Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Food Chem Toxicol ; 192: 114940, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151879

RESUMEN

Infertility caused by lipopolysaccharide (LPS) exposure due to infection is endangering male fertility worldwide, but the mechanism remains unclear. The blood-testis barrier (BTB) is essential for maintaining spermatogenesis and male fertility. In the present study, we showed that LPS (5.0 mg/kg) treatment markedly down-regulated the expression of BTB-related proteins, expanded the biotin penetration distance and caused histopathological injury in seminiferous tubules in mouse testes. Notably, testicular macrophage M1 polarization induced by LPS seems to be related to BTB damage, which was well confirmed by co-culture of RAW264.7 and TM4 cells in vitro. Interestingly, a low-dose LPS (0.1 mg/kg) pretreatment attenuated down-regulation of BTB-related proteins expression and histopathological injury and shorten biotin penetration distance in seminiferous tubules caused by LPS. Correspondingly, a low-dose LPS pretreatment suppresses testicular macrophage M1 polarization induced by LPS in mouse testes. Further experiments revealed that histone deacetylase 5 (HDAC5) was markedly down-regulated at 2 h and slightly down-regulated at 8 h, but up-regulated at 24 h in mouse testes after LPS treatment. Additionally, low-dose LPS pretreatment against the down-regulation of HDAC5 protein caused by LPS treatment. Notably, the suppressed testicular macrophage M1 polarization by low-dose LPS pretreatment was broken by BRD4354, a specific inhibitor of HDAC5 in vitro. These results suggest suppressed testicular macrophage M1 polarization by HDAC5 enforces insensitivity to LPS-elicited BTB damage.


Asunto(s)
Barrera Hematotesticular , Histona Desacetilasas , Lipopolisacáridos , Macrófagos , Animales , Masculino , Lipopolisacáridos/toxicidad , Barrera Hematotesticular/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Testículo/efectos de los fármacos , Testículo/metabolismo , Células RAW 264.7
2.
Life Sci ; 355: 122980, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147312

RESUMEN

Testicular organoids have great potential for maintaining male fertility and even restoring male infertility. However, existing studies on generating organoids with testis-specific structure and function are scarce and come with many limitations. Research on cryopreservation of testicular organoids is even more limited, and inappropriate cryopreservation methods may result in the loss of properties in resuscitated or regenerated organoids, rendering them unsuitable for clinical or research needs. In this paper, we investigated the effects of mouse age and cell number on the self-aggregation of testicular cells into spheres in low-adsorption plates. Various media compositions, culture systems, and cell numbers were used to culture cell spheres for 14 days to form testicular organoids, and the self-organization of the organoids was assessed by histological and immunofluorescence staining. We determined the appropriate cryopreservation conditions for testicular cells, cell spheres, and tissues. Subsequently, organoids derived from cryopreserved testicular tissues, testicular cells, and testicular cell spheres were compared and evaluated by histological and immunofluorescence staining. The results indicate that testicular cell spheres consisting of 30 × 104 testicular cells from 2-week-old mice were able to form organoids highly similar to the luminal structure and cell distribution of natural mouse testicular tissues. This transformation occurred over 14 days of incubation in α-MEM medium containing 10 % knockout serum replacer (KSR) using an agarose hydrogel culture system. Additionally, the Sertoli cells were tightly connected to form a blood-testis barrier. The relative rates of tubular area, germ cells, Sertoli cells, and peritubular myoid cells were 36.985 % ± 0.695, 13.347 % ± 3.102, 47.570 % ± 0.379, and 27.406 % ± 1.832, respectively. The optimal cryopreservation protocol for primary testicular cells involved slow freezing with a cryoprotectant consisting of α-MEM with 10 % dimethyl sulfoxide (DMSO). Slow freezing with cryoprotectants containing 5 % DMSO and 5 % ethylene glycol (EG) was optimal for all different volumes of testicular cell spheres. Compared to testicular organoids generated from frozen testicular tissue and cell spheres, freezing testicular cells proved most effective in maintaining organoid differentiation characteristics and cell-cell interactions. The findings of this study contribute to a "universal" testicular organoid in vitro culture protocol with promising applications for fertility preservation and restoration in prepubertal cancer patients and adult infertile patients.


Asunto(s)
Criopreservación , Organoides , Testículo , Animales , Masculino , Criopreservación/métodos , Organoides/citología , Ratones , Testículo/citología , Células de Sertoli/citología , Ratones Endogámicos C57BL , Técnicas de Cultivo de Célula/métodos , Barrera Hematotesticular
3.
Virulence ; 15(1): 2384564, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072452

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease that threatens the global swine industry. Recent studies have focused on the damage that PRRSV causes to the reproductive system of male pigs, although pathological research is lacking. Therefore, we examined the pathogenic mechanisms in male piglets infected with PRRSV. Gross and histopathological changes indicated that PRRSV affected the entire reproductive system, as confirmed via immunohistochemical analysis. PRRSV infected Sertoli cells and spermatogonia. To test the new hypothesis that PRRSV infection in piglets impairs blood - testis barrier (BTB) development, we investigated the pathology of PRRSV damage in the BTB. PRRSV infection significantly decreased the quantity and proliferative capacity of Sertoli cells constituting the BTB. Zonula occludens-1 and ß-catenin were downregulated in cell - cell junctions. Transcriptome analysis revealed that several crucial genes and signalling pathways involved in the growth and development of Leydig cells, Sertoli cells, and tight junctions in the testes were downregulated. Apoptosis, necroptosis, inflammatory, and oxidative stress-related pathways were activated, whereas hormone secretion-related pathways were inhibited. Many Sertoli cells and spermatogonia underwent apoptosis during early differentiation. Infected piglets exhibited disrupted androgen secretion, leading to significantly reduced testosterone and anti-Müllerian hormone levels. A cytokine storm occurred, notably upregulating cytokines such as tumour necrosis factor-α and interleukin-6. Markers of oxidative-stress damage (i.e. H2O2, malondialdehyde, and glutathione) were upregulated, whereas antioxidant-enzyme activities (i.e. superoxide dismutase, total antioxidant capacity, and catalase) were downregulated. Our results demonstrated that PRRSV infected multiple organs in the male reproductive system, which impaired growth in the BTB.


Asunto(s)
Barrera Hematotesticular , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Células de Sertoli , Testículo , Animales , Masculino , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Células de Sertoli/virología , Células de Sertoli/metabolismo , Barrera Hematotesticular/virología , Testículo/virología , Testículo/patología , Espermatogonias/virología , Apoptosis , Células Intersticiales del Testículo/virología , Citocinas/metabolismo , Testosterona/sangre , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
4.
Sci Total Environ ; 948: 174738, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39009145

RESUMEN

2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47), being the most prevalent congener of polybrominated diphenyl ethers (PBDEs), has been found to accumulate greatly in the environment and induce spermatogenesis dysfunction. However, the specific underlying factors and mechanisms have not been elucidated. Herein, male Sprague-Dawley (SD) rats were exposed to corn oil, 10 mg/kg body weight (bw) PBDE-47 or 20 mg/kg bw PBDE-47 by gavage for 30 days. PBDE-47 exposure led to blood-testis barrier (BTB) integrity disruption and aberrant spermatogenesis. Given that Sertoli cells are the main toxicant target, to explore the potential mechanism involved, we performed RNA sequencing (RNA-seq) in Sertoli cells, and the differentially expressed genes were shown to be enriched in ferroptosis and lysosomal pathways. We subsequently demonstrated that ferroptosis was obviously increased in testes and Sertoli cells upon exposure to PBDE-47, and the junctional function of Sertoli cells was restored after treatment with the ferroptosis inhibitor ferrostatin-1. Since glutathione peroxidase 4 (GPX4) was dramatically reduced in PBDE-47-exposed testes and Sertoli cells and considering the RNA-sequencing results, we examined the activity of chaperone-mediated autophagy (CMA) and verified that the expression of LAMP2a and HSC70 was upregulated significantly after PBDE-47 exposure. Notably, Lamp2a knockdown not only inhibited ferroptosis by suppressing GPX4 degradation but also restored the impaired junctional function induced by PBDE-47. These collective findings strongly indicate that PBDE-47 induces Sertoli cell ferroptosis through CMA-mediated GPX4 degradation, resulting in decreased BTB-associated protein expression and eventually leading to BTB integrity disruption and spermatogenesis dysfunction.


Asunto(s)
Barrera Hematotesticular , Ferroptosis , Éteres Difenilos Halogenados , Animales , Masculino , Ratas , Barrera Hematotesticular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Ratas Sprague-Dawley , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos
5.
Pestic Biochem Physiol ; 203: 106010, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084803

RESUMEN

Thiram, a prevalent dithiocarbamate insecticide in agriculture, is widely employed as a crop insecticide and preservative. Chronic exposure to thiram has been linked to various irreversible damages, including tibial cartilage dysplasia, erythrocytotoxicity, renal issues, and immune system compromise. Limited research exists on its effects on reproductive organs. This study investigated the reproductive toxicology in mouse testes exposure to varying concentrations (0, 30, 60, and 120 mg/kg) of thiram. Our study uncovered a series of adverse effects in mice subjected to thiram exposure, including emaciation, stunted growth, decreased water intake, and postponed testicular maturation. Biochemical analysis in thiram-exposed mice showed elevated levels of LDH and AST, while ALP, TG, ALT, and urea were decreased. Histologically, thiram disrupted the testis' microarchitecture and compromised its barrier function by widening the gap between spermatogenic cells and promoting fibrosis. The expression of pro-apoptotic genes (Bax, APAF1, Cytc, and Caspase-3) was downregulated, whereas Bcl-2 expression increased in thiram-treated mice compared to controls. Conversely, the expression of Atg5 was upregulated, and mTOR and p62 expression decreased, with a trend towards lower LC3b levels. Thiram also disrupted the blood-testis barrier, significantly reducing the mRNA expression of zona occludens-1 (ZO-1) and occludin. In conclusion, chronic exposure to high thiram concentrations (120 mg/kg) caused testicular tissue damage, affecting the blood-testis barrier and modulating apoptosis and autophagy through the Bcl-2/Bax and mTOR/Atg5/p62 pathways. This study contributes to understanding the molecular basis of thiram-induced reproductive toxicity and underscores the need for further research and precautions for those chronically exposed to thiram and its environmental residuals.


Asunto(s)
Apoptosis , Proteína 5 Relacionada con la Autofagia , Autofagia , Barrera Hematotesticular , Proteínas Proto-Oncogénicas c-bcl-2 , Serina-Treonina Quinasas TOR , Testículo , Tiram , Proteína X Asociada a bcl-2 , Animales , Masculino , Apoptosis/efectos de los fármacos , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Barrera Hematotesticular/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Autofagia/efectos de los fármacos , Tiram/toxicidad , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Insecticidas/toxicidad , Transducción de Señal/efectos de los fármacos
6.
Ecotoxicol Environ Saf ; 279: 116502, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788563

RESUMEN

BACKGROUND: Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure. METHODS: Male mice were subjected to TP at doses of 15, 30, and 60 µg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood-testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining. RESULTS: TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells. CONCLUSION: This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.


Asunto(s)
Barrera Hematotesticular , Citoesqueleto , Diterpenos , Compuestos Epoxi , Fenantrenos , Proteínas Proto-Oncogénicas c-akt , Células de Sertoli , Transducción de Señal , Serina-Treonina Quinasas TOR , Testículo , Masculino , Animales , Células de Sertoli/efectos de los fármacos , Células de Sertoli/patología , Diterpenos/toxicidad , Fenantrenos/toxicidad , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/patología , Compuestos Epoxi/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/patología , Citoesqueleto/efectos de los fármacos , Ratas , Vacuolas/efectos de los fármacos , Ratas Sprague-Dawley
7.
J Pharm Sci ; 113(8): 2616-2624, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679231

RESUMEN

Ribavirin, an antiretroviral agent targeting the hepatitis C virus, causes male reproductive toxicity. This study investigated the mechanism of ribavirin transport at the blood-testis barrier (BTB). In vivo mouse integration plot analysis after intravenous administration revealed that the net influx clearance of [3H]ribavirin in the testis was 3.6-fold greater than that of [14C]D-mannitol, a paracellular transport marker, implying transcellular transport of ribavirin across the BTB. Moreover, [3H]ribavirin uptake by TM4 cells, mouse-derived Sertoli cells, was time- and concentration-dependent, with a Km value of 2.49 mM. S-[(4-nitrophenyl)methyl]-6-thioinosine, an inhibitor of Na+-independent equilibrative nucleoside transporters (ENTs), strongly inhibited the [3H]ribavirin uptake by TM4 cells at 100 µM. Compared to the uptake of [3H]adenosine, a typical endogenous nucleoside, [3H]ribavirin uptake was relatively similar to ENT2 transport. [3H]Ribavirin uptake was also observed in mouse ENT2-expressing Xenopus laevis oocytes, and gene silencing via the transfection of ENT2 small interfering RNA significantly reduced the [3H]ribavirin transport into TM4 cells by 13%. Taken together, these results suggest that ENT2 partially contributes to ribavirin transport at the BTB.


Asunto(s)
Antivirales , Barrera Hematotesticular , Ribavirina , Xenopus laevis , Animales , Ribavirina/metabolismo , Ribavirina/farmacocinética , Masculino , Ratones , Barrera Hematotesticular/metabolismo , Barrera Hematotesticular/efectos de los fármacos , Transporte Biológico , Antivirales/farmacocinética , Antivirales/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/genética , Línea Celular , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Testículo/metabolismo , Testículo/efectos de los fármacos
8.
Toxicol Sci ; 200(1): 70-78, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38565259

RESUMEN

Peritubular macrophages (PTMφ) are predominantly localized near spermatogonial stem cells in the testis. We previously revealed that exposure of peripubertal male Fischer rats to mono-(2-ethylhexyl) phthalate (MEHP) leads to increased PTMφs in the testis. The mechanisms that trigger increases in PTMφs in the testis are poorly understood. However, MEHP exposure is known to both induce spermatocyte apoptosis and to perturb the blood-testis barrier (BTB). This study aims to elucidate the association between the disruption of BTB and the increases of PTMφs in the testis by comparing the effects observed with MEHP to 2 other testicular toxicants with variable effects on the BTB and subtype of germ cell undergoing apoptosis. Methoxyacetic acid (MAA) acts directly on spermatocytes and does not affect BTB function, whereas cadmium chloride (CdCl2) induces profound injury to BTB. The results indicated that MAA exposure significantly increased spermatocyte apoptosis, whereas no significant changes in the numbers of PTMφs in the testis occurred. In contrast, CdCl2 exposure disrupted BTB function and increased the abundance of PTMφs in the testis. To further investigate whether MEHP-induced changes in BTB integrity accounted for the increase in PTMφs, a plasmid for LG3/4/5, the functional component of laminin-alpha 2, was overexpressed in the testis to stabilize BTB integrity before MEHP exposure. The results showed that LG3/4/5 overexpression substantially reduced the ability of MEHP to compromise BTB integrity and prevented the increase in PTMφ numbers after MEHP exposure. These results indicate that BTB disruption is necessary to increase PTMφs in the testis induced by toxicants.


Asunto(s)
Apoptosis , Barrera Hematotesticular , Dietilhexil Ftalato , Macrófagos , Ratas Endogámicas F344 , Testículo , Animales , Masculino , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/patología , Barrera Hematotesticular/metabolismo , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análogos & derivados , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Macrófagos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Cloruro de Cadmio/toxicidad , Acetatos/toxicidad , Ratas , Espermatocitos/efectos de los fármacos , Espermatocitos/patología
9.
Acta Pharmacol Sin ; 45(6): 1237-1251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38472317

RESUMEN

Both epidemiological and animal studies suggest that adverse environment during pregnancy can change the offspring development programming, but it is difficult to achieve prenatal early warning. In this study we investigated the impact of prenatal dexamethasone exposure (PDE) on sperm quality and function of blood-testis barrier (BTB) in adult offspring and the underlying mechanisms. Pregnant rats were injected with dexamethasone (0.1, 0.2 and 0.4 mg·kg-1·d-1, s.c.) from GD9 to GD20. After weaning (PW4), the pups were fed with lab chow. At PW12 and PW28, the male offspring were euthanized to collect blood and testes samples. We showed that PDE significantly decreased sperm quality (including quantity and motility) in male offspring, which was associated with impaired BTB and decreased CX43/E-cadherin expression in the testis. We demonstrated that PDE induced morphological abnormalities of fetal testicle and Sertoli cell development originated from intrauterine. By tracing to fetal testicular Sertoli cells, we found that PDE dose-dependently increased expression of histone lysine demethylases (KDM1B), decreasing histone 3 lysine 9 dimethylation (H3K9me2) levels of follistatin-like-3 (FSTL3) promoter region and increased FSTL3 expression, and inhibited TGFß signaling and CX43/E-cadherin expression in offspring before and after birth. These results were validated in TM4 Sertoli cells following dexamethasone treatment. Meanwhile, the H3K9me2 levels of FSTL3 promoter in maternal peripheral blood mononuclear cell (PBMC) and placenta were decreased and its expression increased, which was positively correlated with the changes in offspring testis. Based on analysis of human samples, we found that the H3K9me2 levels of FSTL3 promoter in maternal blood PBMC and placenta were positively correlated with fetal blood testosterone levels after prenatal dexamethasone exposure. We conclude that PDE can reduce sperm quality in adult offspring rats, which is related to the damage of testis BTB via epigenetic modification and change of FSTL3 expression in Sertoli cells. The H3K9me2 levels of the FSTL3 promoter and its expression in the maternal blood PBMC can be used as a prenatal warning marker for fetal testicular dysplasia.


Asunto(s)
Barrera Hematotesticular , Dexametasona , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Animales , Masculino , Femenino , Embarazo , Dexametasona/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ratas Sprague-Dawley , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología
10.
J Hazard Mater ; 470: 134126, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554509

RESUMEN

Cadmium (Cd) is a well-known testis toxicant. The blood-testis barrier (BTB) is a crucial component of the testis. Cd can disrupt the integrity of the BTB and reproductive function. However, the mechanism of Cd-induced disruption of BTB and testicular damage has not been fully elucidated. Here, our study investigates the effects of Cd on BTB integrity and testicular dysfunction. 80 (aged 1 day) Hy-Line white variety chickens were randomly designed into 4 groups and treated for 90 days, as follows: control group (essential diet), 35 Cd, 70 Cd and 140 Cd groups (35, 70 and 140 mg/kg Cd). The results found that Cd exposure diminished volume of the testes and induced histopathological lesions in the testes. Exposure to Cd induced an inflammatory response, disrupted the structure and function of the FAK/occludin/ZO-1 protein complex and disrupted the tight junction and adherens junction in the BTB. In addition, Cd exposure reduced the expression of steroid-related proteins and inhibited testosterone synthesis. Taken together, these data elucidate that Cd disrupts the integrity of the BTB and further inhibits spermatogenesis by dissociating the FAK/occludin/ZO-1 complex, which provides a basis for further investigation into the mechanisms of Cd-induced impairment of male reproductive function and pharmacological protection.


Asunto(s)
Barrera Hematotesticular , Cadmio , Pollos , Testículo , Animales , Masculino , Barrera Hematotesticular/efectos de los fármacos , Cadmio/toxicidad , Quinasa 1 de Adhesión Focal/metabolismo , Ocludina/metabolismo , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Testosterona/sangre , Proteína de la Zonula Occludens-1/metabolismo
11.
Environ Pollut ; 346: 123625, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401636

RESUMEN

The blood-testis barrier (BTB) plays a vital role in mammalian spermatogenesis by separating the seminiferous epithelium into an adluminal and a basal compartment. Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. We observed that Cd can induce BTB disruption, leading to apoptosis of testicular cells. However, the molecular mechanisms contributing to BTB injury induced by Cd have not yet been fully clarified. Vimentin (Vim) is an important desmosome-like junction protein that mediates robust adhesion in the BTB. In this study, we investigated how Vim responds to Cd. We found that Cd treatment led to a significant decrease in Vim expression, accompanied by a marked increase in LC3-II expression and a higer number of autophagosomes. Interestingly, we also observed that Cd-induced autophagy was associated with decreased Vim activity and enhanced apoptosis of testicular cells. To further investigate the role of autophagy in Vim regulation under Cd exposure, we treated cells with an autophagy inhibitor called 3-MA. We found that 3-MA treatment enhanced Vim expression and improved the disruption of the BTB under Cd exposure. Additionally, the inhibition of Vim confirmed the role of autophagy in modulating Vim expression. These results reveal a previously unknown regulatory mechanism of Cd involving the interplay between a heavy metal and a protein.


Asunto(s)
Barrera Hematotesticular , Cadmio , Masculino , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Vimentina/metabolismo , Barrera Hematotesticular/metabolismo , Testículo/metabolismo , Espermatogénesis/fisiología , Autofagia , Mamíferos
12.
Asian J Androl ; 26(3): 295-301, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284772

RESUMEN

Cuproptosis, a novel mechanism of programmed cell death, has not been fully explored in the context of spermatogenic cells. This study investigated the potential involvement of cuproptosis in spermatogenic cell death using a mouse model of copper overload. Sixty male Institute of Cancer Research (ICR) mice were randomly divided into four groups that received daily oral gavage with sodium chloride (control) or copper sulfate (CuSO 4 ) at 50 mg kg -1 , 100 mg kg -1 , or 200 mg kg -1 , for 42 consecutive days. Mice subjected to copper overload exhibited a disruption in copper homeostasis. Additionally, significant upregulated expression of key cuproptosis factors was accompanied by a significant rise in the rates of testicular tissue cell apoptosis. Immunohistochemical analysis revealed the presence of ferredoxin 1 (Fdx1) in Sertoli cells, Leydig cells, and spermatogenic cells at various stages of testicular development, and the Fdx1-positive staining area was significantly increased in copper-overloaded mice. Mitochondrial dysfunction and decreased adenosine triphosphate levels were also observed, further implicating mitochondrial damage under cuproptosis. Further analyses revealed pathological lesions and blood-testis barrier destruction in the testicular tissue, accompanied by decreased sperm concentration and motility, in copper-overloaded mice. In summary, our results indicate that copper-overloaded mice exhibit copper homeostasis disorder in the testicular tissue and that cuproptosis participates in spermatogenic cell death. These findings provide novel insights into the pathogenic mechanisms underlying spermatogenic cell death and provide initial experimental evidence for the occurrence of cuproptosis in the testis.


Asunto(s)
Apoptosis , Cobre , Células de Sertoli , Espermatogénesis , Testículo , Animales , Masculino , Ratones , Testículo/patología , Testículo/efectos de los fármacos , Testículo/metabolismo , Apoptosis/efectos de los fármacos , Cobre/toxicidad , Células de Sertoli/efectos de los fármacos , Células de Sertoli/patología , Células de Sertoli/metabolismo , Espermatogénesis/efectos de los fármacos , Ratones Endogámicos ICR , Ferredoxinas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Sulfato de Cobre/toxicidad , Sulfato de Cobre/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/patología , Células Intersticiales del Testículo/metabolismo , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/patología , Barrera Hematotesticular/metabolismo , Muerte Celular/efectos de los fármacos , Adenosina Trifosfato/metabolismo
13.
Sci Rep ; 14(1): 1910, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253778

RESUMEN

This study aimed to investigate the effects of eugenol treatment on reproductive parameters in acrylamide (ACR)-intoxicated rats. The study evaluated alterations in relative testes and epididymides weights, sperm quality, serum hormonal status, seminal plasma amino acids, testicular cell energy and phospholipids content, oxidative and nitrosative stress parameters, adenosine monophosphate-activated protein kinase/ phosphoinositide 3-kinase/phosphor-protein kinase B/mammalian target of rapamycin (AMPK/PI3K/p-AKT/mTOR) signaling pathway, blood-testis barrier (BTB) remodeling markers, testicular autophagy and apoptotic markers, as well as histopathological alterations in testicular tissues. The results revealed that eugenol treatment demonstrated a significant improvement in sperm quality parameters, with increased sperm cell concentration, progressive motility live sperm, and a reduction in abnormal sperm, compared to the ACR-intoxicated group. Furthermore, eugenol administration increased the levels of seminal plasma amino acids in a dose-dependent manner. In addition, eugenol treatment dose-dependently improved testicular oxidative/nitrosative stress biomarkers by increasing oxidized and reduced glutathione levels and reducing malondialdehyde and nitric oxide contents as compared to ACRgroup. However, eugenol treatment at a high dose restored the expression of AMPK, PI3K, and mTOR genes, to levels comparable to the control group, while significantly increasing p-AKT content compared to the ACRgroup. In conclusion, the obtained findings suggest the potential of eugenol as a therapeutic agent in mitigating ACR-induced detrimental effects on the male reproductive system via amelioration of ROS-mediated autophagy, apoptosis, AMPK/p-AKT/mTOR signaling pathways and BTB remodeling.


Asunto(s)
Antifibrinolíticos , Testículo , Masculino , Animales , Ratas , Proteínas Quinasas Activadas por AMP , Eugenol/farmacología , Proteínas Proto-Oncogénicas c-akt , Barrera Hematotesticular , Fosfatidilinositol 3-Quinasas , Semen , Transducción de Señal , Serina-Treonina Quinasas TOR , Acrilamida/toxicidad , Aminoácidos , Mamíferos
14.
Reprod Biol ; 24(1): 100846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38160586

RESUMEN

Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Proteínas Proto-Oncogénicas c-akt , Células de Sertoli , Animales , Masculino , Ratones , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Barrera Hematotesticular , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Semen/metabolismo , Células de Sertoli/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
15.
Zhonghua Nan Ke Xue ; 29(1): 3-9, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-37846825

RESUMEN

OBJECTIVE: To investigate the role of autophagy in cadmium chloride (CdCl2)-induced damage to the blood-testis barrier (BTB) in mice. METHODS: Twenty four-week-old male C57BL/6 mice were randomly divided into four groups and intraperitoneally injected with CdCl2 at 0 mg/kg/d (the control), 0.5 mg/kg/d (low-dose), 1.0 mg/kg/d (medium-dose) and 2.0 mg/kg/d (high-dose) respectively for 28 consecutive days. Then the morphological changes of the testis tissue was observed by HE staining, the integrity of BTB measured with the biotracer, and the expressions of the BTB components ZO-1 and N-Cadherin proteins detected by Western blot. The TM4 Sertoli cells were treated with CdCl2at 0, 2.5, 5 and 10 µmol/L respectively for 24 hours, followed by determination of the expression levels of ZO-1 and N-Cadherin as well as the autophagy-related proteins LC3II and p62. Then the cells were again treated with CdCl2 in the presence of the autophagy inhibitor chloroquine (CQ) at 5 µmol/L or the autophagy inducer rapamycin (Rap) at 50 nmol/L for 24 hours, followed by measurement of the expressions of LC3II, p62, ZO-1 and N-Cadherin by Western blot. RESULTS: Compared with the control group, the cadmium-exposed mice showed increased interstitial space in the seminiferous tubules, formation of intracellular cavitation in the germ cells with decreased layers and disordered arrangement, and damaged integrity of the BTB. The expressions of the ZO-1 and N-Cadherin proteins were significantly down-regulated in the testis tissue of the mice in the medium- and high-dose CdCl2 groups (P < 0.05), and even more significantly in the CdCl2-exposed cells in comparison with those in the control mice (P < 0.01), while the expressions of the LC3II and p62 proteins were remarkably up-regulated (P < 0.05). The expressions of ZO-1, N-Cadherin, LC3II and p62 were also up-regulated in the cells co-treated with CQ and CdCl2 (P < 0.01), those of ZO-1, N-Cadherin and p62 down-regulated (P< 0.05) and that of LC3II up-regulated (P < 0.05) in the cells co-treated with Rap and CdCl2. CONCLUSION: CdCl2 can damage the integrity of the mouse BTB, which may be attributed to its ability to enhance the autophagy in Sertoli cells and regulate the expressions of BTB proteins.


Asunto(s)
Barrera Hematotesticular , Cadmio , Ratones , Masculino , Animales , Barrera Hematotesticular/metabolismo , Cloruro de Cadmio/toxicidad , Cloruro de Cadmio/metabolismo , Ratones Endogámicos C57BL , Células de Sertoli/metabolismo , Cadherinas/metabolismo , Autofagia , Testículo/metabolismo
16.
J Reprod Dev ; 69(6): 347-355, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37899250

RESUMEN

Spermatogonial stem cells (SSCs) possess a unique ability to recolonize the seminiferous tubules. Upon microinjection into the adluminal compartment of the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) to the basal compartment of the tubule and reinitiate spermatogenesis. It was recently discovered that inhibiting retinoic acid signaling with WIN18,446 enhances SSC colonization by transiently suppressing spermatogonia differentiation, thereby promoting fertility restoration. In this study, we report that WIN18,446 increases SSC colonization by disrupting the BTB. WIN18,446 altered the expression patterns of tight junction proteins (TJPs) and disrupted the BTB in busulfan-treated mice. WIN18,446 upregulated the expression of FGF2, one of the self-renewal factors for SSCs. While WIN18,446 enhanced SSC colonization in busulfan-treated wild-type mice, it did not increase colonization levels in busulfan-treated Cldn11-deficient mice, which lack the BTB, indicating that the enhancement of SSC colonization in wild-type testes depended on the loss of the BTB. Serial transplantation analysis revealed impaired self-renewal caused by WIN18,446, indicating that WIN18,446-mediated inhibition of retinoic acid signaling impaired SSC self-renewal. Strikingly, WIN18,446 administration resulted in the death of 45% of busulfan-treated recipient mice. These findings suggest that TJP modulation is the primary mechanism behind enhanced SSC homing by WIN18,446 and raise concerns regarding the use of WIN18,446 for human SSC transplantation.


Asunto(s)
Barrera Hematotesticular , Busulfano , Masculino , Animales , Ratones , Humanos , Barrera Hematotesticular/metabolismo , Busulfano/farmacología , Busulfano/metabolismo , Espermatogonias/metabolismo , Testículo , Espermatogénesis , Fertilidad , Trasplante de Células , Células Madre , Tretinoina/farmacología , Trasplante de Células Madre
17.
Redox Biol ; 67: 102886, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742495

RESUMEN

Nickel (Ni) is an essential common environmental contaminant, it is hazardous to male reproduction, but the precise mechanisms are still unknown. Blood-testis barrier (BTB), an important testicular structure consisting of connections between sertoli cells, is the target of reproductive toxicity caused by many environmental toxins. In this study, ultrastructure observation and BTB integrity assay results indicated that NiCl2 induced BTB damage. Meanwhile, BTB-related proteins including the tight junction (TJ), adhesion junction (AJ) and the gap junction (GJ) protein expression in mouse testes as well as in sertoli cells (TM4) were significantly decreased after NiCl2 treatment. Next, the antioxidant N-acetylcysteine (NAC) was co-treated with NiCl2 to study the function of oxidative stress in NiCl2-mediated BTB deterioration. The results showed that NAC attenuated testicular histopathological damage, and the expression of BTB-related proteins were markedly reversed by NAC co-treatment in vitro and vivo. Otherwise, NiCl2 activated the p38 MAPK signaling pathway. And, NAC co-treatment could significantly inhibit p38 activation induced by NiCl2 in TM4 cells. Furthermore, in order to confirm the role of the p38 MAPK signaling pathway in NiCl2-induced BTB impairment, a p38 inhibitor (SB203580) was co-treated with NiCl2 in TM4 cells, and p38 MAPK signaling inhibition significantly restored BTB damage induced by NiCl2 in TM4 cells. These results suggest that NiCl2 treatment destroys the BTB, in which the oxidative stress-mediated p38 MAPK signaling pathway plays a vital role.


Asunto(s)
Barrera Hematotesticular , Proteínas Quinasas p38 Activadas por Mitógenos , Ratones , Masculino , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Barrera Hematotesticular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Níquel/toxicidad , Níquel/metabolismo , Testículo/metabolismo
18.
Artículo en Chino | MEDLINE | ID: mdl-37400398

RESUMEN

Objective: To study the effects of cadmium chloride (CdCl(2)) exposure on testicular autophagy levels and blood-testis barrier integrity in prepubertal male SD rats and testicular sertoli (TM4) cells. Methods: In July 2021, 9 4-week-old male SD rats were randomly divided into 3 groups: control group (normal saline), low dose group (1 mg/kg·bw CdCl(2)) and high dose group (2 mg/kg·bw CdCl(2)), and were exposed with CdCl(2) by intrabitoneal injection. 24 h later, HE staining was used to observe the morphological changes of testis of rats, biological tracer was used to observe the integrity of blood-testis barrier, and the expression levels of microtubule-associated protein light chain 3 (LC3) -Ⅰ and LC3-Ⅱ in testicular tissue were detected. TM4 cells were treated with 0, 2.5, 5.0 and 10.0 µmol/L CdCl(2) for 24 h to detect the toxic effect of cadmium. The cells were divided into blank group (no exposure), exposure group (10.0 µmol/L CdCl(2)), experimental group[10.0 µmol/L CdCl(2)+60.0 µmol/L 3-methyladenine (3-MA) ] and inhibitor group (60.0 µmol/L 3-MA). After 24 h of treatment, Western blot analysis was used to detect the expression levels of LC3-Ⅱ, ubiquitin binding protein p62, tight junction protein ZO-1 and adhesion junction protein N-cadherin. Results: The morphology and structure of testicular tissue in the high dose group were obvious changed, including uneven distribution of seminiferous tubules, irregular shape, thinning of seminiferous epithelium, loose structure, disordered arrangement of cells, abnormal deep staining of nuclei and vacuoles of Sertoli cells. The results of biological tracer method showed that the integrity of blood-testis barrier was damaged in the low and high dose group. Western blot results showed that compared with control group, the expression levels of LC3-Ⅱ in testicular tissue of rats in low and high dose groups were increased, the differences were statistically significant (P<0.05). Compared with the 0 µmol/L, after exposure to 5.0, 10.0 µmol/L CdCl(2), the expression levels of ZO-1 and N-cadherin in TM4 cells were significantly decreased, and the expression level of p62 and LC3-Ⅱ/LC3-Ⅰ were significantly increased, the differences were statistically significant (P<0.05). Compared with the exposure group, the relative expression level of p62 and LC3-Ⅱ/LC3-Ⅰ in TM4 cells of the experimental group were significantly decreased, while the relative expression levels of ZO-1 and N-cadherin were significantly increased, the differences were statistically significant (P<0.05) . Conclusion: The mechanism of the toxic effect of cadmium on the reproductive system of male SD rats may be related to the effect of the autophagy level of testicular tissue and the destruction of the blood-testis barrier integrity.


Asunto(s)
Cloruro de Cadmio , Testículo , Ratas , Masculino , Animales , Cloruro de Cadmio/toxicidad , Cloruro de Cadmio/metabolismo , Cadmio , Barrera Hematotesticular/metabolismo , Ratas Sprague-Dawley , Cadherinas/metabolismo , Autofagia
19.
Pharm Biol ; 61(1): 986-999, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37386769

RESUMEN

CONTEXT: Semen cuscutae is commonly used to treat male infertility (MI), and semen cuscutae flavonoid (SCF) is the main active component of semen cuscutae. The therapeutic mechanism of SCF on MI is still unclear. OBJECTIVE: To clarify the mechanisms of SCF against MI. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to predict the potential pathways of SCF against MI. Primary Sertoli cells (SCs) were extracted from testis of 60-day-old rats and divided into Control, Model, and 3 treatment groups. The Control and Model groups were given normal medium, the treatment groups were treated with various concentrations of SCF-containing medium (200, 400, and 800 µg/mL). After 24 h, the Model and treatment groups were exposed to heat stress at 43 °C for 15 min. Western blotting and immunohistochemistry were used to detect the expression of targets. RESULT: Network pharmacology indicated that the treatment of SCF on MI was closely related to PI3K-AKT signaling pathway. The in vitro experiments showed that SCF could up-regulated the expression of AKT, AR, occludin, and Ki67, and down-regulated the expression of CK-18 in SCs after heat stress. The AKT inhibitor could block this process. CONCLUSIONS: SCF can treat MI by regulating the proliferation and differentiation of SCs and the integrity of the blood-testis barrier. The study could provide experimental basis for clinical research.


Asunto(s)
Infertilidad Masculina , Semen , Masculino , Animales , Ratas , Humanos , Células de Sertoli , Barrera Hematotesticular , Farmacología en Red , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Flavonoides/farmacología
20.
Drug Metab Dispos ; 51(9): 1157-1168, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37258305

RESUMEN

The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Masculino , Humanos , Barrera Hematotesticular/metabolismo , Xenobióticos/metabolismo , Testículo/metabolismo , Transporte Biológico , Células de Sertoli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA