Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.538
Filtrar
1.
ACS Chem Biol ; 19(8): 1695-1704, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39106256

RESUMEN

Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of lipid homeostasis and are essential for lipid metabolic reprogramming that supports tumor growth in multiple cancers. SREBP pathway inhibitors have been identified, but bioavailable compounds are lacking. To address this need, we designed a novel approach for screening a collection of 4,474 FDA-approved drugs. SREBPs are conditionally essential and required under low lipid conditions. Leveraging this property, we screened for drugs that inhibited pancreatic cancer cell growth in lipid-poor, but not lipid-rich, medium. The primary screen identified 83 drugs that inhibited cell growth in a lipid-dependent manner. Secondary assays examining SREBP target gene expression, SREBP proteolytic cleavage, and effects on human breast cancer cells identified 13 FDA-approved drugs that inhibit SREBP pathway activation. Taken together, we demonstrated that our screening approach can identify SREBP inhibitors from a small library of compounds. This high-throughput screening platform enables screening of large compound collections to discover novel small molecule SREBP inhibitors.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteínas de Unión a los Elementos Reguladores de Esteroles , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Estados Unidos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Aprobación de Drogas , Proliferación Celular/efectos de los fármacos , United States Food and Drug Administration , Antineoplásicos/farmacología
2.
Cell Chem Biol ; 31(8): 1490-1502.e42, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116881

RESUMEN

We describe a protein proximity inducing therapeutic modality called Regulated Induced Proximity Targeting Chimeras or RIPTACs: heterobifunctional small molecules that elicit a stable ternary complex between a target protein (TP) selectively expressed in tumor cells and a pan-expressed protein essential for cell survival. The resulting co-operative protein-protein interaction (PPI) abrogates the function of the essential protein, thus leading to death selectively in cells expressing the TP. This approach leverages differentially expressed intracellular proteins as novel cancer targets, with the advantage of not requiring the target to be a disease driver. In this chemical biology study, we design RIPTACs that incorporate a ligand against a model TP connected via a linker to effector ligands such as JQ1 (BRD4) or BI2536 (PLK1) or CDK inhibitors such as TMX3013 or dinaciclib. RIPTACs accumulate selectively in cells expressing the HaloTag-FKBP target, form co-operative intracellular ternary complexes, and induce an anti-proliferative response in target-expressing cells.


Asunto(s)
Antineoplásicos , Proteínas de Ciclo Celular , Bibliotecas de Moléculas Pequeñas , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Proliferación Celular/efectos de los fármacos , Triazoles/química , Triazoles/farmacología , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Azepinas/farmacología , Azepinas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Indolizinas/química , Indolizinas/farmacología , Línea Celular Tumoral , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Compuestos Heterocíclicos con 2 Anillos/farmacología , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas que Contienen Bromodominio , Óxidos N-Cíclicos , Compuestos de Piridinio
3.
Protein Sci ; 33(7): e5072, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39133178

RESUMEN

Δ1-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery. We screened a library of 71 low molecular weight compounds (average MW of 131 Da) against PYCR1 using an enzyme activity assay. Hit compounds were validated with X-ray crystallography and kinetic assays to determine affinity parameters. The library was counter-screened against human Δ1-pyrroline-5-carboxylate reductase isoform 3 and proline dehydrogenase (PRODH) to assess specificity/promiscuity. Twelve PYCR1 and one PRODH inhibitor crystal structures were determined. Three compounds inhibit PYCR1 with competitive inhibition parameter of 100 µM or lower. Among these, (S)-tetrahydro-2H-pyran-2-carboxylic acid (70 µM) has higher affinity than the current best tool compound N-formyl-l-proline, is 30 times more specific for PYCR1 over human Δ1-pyrroline-5-carboxylate reductase isoform 3, and negligibly inhibits PRODH. Structure-affinity relationships suggest that hydrogen bonding of the heteroatom of this compound is important for binding to PYCR1. The structures of PYCR1 and PRODH complexed with 1-hydroxyethane-1-sulfonate demonstrate that the sulfonate group is a suitable replacement for the carboxylate anchor. This result suggests that the exploration of carboxylic acid isosteres may be a promising strategy for discovering new classes of PYCR1 and PRODH inhibitors. The structure of PYCR1 complexed with l-pipecolate and NADH supports the hypothesis that PYCR1 has an alternative function in lysine metabolism.


Asunto(s)
Inhibidores Enzimáticos , Prolina , Pirrolina Carboxilato Reductasas , delta-1-Pirrolina-5-Carboxilato Reductasa , Pirrolina Carboxilato Reductasas/metabolismo , Pirrolina Carboxilato Reductasas/antagonistas & inhibidores , Pirrolina Carboxilato Reductasas/química , Pirrolina Carboxilato Reductasas/genética , Humanos , Cristalografía por Rayos X , Prolina/química , Prolina/análogos & derivados , Prolina/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Peso Molecular , Prolina Oxidasa/metabolismo , Prolina Oxidasa/química , Prolina Oxidasa/antagonistas & inhibidores , Prolina Oxidasa/genética , Modelos Moleculares
4.
Bioorg Med Chem ; 111: 117870, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128361

RESUMEN

The dysregulation of kinases has emerged as a major class of targets for anticancer drug discovery given its node roles in the etiology of tumorigenesis, progression, invasion, and metastasis of malignancies, which is validated by the FDA approval of 28 small molecule kinase inhibitor (SMKI) drugs for cancer treatment at the end of 2015. While the preclinical and clinical data of these drugs are widely presented, it is highly essential to give an updated review on the medical indications, design principles and binding modes of these anti-tumor SMKIs approved by the FDA to offer insights for the future development of SMKIs with specific efficacy and safety.


Asunto(s)
Antineoplásicos , Aprobación de Drogas , Neoplasias , Inhibidores de Proteínas Quinasas , Bibliotecas de Moléculas Pequeñas , United States Food and Drug Administration , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Estados Unidos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Estructura Molecular , Sitios de Unión , Relación Estructura-Actividad
5.
J Am Chem Soc ; 146(34): 23978-23988, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39162335

RESUMEN

Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable. Small-molecule strategies that enable post-translational acetylation of the catalytic lysine on kinases in a target-selective manner therefore provide tremendous potential in kinase biology. Herein, we report the first small molecule-induced chemical strategy capable of global acetylation of the catalytic lysine on kinases from mammalian cells. By surveying various lysine-acetylating agents installed on a promiscuous kinase-binding scaffold, Ac4 was identified and shown to effectively acetylate the catalytic lysine of >100 different protein kinases from live Jurkat/K562 cells. In order to demonstrate that this strategy was capable of target-selective and reversible chemical acetylation of protein kinases, we further developed six acetylating compounds on the basis of VX-680 (a noncovalent inhibitor of AURKA). Among them, Ac13/Ac14, while displaying excellent in vitro potency and sustained cellular activity against AURKA, showed robust acetylation of its catalytic lysine (K162) in a target-selective manner, leading to irreversible inhibition of endogenous kinase activity. The reversibility of this chemical acetylation was confirmed on Ac14-treated recombinant AURKA protein, followed by deacetylation with SIRT3 (a lysine deacetylase). Finally, the reversible Ac13-induced acetylation of endogenous AURKA was demonstrated in SIRT3-transfected HCT116 cells. By disclosing the first cell-active acetylating compounds capable of both global and target-selective post-translational acetylation of the catalytic lysine on kinases, our strategy could provide a useful chemical tool in kinase biology and drug discovery.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Humanos , Acetilación , Lisina/química , Lisina/metabolismo , Células K562 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Jurkat , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Aurora Quinasa A/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/química
6.
J Chem Theory Comput ; 20(14): 5829-5841, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39002136

RESUMEN

Binding thermodynamics and kinetics play critical roles in drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics of small molecules and flexible peptides using conventional molecular dynamics (cMD), due to limited simulation time scales. Based on our previously developed ligand Gaussian accelerated molecular dynamics (LiGaMD) method, we present a new approach, termed "LiGaMD3″, in which we introduce triple boosts into three individual energy terms that play important roles in small-molecule/peptide dissociation, rebinding, and system conformational changes to improve the sampling efficiency of small-molecule/peptide interactions with target proteins. To validate the performance of LiGaMD3, MDM2 bound by a small molecule (Nutlin 3) and two highly flexible peptides (PMI and P53) were chosen as the model systems. LiGaMD3 could efficiently capture repetitive small-molecule/peptide dissociation and binding events within 2 µs simulations. The predicted binding kinetic constant rates and free energies from LiGaMD3 were in agreement with the available experimental values and previous simulation results. Therefore, LiGaMD3 provides a more general and efficient approach to capture dissociation and binding of both small-molecule ligands and flexible peptides, allowing for accurate prediction of their binding thermodynamics and kinetics.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Termodinámica , Cinética , Ligandos , Péptidos/química , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Piperazinas/química
7.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998978

RESUMEN

The regulation of the cancer cell cycle heavily relies on cyclin-dependent kinases (CDKs). Targeting CDKs has been identified as a promising approach for effective cancer therapy. In recent years, there has been significant attention paid towards developing small-molecule CDK inhibitors in the field of drug discovery. Notably, five such inhibitors have already received regulatory approval for the treatment of different cancers, including breast tumors, lung malignancies, and hematological malignancies. This review provides an overview of the synthetic routes used to produce 17 representative small-molecule CDK inhibitors that have obtained regulatory approval or are currently being evaluated through clinical trials. It also discusses their clinical applications for treating CDK-related diseases and explores the challenges and limitations associated with their use in a clinical setting, which will stimulate the further development of novel CDK inhibitors. By integrating therapeutic applications, synthetic methodologies, and mechanisms of action observed in various clinical trials involving these CDK inhibitors, this review facilitates a comprehensive understanding of the versatile roles and therapeutic potential offered by interventions targeting CDKs.


Asunto(s)
Antineoplásicos , Quinasas Ciclina-Dependientes , Neoplasias , Inhibidores de Proteínas Quinasas , Bibliotecas de Moléculas Pequeñas , Humanos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/síntesis química , Animales , Descubrimiento de Drogas , Ensayos Clínicos como Asunto
8.
Bioorg Chem ; 150: 107605, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971095

RESUMEN

The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Bloqueadores del Canal de Sodio Activado por Voltaje , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/metabolismo , Analgésicos/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Relación Estructura-Actividad , Manejo del Dolor/métodos , Estructura Molecular , Neoplasias/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico
9.
Drug Des Devel Ther ; 18: 2653-2679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974119

RESUMEN

Purpose: Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods: After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results: In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion: The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos , Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/química , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/química , Humanos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 10 Activada por Mitógenos/química , Sulfonas/química , Sulfonas/farmacología , Estructura Molecular , Solubilidad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Acrilamidas/química , Acrilamidas/farmacología , Acrilatos/química , Acrilatos/farmacología , Unión Proteica
10.
J Med Chem ; 67(14): 11917-11936, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38958057

RESUMEN

Mycobacterium tuberculosis (Mtb), the infectious agent of tuberculosis (TB), causes over 1.5 million deaths globally every year. Host-directed therapies (HDT) for TB are desirable for their potential to shorten treatment and reduce the development of antibiotic resistance. Previously, we described a modular biomimetic strategy to identify SMIP-30, targeting PPM1A (IC50 = 1.19 µM), a metal-dependent phosphatase exploited by Mtb to survive intracellularly. SMIP-30 restricted the survival of Mtb in macrophages and lungs of infected mice. Herein, we redesigned SMIP-30 to create SMIP-031, which is a more potent inhibitor for PPM1A (IC50 = 180 nM). SMIP-031 efficiently increased the level of phosphorylation of S403-p62 and the expression of LC3B-II to activate autophagy, resulting in the dose-dependent clearance of Mtb in infected macrophages. SMIP-031 possesses a good pharmacokinetic profile and oral bioavailability (F = 74%). In vivo, SMIP-031 is well tolerated up to 50 mg/kg and significantly reduces the bacteria burden in the spleens of infected mice.


Asunto(s)
Antituberculosos , Autofagia , Mycobacterium tuberculosis , Proteína Fosfatasa 2C , Autofagia/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Animales , Ratones , Humanos , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/antagonistas & inhibidores , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/uso terapéutico , Antituberculosos/farmacocinética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Femenino
11.
J Med Chem ; 67(14): 12033-12054, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39005064

RESUMEN

Covalent drug discovery has experienced a renaissance, with numerous electrophilic small molecules recently gaining FDA approval. Many structurally diverse electrophilic small molecules target exportin-1 (XPO1/CRM1) at cysteine 528, including the selective inhibitor of nuclear export (SINE) selinexor, which was FDA-approved as an anticancer agent in 2019. Emerging evidence supports additional pharmacological classes of XPO1 modulators targeting Cys528, including the selective inhibitors of transcriptional activation (SITAs) and probes that induce rapid degradation of XPO1. Here, we analyzed structure-activity relationships across multiple structural series of XPO1 Cys528-targeting probes. We observe that the electrophilic moiety of Cys528-targeting small molecules plays a decisive role in the cellular behavior observed, with subtle changes in electrophile structure being sufficient to convert XPO1-targeting probes to different pharmacological classes. This investigation represents a unique case study in which the electrophile functionality used to target a specific cysteine determines the pharmacological effect among diverse XPO1-targeting small molecules.


Asunto(s)
Proteína Exportina 1 , Carioferinas , Receptores Citoplasmáticos y Nucleares , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Carioferinas/antagonistas & inhibidores , Carioferinas/metabolismo , Humanos , Relación Estructura-Actividad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Fenotipo , Cisteína/química , Cisteína/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Hidrazinas/farmacología , Hidrazinas/química , Hidrazinas/síntesis química , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , Estructura Molecular
12.
J Med Chem ; 67(13): 10530-10547, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988222

RESUMEN

The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib , Diseño de Fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Humanos , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/química , Relación Estructura-Actividad , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Inhibidores de las Quinasa Fosfoinosítidos-3/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Estructura Molecular
13.
Eur J Med Chem ; 275: 116622, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959727

RESUMEN

Blockade of the programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy, but the clinical application of small molecule PD-1/PD-L1 inhibitors remains unclear. In this work, based on BMS-202 and our previous work YLW-106, a series of compounds with benzo[d]isothiazol structure as scaffold were designed and synthesized. Their inhibitory activity against PD-1/PD-L1 interaction was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay. Among them, LLW-018 (27c) exhibited the most potent inhibitory activity with an IC50 value of 2.61 nM. The cellular level assays demonstrated that LLW-018 exhibited low cytotoxicity against Jurkat T and MDA-MB-231. Further cell-based PD-1/PD-L1 blockade bioassays based on PD-1 NFAT-Luc Jurkat cells and PD-L1 TCR Activator CHO cells indicated that LLW-018 could interrupt PD-1/PD-L1 interaction with an IC50 value of 0.88 µM. Multi-computational methods, including molecular docking, molecular dynamics, MM/GBSA, MM/PBSA, Metadynamics, and QM/MM MD were utilized on PD-L1 dimer complexes, which revealed the binding modes and dissociation process of LLW-018 and C2-symmetric small molecule inhibitor LCH1307. These results suggested that LLW-018 exhibited promising potency as a PD-1/PD-L1 inhibitor for further investigation.


Asunto(s)
Antígeno B7-H1 , Diseño de Fármacos , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Células Jurkat , Simulación del Acoplamiento Molecular , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Animales , Benzotiazoles/farmacología , Benzotiazoles/química , Benzotiazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química
14.
Future Med Chem ; 16(14): 1465-1484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016063

RESUMEN

Lymphoma, a blood tumor, has become the ninth most common cancer in the world in 2020. Targeted inhibition is one of the important treatments for lymphoma. At present, there are many kinds of targeted drugs for the treatment of lymphoma. Studies have shown that Histone deacetylase, Bruton's tyrosine kinase and phosphoinositide 3-kinase all play an important role in the occurrence and development of tumors and become important and promising inhibitory targets. This article mainly expounds the important role of these target protein in tumors, and introduces the mechanism of action, structure-activity relationship and clinical research of listed small molecule inhibitors of these targets, hoping to provide new ideas for the treatment of lymphoma.


[Box: see text].


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Antineoplásicos , Linfoma , Bibliotecas de Moléculas Pequeñas , Humanos , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Linfoma/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Histona Desacetilasas/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Relación Estructura-Actividad , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Terapia Molecular Dirigida
15.
Drug Des Devel Ther ; 18: 3075-3088, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050797

RESUMEN

Background and Objective: GIT1 (G-protein-coupled receptor kinase interacting protein-1) has been found to be highly related with cancer cell invasion and metastasis in many cancer types. ß-Pix (p21-activated kinase-interacting exchange factor) is one of the proteins that interact with GIT1. Targeting GIT1/ß-Pix complex might be a potential therapeutic strategy for interfering cancer metastasis. However, at present, no well-recognized small-molecule inhibitor targeting GIT1/ß-Pix is available. Thus, we aim to discover novel GIT1/ß-Pix inhibitors with simple scaffold, high activity and low toxicity to develop new therapeutic strategies to restrain cancer metastasis. Methods: GIT1/ß-Pix inhibitors were identified from ChemBridge by virtual screening. Briefly, the modeling of GIT1 was performed and the establishment of GIT1/ß-Pix binding pocket enabled the virtual screening to identify the inhibitor. In addition, direct binding of the candidate molecules to GIT1 was detected by biolayer interferometry (BLI) to discover the hit compound. Furthermore, the inhibitory effect on invasion of stomach and colon cancer cells in vitro was carried out by the transwell assay and detection of epithelial-mesenchymal transition (EMT)-related proteins. Finally, the binding mode of hit compound to GIT1 was estimated by molecular dynamics simulation to analyze the key amino residues to guide further optimization. Results: We selected the top 50 compounds from the ChemBridge library by virtual screening. Then, by skeleton similarity analysis nine compounds were selected for further study. Furthermore, the direct interaction of nine compounds to GIT1 was detected by BLI to obtain the best affinitive compound. Finally, 17302836 was successfully identified (KD = 84.1±2.0 µM). In vitro tests on 17302836 showed significant anti-invasion effect on gastric cancer and colorectal cancer. Conclusion: We discovered a new GIT1/ß-Pix inhibitor (17302836) against gastrointestinal cancer invasion and metastasis. This study provides a promising candidate for developing new GIT1/ß-Pix inhibitors for tumor treatment.


Asunto(s)
Antineoplásicos , Proteínas de Ciclo Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Descubrimiento de Drogas , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido Rho/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Relación Dosis-Respuesta a Droga , Invasividad Neoplásica , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Evaluación Preclínica de Medicamentos , Movimiento Celular/efectos de los fármacos
16.
Bioorg Chem ; 151: 107653, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39024803

RESUMEN

This comprehensive review undertakes a meticulous scrutiny of the synthesis and clinical applications pertaining to small-molecule tyrosine kinase inhibitors (TKIs) directed towards the human epidermal growth factor receptor 2 (HER2), a pivotal protagonist in the pathogenesis of cancer. Focused on compounds like lapatinib, neratinib, and tucatinib, the review delves into the intricate synthesis strategies, emphasizing the challenges associated with their structural complexity. The clinical utilization of HER2 TKIs underscores noteworthy strides in the therapeutic landscape for HER2-positive breast and gastric malignancies. Lapatinib, a dual HER2/ epidermal growth factor receptor (EGFR) inhibitor, has demonstrated efficacy in combination therapies, addressing the need for overcoming resistance mechanisms. Neratinib, an irreversible HER2 inhibitor, presents a promising avenue for patients with refractory tumors. Tucatinib, strategically engineered to traverse the blood-brain barrier, epitomizes a groundbreaking advancement in the management of metastatic HER2-positive breast cancer manifesting cerebral involvement. Despite their success, challenges such as resistance mechanisms and off-target effects persist, urging continuous research for the development of next-generation HER2 TKIs. This comprehensive review serves as a valuable resource for pharmaceutical scientists, offering insights into the synthetic intricacies and clinical impact of small-molecule TKIs targeting HER2.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Receptor ErbB-2 , Humanos , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología
17.
Bioorg Chem ; 151: 107650, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39042962

RESUMEN

ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad , Proteínas de Ciclo Celular
18.
Eur J Med Chem ; 276: 116613, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39004018

RESUMEN

Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity. We hypothesized that small molecule targeted protein degradation (TPD) might result in differentiated pharmacology due to the loss of scaffolding functions. Here, we report the design and characterization of a potent CDK7 degrader that is comprised of an ATP-competitive CDK7 binder linked to a CRL2VHL recruiter. JWZ-5-13 effectively degrades CDK7 in multiple cancer cells and leads to a potent inhibition of cell proliferation. Additionally, compound JWZ-5-13 displayed bioavailability in a pharmacokinetic study conducted in mice. Therefore, JWZ-5-13 is a useful chemical probe to investigate the pharmacological consequences of CDK7 degradation.


Asunto(s)
Proliferación Celular , Quinasas Ciclina-Dependientes , Inhibidores de Proteínas Quinasas , Humanos , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proliferación Celular/efectos de los fármacos , Ratones , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Descubrimiento de Drogas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga , Quinasa Activadora de Quinasas Ciclina-Dependientes , Proteolisis/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
19.
J Med Chem ; 67(15): 13252-13270, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39018123

RESUMEN

Mitochondria are cellular powerhouses and are crucial for cell function. However, they are vulnerable to internal and external perturbagens that may impair mitochondrial function and eventually lead to cell death. In particular, small molecules may impact mitochondrial function, and therefore, their influence on mitochondrial homeostasis is at best assessed early on in the characterization of biologically active small molecules and drug discovery. We demonstrate that unbiased morphological profiling by means of the cell painting assay (CPA) can detect mitochondrial stress coupled with the induction of an integrated stress response. This activity is common for compounds addressing different targets, is not shared by direct inhibitors of the electron transport chain, and enables prediction of mitochondrial stress induction for small molecules that are profiled using CPA.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Línea Celular Tumoral
20.
Eur J Med Chem ; 276: 116694, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047607

RESUMEN

As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.


Asunto(s)
Antineoplásicos , Vía de Señalización Hippo , Neoplasias , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Relación Estructura-Actividad , Animales , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA