Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Cancer Imaging ; 24(1): 19, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279185

RESUMEN

GRPR is a type of seven-transmembrane G-protein coupled receptor that belongs to the bombesin protein receptor family. It is highly expressed in various cancers, including prostate cancer, breast cancer, lung cancer, gastrointestinal cancer, and so on. As a result, molecular imaging studies have been conducted using radiolabeled GRPR ligands for tumor diagnosis, as well as monitoring of recurrence and metastasis. In this paper, we provided a comprehensive overview of relevant literature from the past two decades, with a specific focus on the advancements made in radiolabeled GRPR ligands for imaging prostate cancer and breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Receptores de Bombesina/metabolismo , Bombesina/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología
2.
Int J Biol Macromol ; 255: 127843, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956803

RESUMEN

Bombesin is an endogenous peptide involved in a wide spectrum of physiological activities ranging from satiety, control of circadian rhythm and thermoregulation in the central nervous system, to stimulation of gastrointestinal hormone release, activation of macrophages and effects on development in peripheral tissues. Actions of the peptide are mediated through the two high affinity G-protein coupled receptors BB1R and BB2R. Under pathophysiological conditions, these receptors are overexpressed in many different types of tumors, such as prostate cancer, breast cancer, small and non-small cell lung cancer and pancreatic cancer. This observation has been used for designing cell markers, but it has not been yet exploited for therapeutical purposes. Despite the enormous biological interest of the peptide, little is known about the stereochemical features that contribute to their activity. On the one hand, mutagenesis studies identified a few receptor residues important for high bombesin affinity and on the other, a few studies focused on the relevance of diverse residues of the peptide for receptor activation. Models of the peptide bound to BB1R and BB2R can be helpful to improve our understanding of the stereochemical features granting bombesin activity. Accordingly, the present study describes the computational process followed to construct such models by means of Steered Molecular Dynamics, using models of the peptide and its receptors. Present results provide new insights into the structure-activity relationships of bombesin and its receptors, as well as render an explanation for the differential binding affinity observed towards BB1R and BB2R. Finally, these models can be further exploited to help for designing novel small molecule peptidomimetics with improved pharmacokinetics profile.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Bombesina/química , Bombesina/metabolismo , Receptores de Bombesina/metabolismo , Péptidos
3.
J Cell Physiol ; 238(6): 1381-1404, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37186390

RESUMEN

Neuromedin B (NMB) and gastrin-releasing peptide (GRP) are the two mammalian analogs in the bombesin peptide family that exert a variety of actions including emotional processing, appetitive behaviors, cognition, and tumor growth. The bombesin-like peptides interact with three receptors: the NMB-preferring bombesin 1 (BB1) receptors, the GRP-preferring bombesin 2 (BB2) receptors and the orphan bombesin 3 (BB3) receptors. Whereas, injection of bombesin into the central amygdala reduces satiety and modulates blood pressure, the underlying cellular and molecular mechanisms have not been determined. As administration of bombesin induces the expression of Fos in the lateral nucleus of the central amygdala (CeL) which expresses BB1 receptors, we probed the effects of NMB on CeL neurons using in vitro and in vivo approaches. We showed that activation of the BB1 receptors increased action potential firing frequency recorded from CeL neurons via inhibition of the inwardly rectifying K+ (Kir) channels. Activities of phospholipase Cß and protein kinase C were required, whereas intracellular Ca2+ release was unnecessary for BB1 receptor-elicited potentiation of neuronal excitability. Application of NMB directly into the CeA reduced blood pressure and heart rate and significantly reduced fear-potentiated startle. We may provide a cellular and molecular mechanism whereby bombesin-like peptides modulate anxiety and fear responses in the amygdala.


Asunto(s)
Neuroquinina B , Péptidos , Animales , Amígdala del Cerebelo/metabolismo , Bombesina/farmacología , Bombesina/metabolismo , Miedo , Mamíferos/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Receptores de Bombesina/metabolismo , Neuroquinina B/metabolismo
4.
Respir Res ; 24(1): 42, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740669

RESUMEN

BACKGROUND: Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS: Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS: For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS: Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.


Asunto(s)
Bombesina , Cloruros , Bombesina/metabolismo , Bombesina/farmacología , Ghrelina/farmacología , Pulmón/metabolismo , Mecanotransducción Celular , Morfogénesis , Proteínas de la Membrana
5.
Mol Pharm ; 20(1): 267-278, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36542354

RESUMEN

Early diagnosis of radiation-induced pulmonary fibrosis (RIPF) in lung cancer patients after radiation therapy is important. A gastrin-releasing peptide receptor (GRPR) mediates the inflammation and fibrosis after irradiation in mice lungs. Previously, our group synthesized a GRPR-targeted positron emission tomography (PET) imaging probe, [64Cu]Cu-NODAGA-galacto-bombesin (BBN), an analogue peptide of GRP. In this study, we evaluated the usefulness of [64Cu]Cu-NODAGA-galacto-BBN for the early prediction of RIPF. We prepared RIPF mice and acquired PET/CT images of [18F]F-FDG and [64Cu]Cu-NODAGA-galacto-BBN at 0, 2, 5, and 11 weeks after irradiation (n = 3-10). We confirmed that [64Cu]Cu-NODAGA-galacto-BBN targets GRPR in irradiated RAW 264.7 cells. In addition, we examined whether [64Cu]Cu-NODAGA-galacto-BBN monitors the therapeutic efficacy in RIPF mice (n = 4). As a result, the lung uptake ratio (irradiated-to-normal) of [64Cu]Cu-NODAGA-galacto-BBN was the highest at 2 weeks, followed by its decrease at 5 and 11 weeks after irradiation, which matched with the expression of GRPR and was more accurately predicted than [18F]F-FDG. These uptake results were also confirmed by the cell uptake assay. Furthermore, [64Cu]Cu-NODAGA-galacto-BBN could monitor the therapeutic efficacy of pirfenidone in RIPF mice. We conclude that [64Cu]Cu-NODAGA-galacto-BBN is a novel PET imaging probe for the early prediction of RIPF-targeting GRPR expressed during the inflammatory response.


Asunto(s)
Fibrosis Pulmonar , Receptores de Bombesina , Animales , Ratones , Receptores de Bombesina/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/etiología , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Bombesina/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Línea Celular Tumoral
6.
Curr Radiopharm ; 16(1): 64-70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36121093

RESUMEN

BACKGROUND: HYNIC-Bombesin (BBN) is a potential peptide for targeted radionuclide therapy in gastrin-releasing peptide receptor (GRPr)-positive malignancies. The 188Re-HYNICBBN is a promising radiopharmaceutical for use in prostate cancer therapy. OBJECTIVE: The aim of this study was to estimate the absorbed dose due to 188Re-HYNIC-BBN radio-complex in human organs based on bio-distribution data of rats. METHODS: In this research, using bio-distribution data of 188Re-HYNIC-BBN in rats, its radiation absorbed dose of the adult human was calculated for different organs based on the MIRD dose calculation method. RESULTS: A considerable equivalent dose amount of 188Re-Hynic-BBN (0.093 mGy/MBq) was accumulated in the prostate. Moreover, all other tissues except for the kidneys and pancreas approximately received insignificant absorbed doses. CONCLUSION: Since the acceptable absorbed dose for the complex was observed in the prostate, 188Re-Hynic-Bombesin can be regarded as a new potential agent for prostate cancer therapy.


Asunto(s)
Bombesina , Neoplasias de la Próstata , Adulto , Animales , Humanos , Masculino , Ratas , Bombesina/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Radiofármacos , Receptores de Bombesina/metabolismo , Distribución Tisular
7.
J Pharmacol Exp Ther ; 382(2): 66-78, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644465

RESUMEN

Allosteric ligands of various G-protein-coupled receptors are being increasingly described and are providing important advances in the development of ligands with novel selectivity and efficacy. These unusual properties allow expanded opportunities for pharmacologic studies and treatment. Unfortunately, no allosteric ligands are yet described for the bombesin receptor family (BnRs), which are proposed to be involved in numerous physiologic/pathophysiological processes in both the central nervous system and peripheral tissues. In this study, we investigate the possibility that the bombesin receptor subtype-3 (BRS-3) specific nonpeptide receptor agonist MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-[[1-(trifluoromethyl)cyclopropyl]methyl]-1H-imidazol-2-yl)propan-2-ol] functions as a BRS-3 allosteric receptor ligand. We find that in BRS-3 cells, MK-5046 only partially inhibits iodine-125 radionuclide (125I)-Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate] binding and that both peptide-1 (a universal BnR-agonist) and MK-5046 activate phospholipase C; however, the specific BRS-3 peptide antagonist Bantag-1 inhibits the action of peptide-1 competitively, whereas for MK-5046 the inhibition is noncompetitive and yields a curvilinear Schild plot. Furthermore, MK-5046 shows other allosteric behaviors, including slowing dissociation of the BRS-3 receptor ligand 125I-Bantag-1, dose-inhibition curves being markedly affected by increasing ligand concentration, and MK-5046 leftward shifting the peptide-1 agonist dose-response curve. Lastly, receptor chimeric studies and site-directed mutagenesis provide evidence that MK-5046 and Bantag-1 have different binding sites determining their receptor high affinity/selectivity. These results provide evidence that MK-5046 is functioning as an allosteric agonist at the BRS-3 receptor, which is the first allosteric ligand described for this family of receptors. SIGNIFICANCE STATEMENT: G-protein-coupled receptor allosteric ligands providing higher selectivity, selective efficacy, and safety that cannot be obtained using usual orthosteric receptor-based strategies are being increasingly described, resulting in enhanced usefulness in exploring receptor function and in treatment. No allosteric ligands exist for any of the mammalian bombesin receptor (BnR) family. Here we provide evidence for the first such example of a BnR allosteric ligand by showing that MK-5046, a nonpeptide agonist for bombesin receptor subtype-3, is functioning as an allosteric agonist.


Asunto(s)
Péptidos , Receptores de Bombesina , Animales , Bombesina/metabolismo , Bombesina/farmacología , Imidazoles , Ligandos , Mamíferos/metabolismo , Péptidos/farmacología , Pirazoles , Receptores de Bombesina/metabolismo
8.
Amino Acids ; 54(5): 733-747, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35279763

RESUMEN

Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones and regulation of homeostatic mechanisms. Here, we report a novel bombesin-like peptide isolated from Boana raniceps. Its amino acid sequence, GGNQWAIGHFM-NH2, was identified and structurally confirmed by HPLC, MS/MS and 454-pyrosequencing; the peptide was named BR-bombesin. The effect of BR-bombesin on smooth muscle contraction was assessed in ileum and esophagus, and its anti-secretory activity was investigated in the stomach. BR-bombesin exerted significant contractile activity with a concentration-response curve similar to that of commercially available bombesin in ileum strips of Wistar rats. In esophageal strips, BR-bombesin acted as an agonist, as many other bombesin-related peptides act, although with different behavior compared to the muscarinic agonist carbachol. Moreover, BR-bombesin inhibited stomach secretion by approximately 50% compared to the untreated control group. This novel peptide has 80% and 70% similarity with the 10-residue C-terminal domain of human neuromedin B (NMB) and human gastrin releasing peptide (GRP10), respectively. Molecular docking analysis revealed that the GRP receptor had a binding energy equal to - 7.3 kcal.mol-1 and - 8.5 kcal.mol-1 when interacting with bombesin and BR-bombesin, respectively. Taken together, our data open an avenue to investigate BR-bombesin in disorders that involve gastrointestinal tract motility and acid gastric secretion.


Asunto(s)
Bombesina , Receptores de Bombesina , Animales , Anuros/metabolismo , Bombesina/metabolismo , Bombesina/farmacología , Mamíferos/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Ratas , Ratas Wistar , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Estómago , Espectrometría de Masas en Tándem
9.
Cell ; 184(22): 5622-5634.e25, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34610277

RESUMEN

Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.


Asunto(s)
Corteza Auditiva/metabolismo , Bombesina/metabolismo , Miedo/fisiología , Memoria/fisiología , Red Nerviosa/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Señalización del Calcio , Condicionamiento Clásico , Péptido Liberador de Gastrina/química , Péptido Liberador de Gastrina/metabolismo , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Receptores de Bombesina/metabolismo , Sonido , Péptido Intestinal Vasoactivo/metabolismo
10.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527027

RESUMEN

The organometallic technetium-99m tricarbonyl core, [99mTc][Tc(CO)3(H2O)3]+, is a versatile precursor for the development of radiotracers for single photon emission computed tomography (SPECT). A drawback of the 99mTc-tricarbonyl core is its lipophilicity, which can influence the pharmacokinetic properties of the SPECT imaging probe. Addition of polar pharmacological modifiers to 99mTc-tricarbonyl conjugates holds the promise to counteract this effect and provide tumor-targeting radiopharmaceuticals with improved hydrophilicities, e.g., resulting in a favorable fast renal excretion in vivo. We applied the "Click-to-Chelate" strategy for the assembly of a novel 99mTc-tricarbonyl labeled conjugate made of the tumor-targeting, modified bombesin binding sequence [Nle14]BBN(7-14) and the carbohydrate sorbitol as a polar modifier. The 99mTc-radiopeptide was evaluated in vitro with PC-3 cells and in Fox-1nu mice bearing PC-3 xenografts including a direct comparison with a reference conjugate lacking the sorbitol moiety. The glycated 99mTc-tricarbonyl peptide conjugate exhibited an increased hydrophilicity as well as a retained affinity toward the Gastrin releasing peptide receptor and cell internalization properties. However, there was no significant difference in vivo in terms of pharmacokinetic properties. In particular, the rate and route of excretion was unaltered in comparison to the more lipophilic reference compound. This could be attributed to the intrinsic properties of the peptide and/or its metabolites. We report a novel glycated (sorbitol-containing) alkyne substrate for the "Click-to-Chelate" methodology, which is potentially of general applicability for the development of 99mTc-tricarbonyl based radiotracers displaying an enhanced hydrophilicity.


Asunto(s)
Bombesina/metabolismo , Péptidos/metabolismo , Neoplasias de la Próstata/metabolismo , Radiofármacos/metabolismo , Sorbitol/química , Tecnecio/química , Animales , Bombesina/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indicadores y Reactivos/química , Masculino , Ratones , Péptidos/química , Neoplasias de la Próstata/patología , Radiofármacos/química , Tomografía Computarizada de Emisión de Fotón Único , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Bioorg Chem ; 99: 103861, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32339813

RESUMEN

We report the NMR characterization of the molecular interaction between Gastrin Releasing Peptide Receptor (GRP-R) and its natural ligand bombesin (BN). GRP-R is a transmembrane G-protein coupled receptor promoting the stimulation of cancer cell proliferation; in addition, being overexpressed on the surface of different human cancer cell lines, it is ideal for the development of new strategies for the selective targeted delivery of anticancer drugs and diagnostic devices to tumor cells. However, the design of new GRP-R binders requires structural information on receptor interaction with its natural ligands. The experimental protocol presented herein, based on on-cell STD NMR techniques, is a powerful tool for the screening and the epitope mapping of GRP-R ligands aimed at the development of new anticancer and diagnostic tools. Notably, the study can be carried out in a physiological environment, at the surface of tumoral cells overespressing GRP-R. Moreover, to the best of our knowledge, this is the first example of an NMR experiment able to detect and investigate the structural determinants of BN/GRP-R interaction.


Asunto(s)
Bombesina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Receptores de Bombesina/metabolismo , Bombesina/química , Humanos , Conformación Molecular , Células PC-3 , Unión Proteica , Receptores de Bombesina/química , Células Tumorales Cultivadas
12.
Biochim Biophys Acta Mol Cell Res ; 1867(4): 118625, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31862538

RESUMEN

Despite recent advances in treatment of non-small cell lung cancer (NSCLC), prognosis still remains poor and new therapeutic approaches are needed. Studies demonstrate the importance of the EGFR/HER-receptor family in NSCLC growth, as well as that of other tumors. Recently, HER3 is receiving increased attention because of its role in drug resistance and aggressive growth. Activation of overexpressed G-protein-coupled receptors (GPCR) can also initiate growth by transactivating EGFR/HER-family members. GPCR transactivation of EGFR has been extensively studied, but little is known of its ability to transactivate other EGFR/HER-members, especially HER3. To address this, we studied the ability of bombesin receptor (BnR) activation to transactivate all EGFR/HER-family members and their principal downstream signaling cascades, the PI3K/Akt- and MAPK/ERK-pathways, in human NSCLC cell-lines. In all three cell-lines studied, which possessed EGFR, HER2 and HER3, Bn rapidly transactivated EGFR, HER2 and HER3, as well as Akt and ERK. Immunoprecipitation studies revealed Bn-induced formation of both HER3/EGFR- and HER3/HER2-heterodimers. Specific EGFR/HER3 antibodies or siRNA-knockdown of EGFR and HER3, demonstrated Bn-stimulated activation of EGFR/HER members is initially through HER3, not EGFR. In addition, specific inhibition of HER3, HER2 or MAPK, abolished Bn-stimulated cell-growth, while neither EGFR nor Akt inhibition had an effect. These results show HER3 transactivation mediates all growth effects of BnR activation through MAPK. These results raise the possibility that targeting HER3 alone or with GPCR activation and its signal cascades, may be a novel therapeutic approach in NSCLC. This is especially relevant with the recent development of HER3-blocking antibodies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas , Receptor ErbB-3/metabolismo , Receptores de Bombesina/metabolismo , Bombesina/metabolismo , Línea Celular Tumoral , Humanos , Neurregulina-1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Bombesina/genética
13.
J Labelled Comp Radiopharm ; 63(2): 56-64, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31715025

RESUMEN

The gastrin-releasing peptide receptor (GRPR) is overexpressed in prostate cancer and other solid malignancies. Following up on our work on [68 Ga]Ga-ProBOMB1 that had better imaging characteristics than [68 Ga]Ga-NeoBOMB1, we investigated the effects of substituting 68 Ga for 177 Lu to determine if the resulting radiopharmaceuticals could be used with a therapeutic aim. We radiolabeled the bombesin antagonist ProBOMB1 (DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ψ-Pro-NH2 ) with lutetium-177 and compared it with [177 Lu]Lu-NeoBOMB1 (obtained in 54.2 ± 16.5% isolated radiochemical yield with >96% radiochemical purity and 440.8 ± 165.1 GBq/µmol molar activity) for GRPR targeting. Lu-NeoBOMB1 had better binding affinity for GRPR than Lu-ProBOMB1 (Ki values: 2.26 ± 0.24 and 30.2 ± 3.23nM). [177 Lu]Lu-ProBOMB1 was obtained in 53.7 ± 5.4% decay-corrected radiochemical yield with 444.2 ± 193.2 GBq/µmol molar activity and >95% radiochemical purity. In PC-3 prostate cancer xenograft mice, tumor uptake of [177 Lu]Lu-ProBOMB1 was 3.38 ± 1.00, 1.32 ± 0.24, and 0.31 ± 0.04%ID/g at 1, 4, and 24 hours pi. However, the uptake in tumor was lower than [177 Lu]Lu-NeoBOMB1 at all time points. [177 Lu]Lu-ProBOMB1 was inferior to [177 Lu]Lu-NeoBOMB1, which had better therapeutic index for the organs receiving the highest doses.


Asunto(s)
Bombesina/química , Lutecio , Radioisótopos , Receptores de Bombesina/metabolismo , Animales , Bombesina/síntesis química , Bombesina/metabolismo , Humanos , Masculino , Ratones , Oligopéptidos/química , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Radioquímica
14.
Chem Phys Lipids ; 224: 104770, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30965023

RESUMEN

Epigallocatechin-gallate (EGCG) is a potent anti-cancer therapeutic which effectively controls the growth of cancerous cells through a variety of different pathways. However, its molecular structure is susceptible to modifications due to cellular enzymes affecting its stability, bioavailability and hence, overall efficiency. In this study, we have initially encapsulated EGCG in the matrix of solid lipid nanoparticles to provide a stable drug carrier. To confer additional specificity towards gastrin releasing peptide receptors (GRPR) overexpressed in breast cancer, EGCG loaded nanoparticles were conjugated with a GRPR-specific peptide. In-vitro cytotoxicity studies showed that the peptide-conjugated formulations possessed greater cytotoxicity to cancer cell lines compared to the non-conjugated formulations. Further, in-vivo studies performed on C57/BL6 mice showed greater survivability and reduction in tumour volume in mice treated with peptide-conjugated formulation as compared to the mice treated with non-conjugated formulation or with plain EGCG. These results warrant the potential of the system designed in this study as a novel and effective drug delivery system in breast cancer therapy.


Asunto(s)
Antineoplásicos/química , Bombesina/química , Neoplasias de la Mama/tratamiento farmacológico , Catequina/análogos & derivados , Liposomas/química , Nanocápsulas/química , Animales , Antineoplásicos/uso terapéutico , Transporte Biológico , Bombesina/metabolismo , Catequina/química , Catequina/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Femenino , Humanos , Lecitinas/química , Ratones Endogámicos C57BL , Neoplasias Experimentales , Ácidos Esteáricos/química , Propiedades de Superficie
15.
Molecules ; 24(6)2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871262

RESUMEN

Background: The GRPR-antagonist 68Ga-SB3 visualized prostate cancer lesions in animal models and in patients. Switching radiometal from 68Ga to 111In impaired tumor targeting in mice, but coinjection of the neprilysin (NEP)-inhibitor phosphoramidon (PA) stabilized 111In-SB3 in circulation and remarkably increased tumor uptake. We herein report on the biological profile of 111In-SB4: 111In-[dAla11]SB3. Methods: The biological responses of 111In-SB3/SB4 were compared in PC-3 cells and animal models. Results: Gly11/dAla11-replacement deteriorated GRPR-affinity (SB4 IC50: 10.7 ± 0.9 nM vs. SB3 IC50: 4.6 ± 0.3 nM) and uptake in PC-3 cells (111In-SB4: 1.3 ± 0.4% vs. 111In-SB3 16.2 ± 0.8% at 1 h). 111In-SB4 was more stable than 111In-SB3, but PA-coinjection stabilized both radiotracers in peripheral mice blood. Unmodified 111In-SB3 showed higher uptake in PC-3 xenografts (8.8 ± 3.0%ID/g) vs. 111In-SB4 (3.1 ± 1.1%ID/g) at 4 h pi. PA-coinjection improved tumor uptake, with 111In-SB3 still showing superior tumor targeting (38.3 ± 7.9%ID/g vs. 7.4 ± 0.3%ID/g for 111In-SB4). Conclusions: Replacement of Gly11 by dAla11 improved in vivo stability, however, at the cost of GRPR-affinity and cell uptake, eventually translating into inferior tumor uptake of 111In-SB4 vs. unmodified 111In-SB3. On the other hand, in-situ NEP-inhibition turned out to be a more efficient and direct strategy to optimize the in vivo profile of 111In-SB3, and potentially other peptide radiotracers.


Asunto(s)
Biosimilares Farmacéuticos/química , Glicopéptidos/farmacocinética , Radioisótopos de Indio/química , Neoplasias de la Próstata/diagnóstico por imagen , Trastuzumab/química , Animales , Bombesina/metabolismo , Línea Celular Tumoral , Estabilidad de Medicamentos , Glicopéptidos/administración & dosificación , Glicopéptidos/química , Humanos , Masculino , Ratones , Neprilisina/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Receptores de Bombesina/metabolismo , Distribución Tisular
16.
Chem Biol Drug Des ; 93(3): 205-221, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30299570

RESUMEN

Targeting overexpressed receptors on the cancer cells with radiolabeled peptides has become very important in nuclear oncology in the recent years. Peptides are small and have easy preparation and easy radiolabeling protocol with no side-effect and toxicity. These properties made them a valuable tool for tumor targeting. Based on the successful imaging of neuroendocrine tumors with 111 In-octreotide, other receptor-targeting peptides such as bombesin (BBN), cholecystokinin/gastrin analogues, neurotensin analogues, glucagon-like peptide-1, and RGD peptides are currently under development or undergoing clinical trials. The most frequently used radionuclides for tumor imaging are 99m Tc and 111 In for single-photon emission computed tomography and 68 Ga and 18 F for positron emission tomography imaging. This review presents some of the 99m Tc-labeled peptides, with regard to their potential for radionuclide imaging of tumors in clinical and preclinical application.


Asunto(s)
Péptidos/química , Radiofármacos/química , Bombesina/química , Bombesina/metabolismo , Colecistoquinina/química , Colecistoquinina/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Compuestos de Organotecnecio/química , Péptidos/metabolismo , Péptidos/uso terapéutico , Radiofármacos/metabolismo , Radiofármacos/uso terapéutico , Receptores de Somatostatina/química , Receptores de Somatostatina/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Tomografía Computarizada de Emisión de Fotón Único
17.
J Med Chem ; 61(17): 7657-7670, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30111088

RESUMEN

The bombesin (BBN) antagonist binds with high affinity to the gastrin releasing peptide receptor (GRPr), a receptor overexpressed on many human cancers. We present an investigation employing BBN antagonist for highly specific near-infrared fluorescence (NIRF) imaging of GRPr-positive tumors. Nine NIRF-dye labeled BBN antagonists with differing linkers and dyes were synthesized and characterized to screen for the optimal agent. Three novel agents, AF750-G-pip-Sta-BBN (1), AF750-GSG-Sta-BBN (2), and AF750-6Ahx-Sta-BBN (3), exhibited an excellent binding-specificity and affinity to human PC-3 prostate cancer cells in vitro, and a remarkable in vivo tumor-selectivity and NIRF imaging sensitivity in PC-3 tumor-bearing mice. Compound 1 showed the fastest, and 3, the slowest, pharmacokinetics on the tumor sites. Despite of high tumor uptake, 2 had a low pancreas uptake distinct from 1 and 3 at 0.44 nmol dose. This difference was attributed to the inherent linker properties such as the hydrophilicity, polarity, and charge.


Asunto(s)
Bombesina/antagonistas & inhibidores , Colorantes Fluorescentes/química , Neoplasias Experimentales/diagnóstico por imagen , Animales , Bombesina/metabolismo , Bombesina/farmacología , Calcio/metabolismo , Diseño de Fármacos , Colorantes Fluorescentes/farmacocinética , Humanos , Masculino , Ratones SCID , Células PC-3 , Receptores de Bombesina/metabolismo , Espectroscopía Infrarroja Corta , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Am J Physiol Gastrointest Liver Physiol ; 315(2): G302-G317, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672153

RESUMEN

p21-activated kinases (PAKs) are highly conserved serine/threonine protein kinases, which are divided into two groups: group-I (PAKs1-3) and group-II (PAKs4-6). In various tissues, Group-II PAKs play important roles in cytoskeletal dynamics and cell growth as well as neoplastic development/progression. However, little is known about Group-II PAK's role in a number of physiological events, including their ability to be activated by gastrointestinal (GI) hormones/neurotransmitters/growth factors (GFs). We used rat pancreatic acini to explore the ability of GI hormones/neurotransmitters/GFs to activate Group-II-PAKs and the signaling cascades involved. Only PAK4 was detected in pancreatic acini. PAK4 was activated by endothelin, secretagogues-stimulating phospholipase C (bombesin, CCK-8, and carbachol), by pancreatic GFs (insulin, insulin-like growth factor 1, hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor), and by postreceptor stimulants (12-O-tetradecanoylphobol-13-acetate and A23187 ). CCK-8 activation of PAK4 required both high- and low-affinity CCK1-receptor state activation. It was reduced by PKC-, Src-, p44/42-, or p38-inhibition but not with phosphatidylinositol 3-kinase-inhibitors and only minimally by thapsigargin. A protein kinase D (PKD)-inhibitor completely inhibited CCK-8-stimulated PKD-activation; however, stimulated PAK4 phosphorylation was only inhibited by 60%, demonstrating that it is both PKD-dependent and PKD-independent. PF-3758309 and LCH-7749944, inhibitors of PAK4, decreased CCK-8-stimulated PAK4 activation but not PAK2 activation. Each inhibited ERK1/2 activation and amylase release induced by CCK-8 or bombesin. These results show that PAK4 has an important role in modulating signal cascades activated by a number of GI hormones/neurotransmitters/GFs that have been shown to mediate both physiological/pathological responses in acinar cells. Therefore, in addition to the extensive studies on PAK4 in pancreatic cancer, PAK4 should also be considered an important signaling molecule for pancreatic acinar physiological responses and, in the future, should be investigated for a possible role in pancreatic acinar pathophysiological responses, such as in pancreatitis. NEW & NOTEWORTHY This study demonstrates that the only Group-II p21-activated kinase (PAK) in rat pancreatic acinar cells is PAK4, and thus differs from islets/pancreatic cancer. Both gastrointestinal hormones/neurotransmitters stimulating PLC and pancreatic growth factors activate PAK4. With cholecystokinin (CCK), activation is PKC-dependent/-independent, requires both CCK1-R affinity states, Src, p42/44, and p38 activation. PAK4 activation is required for CCK-mediated p42/44 activation/amylase release. These results show PAK4 plays an important role in mediating CCK physiological signal cascades and suggest it may be a target in pancreatic acinar diseases besides cancer.


Asunto(s)
Células Acinares/metabolismo , Bombesina , Colecistoquinina/metabolismo , Hormonas Gastrointestinales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neurotransmisores/metabolismo , Páncreas , Quinasas p21 Activadas , Animales , Bombesina/metabolismo , Bombesina/farmacología , Tracto Gastrointestinal/metabolismo , Neurotransmisores/farmacología , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/metabolismo , Ratas , Transducción de Señal/fisiología , Quinasas p21 Activadas/clasificación , Quinasas p21 Activadas/metabolismo
19.
J Med Chem ; 61(5): 2062-2074, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29432691

RESUMEN

The GRPr, highly expressed in prostate PCa and breast cancer BCa, is a promising target for the development of new PET radiotracers. The chelator HBED-CC ( N, N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine- N, N'-diacetic acid) was coupled to the bombesin peptides: HBED-C-BN(2-14) 1, HBED-CC-PEG2-[d-Tyr6,ß-Ala11,Thi13,Nle14]-BN(6-14) 2, HBED-CC-Y-[d-Phe6,Sta13,Leu14]-BN(6-14) (Y = 4-amino-1-carboxymethylpiperidine) 3, and HBED-CC-{PEG2-Y-[d-Phe6,Sta13,Leu14]-BN(6-14)}2 4 (homodimer). Compounds 1-4 presented high binding affinities for GRPr (T47D, 0.56-3.51 nM; PC-3, 2.12-4.68 nM). In PC-3 and T47D cells, agonists [68Ga]1 and [68Ga]2 were mainly internalized while antagonists [68Ga]3 and [68Ga]4 were surface bound. Cell-related radioactivity reached a maximum after 45 min, while tracer levels followed GRPr expression (PC-3 > T47D > LNCaP > MDA-MB-231). [68Ga]4 showed the highest cell-bound radioactivity (PC-3 and T47D). In vivo, tumor (PC-3) targeting for [68Ga]3 and [68Ga]4 increased over time, with dynamic µPET showing clearer tumors images at later time points. [68Ga]3 and [68Ga]4 can be considered suitable PET tracers for imaging PCa and BCa expressing GRPr.


Asunto(s)
Bombesina/análogos & derivados , Radioisótopos de Galio , Neoplasias/diagnóstico por imagen , Animales , Bombesina/metabolismo , Bombesina/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Femenino , Humanos , Masculino , Ratones , Neoplasias/química , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Receptores de Bombesina/metabolismo
20.
Mol Imaging Biol ; 20(4): 501-509, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29256046

RESUMEN

Gastrin-releasing peptide receptors (GRPRs), part of the bombesin (BBN) family, are aberrantly overexpressed in many cancers, including those of the breast, prostate, pancreas, and lung, and therefore present an attractive target for cancer diagnosis and therapy. Different bombesin analogs have been radiolabeled and used for imaging diagnosis, staging, evaluation of biochemical recurrence, and assessment of metastatic disease in patients with prostate cancer. Recently, interest has shifted from BBN-like receptor agonists to antagonists, because the latter does not induce adverse effects and demonstrate superior in vivo pharmacokinetics. We review the preclinical and clinical literatures on the use of GRPRs as targets for imaging and therapy of prostate cancer, with a focus on the newer developments and theranostic potential of GRPR peptides.


Asunto(s)
Neoplasias de la Próstata/terapia , Receptores de Bombesina/metabolismo , Nanomedicina Teranóstica , Animales , Bombesina/metabolismo , Humanos , Masculino , Estadificación de Neoplasias , Neoplasias de la Próstata/patología , Receptores de Bombesina/agonistas , Receptores de Bombesina/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA