) derived from ARPE-19 cells exposed to hyperglycaemic/hypoxic insult, containing a known VEGF concentration. The involvement of PACAP-ADNP axis on oBRB integrity was evaluated through the measurement of trans-epithelial-electrical resistance and permeability assay performed on ARPE cell monolayer cultured in CM and by analysing the expression of two tight junction forming proteins, ZO1 and occludin. By culturing H5V in CM, we demonstrated that PACAP-ADNP axis counteracted vessels-like structures formation promoted by VEGF. In conclusion, the results suggested a primary role of PACAP/ADNP axis in preventing oBRB damage and in controlling aberrant choroidal neovascularization induced by VEGF secreted from RPE cells exposed to hyperglycaemia/hypoxic insult in DR.


Asunto(s)
Neovascularización Coroidal , Retinopatía Diabética , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Células Endoteliales/metabolismo , Retina/metabolismo , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Retinopatía Diabética/metabolismo , Barrera Hematorretinal/metabolismo , Hipoxia/metabolismo
8.
Nat Commun ; 14(1): 2947, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268690

RESUMEN

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica , Receptores Frizzled , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Retina/metabolismo , Barrera Hematorretinal/metabolismo , Vía de Señalización Wnt
9.
Diabetes ; 72(6): 781-794, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930735

RESUMEN

Inflammation plays an important role in the pathogenesis of diabetic retinopathy (DR). To precisely define the inflammatory mediators, we examined the transcriptomic profile of human retinal endothelial cells exposed to advanced glycation end products, which revealed the neutrophil chemoattractant chemokine CXCL1 as one of the top genes upregulated. The effect of neutrophils in the alteration of the blood-retinal barrier (BRB) was further assessed in wild-type C57BL/6J mice intravitreally injected with recombinant CXCL1 as well as in streptozotocin-induced diabetic mice. Both intravitreally CXCL1-injected and diabetic animals showed significantly increased retinal vascular permeability, with significant increase in infiltration of neutrophils and monocytes in retinas and increased expression of chemokines and their receptors, proteases, and adhesion molecules. Treatment with Ly6G antibody for neutrophil depletion in both diabetic mice as well as CXCL1-injected animals showed significantly decreased retinal vascular permeability accompanied by decreased infiltration of neutrophils and monocytes and decreased expression of cytokines and proteases. CXCL1 level was significantly increased in the serum samples of patients with DR compared with samples of those without diabetes. These data reveal a novel mechanism by which the chemokine CXCL1, through neutrophil recruitment, alters the BRB in DR and, thus, serves as a potential novel therapeutic target. ARTICLE HIGHLIGHTS: Intravitreal CXCL1 injection and diabetes result in increased retinal vascular permeability with neutrophil and monocyte recruitment. Ly6G antibody treatment for neutrophil depletion in both animal models showed decreased retinal permeability and decreased cytokine expression. CXCL1 is produced by retinal endothelial cells, pericytes, and astrocytes. CXCL1 level is significantly increased in serum samples of patients with diabetic retinopathy. CXCL1, through neutrophil recruitment, alters the blood-retinal barrier in diabetic retinopathy and, thus, may be used as a therapeutic target.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratones , Humanos , Animales , Barrera Hematorretinal/metabolismo , Retinopatía Diabética/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacología , Diabetes Mellitus Experimental/metabolismo , Transcriptoma , Células Endoteliales/metabolismo , Infiltración Neutrófila , Ratones Endogámicos C57BL , Permeabilidad Capilar , Anticuerpos/farmacología , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/farmacología
10.
Invest Ophthalmol Vis Sci ; 64(3): 22, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36912597

RESUMEN

Purpose: Iron overload causes oxidative damage in the retina, and it has been involved in the pathogeny of diabetic retinopathy, which is one of the leading causes of blindness in the adult population worldwide. However, how systemic iron enters the retina during diabetes and the role of blood retinal barrier (BRB) in this process remains unclear. Methods: The db/db mouse, a well-known model of type 2 diabetes, and a model of systemic iron overload induced by iron dextran intraperitoneal injection, were used. Perls staining and mass spectrophotometry were used to study iron content. Western blot and immunohistochemistry of iron handling proteins were performed to study systemic and retinal iron metabolism. BRB function was assessed by analyzing vascular leakage in fundus angiographies, whole retinas, and retinal sections and by studying the status of tight junctions using transmission electron microscopy and Western blot analysis. Results: Twenty-week-old db/db mice with systemic iron overload presented ferritin overexpression without iron increase in the retina and did not show any sign of BRB breakdown. These findings were also observed in iron dextran-injected mice. In those animals, after BRB breakdown induced by cryopexy, iron entered massively in the retina. Conclusions: Our results suggested that BRB protects the retina from excessive iron entry in early stages of diabetic retinopathy. Furthermore, ferritin overexpression before iron increase may prepare the retina for a potential BRB breakdown and iron entry from the systemic circulation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Sobrecarga de Hierro , Ratones , Animales , Retinopatía Diabética/metabolismo , Dextranos/metabolismo , Hierro/metabolismo , Ferritinas/metabolismo , Diabetes Mellitus Tipo 2/patología , Retina/metabolismo , Barrera Hematorretinal/metabolismo , Complejo Hierro-Dextran/toxicidad , Sobrecarga de Hierro/metabolismo
11.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674425

RESUMEN

Diabetic retinopathy (DR) is characterized by morphologic and metabolic alterations in endothelial cells (ECs) and pericytes (PCs) of the blood-retinal barrier (BRB). The loss of interendothelial junctions, increased vascular permeability, microaneurysms, and finally, EC detachment are the main features of DR. In this scenario, a pivotal role is played by the extensive loss of PCs. Based on previous results, the aim of this study was to assess possible beneficial effects exerted by adipose mesenchymal stem cells (ASCs) and their pericyte-like differentiated phenotype (P-ASCs) on human retinal endothelial cells (HRECs) in high glucose conditions (25 mM glucose, HG). P-ASCs were more able to preserve BRB integrity than ASCs in terms of (a) increased transendothelial electrical resistance (TEER); (b) increased expression of adherens junction and tight junction proteins (VE-cadherin and ZO-1); (c) reduction in mRNA levels of inflammatory cytokines TNF-α, IL-1ß, and MMP-9; (d) reduction in the angiogenic factor VEGF and in fibrotic TGF-ß1. Moreover, P-ASCs counteracted the HG-induced activation of the pro-inflammatory phospho-ERK1/2/phospho-cPLA2/COX-2 pathway. Finally, crosstalk between HRECs and ASCs or P-ASCs based on the PDGF-B/PDGFR-ß axis at the mRNA level is described herein. Thus, P-ASCs might be considered valuable candidates for therapeutic approaches aimed at countering BRB disruption in DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Células Madre Mesenquimatosas , Humanos , Retinopatía Diabética/metabolismo , Pericitos/metabolismo , Células Endoteliales/metabolismo , Retina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Barrera Hematorretinal/metabolismo , Glucosa/metabolismo , ARN Mensajero/metabolismo , Diabetes Mellitus/metabolismo
12.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555148

RESUMEN

At the inner blood-retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered in various tissues. The purpose of this study was to clarify the alterations in P-gp activity at the inner BRB due to lipopolysaccharide (LPS), an inflammatory agent, and the molecular mechanisms of the alterations induced by LPS. Ex vivo P-gp activity was evaluated as luminal accumulation of 7-nitro-2,1,3-benzoxadiazole-cyclosporin A (NBD-CSA), a fluorescent P-gp substrate, in freshly prepared rat retinal capillaries. The luminal NBD-CSA accumulation was significantly decreased in the presence of LPS, indicating that P-gp activity at the inner BRB is reduced by LPS. This LPS-induced attenuation of the luminal NBD-CSA accumulation was abolished by inhibiting toll-like receptor 4 (TLR4), a receptor for LPS. Furthermore, an inhibitor/antagonist of tumor necrosis factor receptor 1, endothelin B receptor, nitric oxide synthase, or protein kinase C (PKC) significantly restored the LPS-induced decrease in the luminal NBD-CSA accumulation. Consequently, it is suggested that the TLR4/PKC pathway is involved in the reduction in P-gp function in the inner BRB by LPS.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Barrera Hematorretinal , Animales , Ratas , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematorretinal/metabolismo , Lipopolisacáridos , Receptor Toll-Like 4/metabolismo
13.
Fluids Barriers CNS ; 19(1): 86, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320068

RESUMEN

The unique environment of the brain and retina is tightly regulated by blood-brain barrier and the blood-retinal barrier, respectively, to ensure proper neuronal function. Endothelial cells within these tissues possess distinct properties that allow for controlled passage of solutes and fluids. Pericytes, glia cells and neurons signal to endothelial cells (ECs) to form and maintain the barriers and control blood flow, helping to create the neurovascular unit. This barrier is lost in a wide range of diseases affecting the central nervous system (CNS) and retina such as brain tumors, stroke, dementia, and in the eye, diabetic retinopathy, retinal vein occlusions and age-related macular degeneration to name prominent examples. Recent studies directly link barrier changes to promotion of disease pathology and degradation of neuronal function. Understanding how these barriers form and how to restore these barriers in disease provides an important point for therapeutic intervention. This review aims to describe the fundamentals of the blood-tissue barriers of the CNS and how the use of transgenic animal models led to our current understanding of the molecular framework of these barriers. The review also highlights examples of targeting barrier properties to protect neuronal function in disease states.


Asunto(s)
Barrera Hematoencefálica , Barrera Hematorretinal , Animales , Barrera Hematorretinal/metabolismo , Barrera Hematoencefálica/metabolismo , Animales Modificados Genéticamente , Células Endoteliales/fisiología , Sistema Nervioso Central
14.
Sci Prog ; 105(3): 368504221109212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35775596

RESUMEN

A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Neoplasias , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Barrera Hematorretinal/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
15.
Methods Mol Biol ; 2475: 239-257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35451763

RESUMEN

Relevant human in vitro models of the retinal microvasculature can be used to study the role of disease mediators on retinal barrier dysfunction and assess the efficacy of early drug candidates. This chapter describes an organ-on-a-chip model of the retinal microvasculature that allows for facile quantification of barrier permeability in response to leakage mediators, such as Vascular Endothelial Growth Factor (VEGF), and enables screening of VEGF-induced permeability inhibitors. This chapter also presents an automated confocal imaging method for the visualization of endothelial tube morphology as an additional measure of barrier integrity.


Asunto(s)
Barrera Hematorretinal , Factor A de Crecimiento Endotelial Vascular , Barrera Hematorretinal/metabolismo , Permeabilidad Capilar/fisiología , Humanos , Dispositivos Laboratorio en un Chip , Microvasos/metabolismo , Permeabilidad , Vasos Retinianos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Methods Mol Biol ; 2475: 259-274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35451764

RESUMEN

Difficulties with poor reproducibility and translatability of animal model-based research, along with increased efforts to abide by the 3Rs tenet of animal welfare, are driving demand for more relevant human cellular systems. This is especially true for central nervous system (CNS) vasculatures with specialized properties and barriers, namely the blood-brain and blood-retinal barriers (BBB and BRB, respectively) which are difficult to model in vitro. The BBB and BRB protect neurovascular units by regulating nutrient homeostasis, maintaining local ion levels, protecting against exposure from circulating toxins and pathogens, and restricting passage of peripheral immune factors. In this manuscript, we will describe transgenic and pharmacological-based protocols to generate relevant BBB and BRB models both from human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and from primary human umbilical vein endothelial cells (HUVECs). When followed, researchers can expect to generate well-characterized, anatomical and functional BBB and BRB EC monolayers in 36-48 h that are stable up to 90 h. The ability to generate more relevant BBB and BRB EC cultures will improve drug discovery efforts and inform future therapies for neurovascular disorders.


Asunto(s)
Permeabilidad Capilar , Factor A de Crecimiento Endotelial Vascular , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematorretinal/metabolismo , Permeabilidad Capilar/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Reproducibilidad de los Resultados , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Front Immunol ; 13: 831660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371022

RESUMEN

Microglial activation and melatonin protection have been reported in diabetic retinopathy (DR). Whether melatonin could regulate microglia to protect the inner blood-retinal barrier (iBRB) remains unknown. In this study, the role of microglia in iBRB breakdown and the mechanisms of melatonin's regulation on microglia were explored. In diabetic rat retinas, activated microglia proliferated and migrated from the inner retina to the outer retina, accompanied by the obvious morphological changes. Meanwhile, significant leakage of albumin was evidenced at the site of close interaction between activated microglia and the damaged pericytes and endothelial cells. In vitro, inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, and arginase-1 (Arg-1), were increased significantly in CoCl2-treated BV2 cells. The supernatant derived from CoCl2-treated BV2 cells significantly decreased the cell viability and disrupted the junctional proteins in both pericytes and endothelial cells, resulting in severe leakage. Melatonin suppressed the microglial overactivation, i.e., decreasing the cell number and promoting its anti-inflammatory properties in diabetic rat retinas. Moreover, the leakage of iBRB was alleviated and the pericyte coverage was restored after melatonin treatment. In vitro, when treated with melatonin in CoCl2-treated BV2 cells, the inflammatory factors were decreased, while the anti-inflammatory factors were increased, further reducing the pericyte loss and increasing the tight junctions. Melatonin deactivated microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways, thus maintaining the integrity of iBRB. The present data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of melatonin in the treatment of DR by regulating microglia.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Melatonina , Animales , Barrera Hematorretinal/metabolismo , Diabetes Mellitus/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Microglía/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
18.
Inflamm Res ; 71(1): 69-79, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773469

RESUMEN

OBJECTIVE: Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina. MATERIALS AND METHODS: Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA. RESULTS: Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects. CONCLUSION: These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.


Asunto(s)
Retinopatía Diabética , Edema Macular , Animales , Barrera Hematorretinal/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Edema Macular/metabolismo , Ratones , Prolil Hidroxilasas/metabolismo , Prolil Hidroxilasas/farmacología , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología
19.
Yakugaku Zasshi ; 141(12): 1319-1325, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34853204

RESUMEN

Since the retina continuously receives light to enable vision, reactive oxygen species (ROS) are easily generated in neural retina. The oxidative stress induced by ROS may be involved in the onset and progression of blinding aging diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Although supply of antioxidants to the retina is important to maintain the redox homeostasis in neural retina, the blood-retinal barrier (BRB) is created by complex tight-junctions of retinal capillary endothelial cells and retinal pigment epithelial cells to prevent the free diffusion of substances. The BRB is equipped with several membrane transporters to supply nutrients and essential molecules including antioxidants and drugs which exhibit antiaging effect to the retina from the circulating blood. In this review, the transporter-mediated retinal distribution of key endogenous compounds and drugs, such as vitamin C, l-cystine and gabapentin, is introduced for antiaging of the retina.


Asunto(s)
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Animales , Cistina/metabolismo , Retinopatía Diabética/etiología , Retinopatía Diabética/prevención & control , Células Endoteliales/metabolismo , Gabapentina/metabolismo , Glaucoma/etiología , Glaucoma/prevención & control , Homeostasis , Humanos , Degeneración Macular/etiología , Degeneración Macular/prevención & control , Oxidación-Reducción , Estrés Oxidativo/fisiología , Ratas , Uniones Estrechas/metabolismo
20.
Biochem Biophys Res Commun ; 581: 96-102, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34662809

RESUMEN

OBJECTIVE: To examine the mechanisms of Nogo-B (RTN4B) in the protection of blood-retinal barrier in experimental diabetic retinopathy. METHODS: The level of Nogo-B in vitreous and plasma samples was detected with ELISA. Diabetes was induced in Sprague-Dawley rats with intraperitoneal injection of streptozotocin. The rats were injected intravitreally with adeno-associated virus (AAV) for knockdown the expression of Nogo-B in retina or/and as AAV negative control. The permeability of blood-retinal barrier was detected with Rhodamine-B-dextran leakage assay. The expressions of Nogo-B, junctional proteins, inflammatory factors and signaling pathways were examined with Western blot and quantitative real-time PCR. RESULTS: Nogo-B expression was significantly upregulated in clinical samples and experimental diabetic rat models. Under normal condition, Nogo-B knockdown resulted in the increased permeability of retinal blood vessels. In diabetic rat retinas, the vascular leakage was increased significantly, which was partially decreased by Nogo-B knockdown through increasing p/t-Src (Tyr529) and p/t-Akt (Ser473), and decreasing p/t-ERK1/2. CONCLUSION: Nogo-B was increased in diabetic retinopathy and silencing Nogo-B is a promising therapy for diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental/genética , Retinopatía Diabética/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Receptores de Superficie Celular/genética , Familia-src Quinasas/genética , Animales , Barrera Hematorretinal/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/terapia , Regulación de la Expresión Génica , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Retina/metabolismo , Retina/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal , Estreptozocina/administración & dosificación , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA