Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.043
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39337629

RESUMEN

Different types of macrophages (Mφ) are involved in atherogenesis, including inflammatory Mφ and foamy Mφ (FM). Our previous study demonstrated that two-photon excited fluorescence (TPEF) imaging of NADH and FAD autofluorescence (AF) could distinguish experimental models that mimic the different atherosclerotic Mφ types. The present study assessed whether optical differences correlated with phenotypic and functional differences, potentially guiding diagnostic and therapeutic strategies. Phenotypic differences were investigated using three-dimensional principal component analysis and multi-color flow cytometry. Functional analyses focused on cytokine production, metabolic profiles, and cellular oxidative stress, in LDL dose-dependent assays, to understand the origin of AF in the FAD spectrum and assess FM ability to transition toward an immunoregulatory phenotype and function. Phenotypic studies revealed that FM models generated with acetylated LDL (Mac) were closer to immunoregulatory Mφ, while those generated with oxidized LDL (Mox) more closely resembled inflammatory Mφ. The metabolic analysis confirmed that inflammatory Mφ primarily used glycolysis, while immunoregulatory Mφ mainly depended on mitochondrial respiration. FM models employed both pathways; however, FM models generated with high doses of modified LDL showed reduced mitochondrial respiration, particularly Mox FM. Thus, the high AF in the FAD spectrum in Mox was not linked to increased mitochondrial respiration, but correlated with the dose of oxidized LDL, leading to increased production of reactive oxygen species (ROS) and lysosomal ceroid accumulation. High FAD-like AF, ROS, and ceroid accumulation were reduced by incubation with α-tocopherol. The cytokine profiles supported the phenotypic analysis, indicating that Mox FM exhibited greater inflammatory activity than Mac FM, although both could be redirected toward immunoregulatory functions, albeit to different degrees. In conclusion, in the context of immunoregulatory therapies for atherosclerosis, it is crucial to consider FM, given their prevalence in plaques and our results, as potential targets, regardless of their inflammatory status, alongside non-foamy inflammatory Mφ.


Asunto(s)
Aterosclerosis , Macrófagos , Fenotipo , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Aterosclerosis/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Humanos , Animales , Estrés Oxidativo , Lipoproteínas LDL/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo , Células Espumosas/metabolismo , Mitocondrias/metabolismo , Ratones , Flavina-Adenina Dinucleótido/metabolismo
2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273324

RESUMEN

Several lines of evidence have linked the intestinal bacterium Helicobacter cinaedi with the pathogenesis of atherosclerosis, identifying the Cinaedi Antigen Inflammatory Protein (CAIP) as a key virulence factor. Oxidative stress and inflammation are crucial in sustaining the atherosclerotic process and oxidized LDL (oxLDL) uptake. Primary human macrophages and endothelial cells were pre-incubated with 10 µM diphenyl iodonium salt (DPI) and stimulated with 20 µg/mL CAIP. Lectin-like oxLDL receptor (LOX-1) expression was evaluated by FACS analysis, reactive oxygen species (ROS) production was measured using the fluorescent probe H2DCF-DA, and cytokine release was quantified by ELISA assay. Foam cells formation was assessed by Oil Red-O staining, and phosphorylation of p38 and ERK1/2 MAP kinases and NF-κB pathway activation were determined by Western blot. This study demonstrated that CAIP triggered LOX-1 over-expression and increased ROS production in both macrophages and endothelial cells. Blocking ROS abrogated LOX-1 expression and reduced LDL uptake and foam cells formation. Additionally, CAIP-mediated pro-inflammatory cytokine release was significantly affected by ROS inhibition. The signaling pathway induced by CAIP-induced oxidative stress led to p38 MAP kinase phosphorylation and NF-κB activation. These findings elucidate the mechanism of action of CAIP, which heightens oxidative stress and contributes to the atherosclerotic process in H. cinaedi-infected patients.


Asunto(s)
Aterosclerosis , Infecciones por Helicobacter , Helicobacter , Lipoproteínas LDL , Macrófagos , Especies Reactivas de Oxígeno , Receptores Depuradores de Clase E , Humanos , Especies Reactivas de Oxígeno/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/microbiología , Aterosclerosis/patología , Macrófagos/metabolismo , Macrófagos/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Receptores Depuradores de Clase E/metabolismo , Lipoproteínas LDL/metabolismo , Helicobacter/patogenicidad , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , FN-kappa B/metabolismo , Células Espumosas/metabolismo , Citocinas/metabolismo , Estrés Oxidativo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Bacterianas/metabolismo , Sistema de Señalización de MAP Quinasas , Células Cultivadas , Transducción de Señal
3.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273671

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) of the incretin group has been shown to exert pleiotropic actions. There is growing evidence that advanced glycation end products (AGEs), senescent macromolecules formed at an accelerated rate under chronic hyperglycemic conditions, play a role in the pathogenesis of atherosclerotic cardiovascular disease in diabetes. However, whether and how GIP could inhibit the AGE-induced foam cell formation of macrophages, an initial step of atherosclerosis remains to be elucidated. In this study, we address these issues. We found that AGEs increased oxidized low-density-lipoprotein uptake into reactive oxygen species (ROS) generation and Cdk5 and CD36 gene expressions in human U937 macrophages, all of which were significantly blocked by [D-Ala2]GIP(1-42) or an inhibitor of NADPH oxidase activity. An inhibitor of AMP-activated protein kinase (AMPK) attenuated all of the beneficial effects of [D-Ala2]GIP(1-42) on AGE-exposed U937 macrophages, whereas an activator of AMPK mimicked the effects of [D-Ala2]GIP(1-42) on foam cell formation, ROS generation, and Cdk5 and CD36 gene expressions in macrophages. The present study suggests that [D-Ala2]GIP(1-42) could inhibit the AGE-RAGE-induced, NADPH oxidase-derived oxidative stress generation in U937 macrophages via AMPK activation and subsequently suppress macrophage foam cell formation by reducing the Cdk5-CD36 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Quinasa 5 Dependiente de la Ciclina , Células Espumosas , Polipéptido Inhibidor Gástrico , Productos Finales de Glicación Avanzada , NADPH Oxidasas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Estrés Oxidativo/efectos de los fármacos , NADPH Oxidasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Antígenos CD36/metabolismo , Antígenos CD36/genética , Células U937 , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lipoproteínas LDL
4.
Nutrients ; 16(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339767

RESUMEN

BACKGROUND: Capsaicin, a bioactive compound found in peppers, is recognized for its anti-inflammatory, antioxidant, and anti-lipidemic properties. This study aimed to evaluate the effects of capsaicin on atherosclerosis progression. METHODS: Apolipoprotein E knockout mice and their C57BL/6 controls were utilized to assess blood lipid profile, inflammatory status, and atherosclerotic lesions. We also examined the influence of capsaicin on cholesterol influx and efflux, and the role of TRPV1 and PPARγ signaling pathways in bone marrow-derived macrophages. RESULTS: Capsaicin treatment reduced weight gain, visceral adiposity, blood triglycerides, and total and non-HDL cholesterol. These improvements were associated with a reduction in atherosclerotic lesions in the aorta and carotid. Capsaicin also improved hepatic oxidative and inflammatory status. Systemic inflammation was also reduced, as indicated by reduced leukocyte rolling and adhesion on the mesenteric plexus. Capsaicin decreased foam cell formation by reducing cholesterol influx through scavenger receptor A and increasing cholesterol efflux via ATP-binding cassette transporter A1, an effect primarily linked to TRPV1 activation. CONCLUSIONS: These findings underscore the potential of capsaicin as a promising agent for atherosclerosis prevention, highlighting its comprehensive role in modulating lipid metabolism, foam cell formation, and inflammatory responses.


Asunto(s)
Aterosclerosis , Capsaicina , Células Espumosas , Inflamación , PPAR gamma , Canales Catiónicos TRPV , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Aterosclerosis/prevención & control , Aterosclerosis/tratamiento farmacológico , Transportador 1 de Casete de Unión a ATP/metabolismo , Capsaicina/farmacología , Colesterol/sangre , Colesterol/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo
5.
Mol Biol Rep ; 51(1): 1021, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331194

RESUMEN

BACKGROUND: The senescence marker p16INK4a, which constitutes part of the genome 9p21.3 cardiovascular disease (CVD) risk allele, is believed to play a role in foam cells formation. This study aims to unravel the role of p16INK4a in mediating macrophage foam cells formation, cellular senescence, and autophagy lysosomal functions. METHODS: The mammalian expression plasmid pCMV-p16INK4a was used to induce p16INK4a overexpression in THP-1 macrophages. Next, wild-type and p16INK4a-overexpressed macrophages were incubated with oxidized LDL to induce foam cells formation. Lipids accumulation was evaluated using Oil-red-O staining and cholesterol efflux assay, as well as expression of scavenger receptors CD36 and LOX-1. Cellular senescence in macrophage foam cells were determined through analysis of senescence-associated ß-galactosidase activity and other SASP factors expression. Meanwhile, autophagy induction was assessed through detection of autophagosome formation and LC3B/p62 markers expression. RESULTS: The findings showed that p16INK4a enhanced foam cells formation with increased scavenger receptors CD36 and LOX-1 expression and reduced cholesterol efflux in THP-1 macrophages. Besides, ß-galactosidase activity was enhanced, and SASP factors such as IL-1α, TNF-α, and MMP9 were up-regulated. In addition, p16INK4a is also shown to induce autophagy, as well as increasing autophagy markers LC3B and p62 expression. CONCLUSIONS: This study provides insights on p16INK4a in mediating macrophages foam cells formation, cellular senescence, and foam cells formation.


Asunto(s)
Autofagia , Antígenos CD36 , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Células Espumosas , Lipoproteínas LDL , Humanos , Células Espumosas/metabolismo , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Autofagia/genética , Células THP-1 , Antígenos CD36/metabolismo , Antígenos CD36/genética , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Biomarcadores/metabolismo , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/genética
6.
Redox Biol ; 76: 103345, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39255694

RESUMEN

Plaque rupture with consequent thrombosis is the leading cause of acute cardiovascular events, during which macrophage death is a hallmark. Ferroptosis is a pivotal intermediate link between early and advanced atherosclerosis. Existing evidence indicates the involvement of macrophage ferroptosis in plaque vulnerability; however, the exact mechanism remains elusive. The aim of this study was to explore key ferroptosis-related genes (FRGs) involved in plaque progression and the underlying molecular mechanisms involved. The expression landscape of FRGs was obtained from atherosclerosis-related GEO datasets. Molecular mechanism studies of ferroptosis were performed using bone marrow-derived macrophages (BMDMs) and macrophage-derived foam cells (MDFCs). Bioinformatics analysis and immunohistochemistry revealed that macrophage haem oxygenase-1 (HMOX1) is the key FRG involved in plaque destabilization. Hypoxic conditions induced a significant increase in Hmox1 expression in MDFCs but not in macrophages. In addition, the beneficial or deleterious effects of Hmox1 were dependent on the degree of Hmox1 induction. Hmox1 overexpression drove inflammatory responses and ferroptotic oxidative stress in MDFCs and aggravated the plaque burden in atherosclerotic model mice. Further mechanistic investigations demonstrated that hypoxia-mediated degradation of egl-9 family hypoxia-inducible factor 3 (Egln3) stabilized Hif1a, which subsequently promoted Hmox1 transcription. Our findings suggest that high Hmox1 expression under hypoxia is deleterious to MDFC viability and plaque stability, providing a reference for the management of acute cardiovascular events.


Asunto(s)
Ferroptosis , Células Espumosas , Hemo-Oxigenasa 1 , Placa Aterosclerótica , Ferroptosis/genética , Animales , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Ratones , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/genética , Células Espumosas/metabolismo , Células Espumosas/patología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Humanos , Estrés Oxidativo , Masculino , Regulación de la Expresión Génica , Proteínas de la Membrana
7.
Int Immunopharmacol ; 142(Pt A): 113131, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39276454

RESUMEN

BACKGROUND: Abnormalities in iron and lipid metabolism are recognized as key contributors to atherosclerosis (AS). Therefore, this study proposes to characterize the biomarker related to iron and lipid metabolism in AS using bioinformatics, animal, and cell experiments. METHODS: The limma package was utilized to identify differentially expressed genes (DEGs) in GSE70126 and GSE70619 datasets, and biomarkers were screened using enrichment analysis and PPI networks. IFIT2 was knocked down using shRNA lentivirus in a high fat diet (HFD)-induced APOE-/- AS model to investigate its effects of IFIT2 on the pathology, iron retention, and lipid accumulation. Iron storage-related and cholesterol efflux-related proteins were evaluated following exogenous modulation of IFIT2 expression in ox-LDL-induced foamy macrophages. RESULTS: Compared to non-foamy macrophages from the aorta, 189 and 4152 DEGs were identified in foamy macrophages within the GSE70126 and GSE70619 datasets, respectively. Moreover, intersecting DEGs may modulate immune responses, cell adhesion, vascular permeability, and oxidative stress through NF-kappa B, Wnt, TNF and HIF-1 signaling pathways. Notably, IFIT2 was significantly upregulated in foamy macrophages and AS models. In vivo, IFIT2 co-localized with foamy macrophages, and its knockdown led to reductions in plasma lipid levels, plaque area, immune infiltration, iron retention, and lipid accumulation. In vitro, IFIT2 knockdown alleviated the ox-LDL-induced increase in iron storage-related proteins (Ferritin-L and Ferritin-H) and iron (Fe2+ and Fe3+) in foamy macrophages. Furthermore, IFIT2 knockdown reduced lipid accumulation and upregulated cholesterol efflux-related proteins (PPARγ, LXRα, ABCA1, and ABCG1) in foamy macrophages. CONCLUSION: IFIT2 knockdown attenuates iron retention and lipid accumulation in AS plaques, and facilitated cholesterol efflux from foamy macrophages via the PPARγ/LXRα/ABCA1-ABCG1 pathway.


Asunto(s)
Aterosclerosis , Colesterol , Hierro , Aterosclerosis/metabolismo , Aterosclerosis/genética , Animales , Hierro/metabolismo , Ratones , Colesterol/metabolismo , Humanos , Ratones Endogámicos C57BL , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Dieta Alta en Grasa , Células Espumosas/metabolismo , Metabolismo de los Lípidos/genética , Lipoproteínas LDL/metabolismo , Modelos Animales de Enfermedad
8.
Sci Rep ; 14(1): 21029, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251671

RESUMEN

Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrated and accumulated in the prostate lumen where they differentiated into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T + E2) or sham surgery was performed and the ventral prostates were harvested two weeks later for scRNA-seq analysis. We identified Ear2 + and Cd72 + macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1 + resident macrophage population did not change. In addition, an Spp1 + foam cell cluster was almost exclusively found in T + E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelia-derived Cxcl17, a known monocyte attractant, in T + E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that responded to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a potential pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.


Asunto(s)
Estradiol , Células Espumosas , Macrófagos , Ratones Endogámicos C57BL , Próstata , Testosterona , Animales , Masculino , Ratones , Testosterona/metabolismo , Macrófagos/metabolismo , Próstata/metabolismo , Próstata/patología , Estradiol/farmacología , Células Espumosas/metabolismo , Modelos Animales de Enfermedad , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Biomarcadores/metabolismo , Regulación hacia Arriba
9.
Mol Biol Rep ; 51(1): 968, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249599

RESUMEN

BACKGROUND: Chrysin, a polyphenolic compound, possesses antioxidant and anti-inflammatory properties. In this study, we investigated the effect of chrysin on the expression of A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), a protease enzyme involved in degrading extracellular matrix associated with atherosclerosis. METHODS AND RESULTS: We have studied the cell viability by MTT assay and foam cell formation by oil red O staining. The mRNA and protein expression of ADAMTS-4 was studied using quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. Our study showed that chrysin significantly downregulates the expression of ADAMTS-4 in foam cells. CONCLUSION: Chrysin's ability to downregulate the expression of ADAMTS-4, a protease involved in degrading the extracellular matrix, bestows upon it a new therapeutic potential for managing atherosclerosis.


Asunto(s)
Proteína ADAMTS4 , Regulación hacia Abajo , Flavonoides , Células Espumosas , Flavonoides/farmacología , Proteína ADAMTS4/metabolismo , Proteína ADAMTS4/genética , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Supervivencia Celular/efectos de los fármacos , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética
10.
Anal Chem ; 96(36): 14621-14629, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189349

RESUMEN

Macrophage-derived foam cells play a crucial role in plaque formation and rupture during the progression of atherosclerosis. Traditional studies have often overlooked the heterogeneity of foam cells, focusing instead on populations of cells. To address this, we have developed time-resolved, single-cell metabolomics and lipidomics approaches to explore the heterogeneity of macrophages during foam cell formation. Our dynamic metabolomic and lipidomic analyses revealed a dual regulatory axis involving inflammation and ferroptosis. Further, single-cell metabolomics and lipidomics have delineated a continuum of macrophage states, with varied susceptibilities to apoptosis and ferroptosis. Single-cell transcriptomic profiling confirmed these divergent fates, both in established cell lines and in macrophages derived from peripheral blood monocytes. This research has uncovered the complex molecular interactions that dictate these divergent cell fates, providing crucial insights into the pathogenesis of atherosclerosis.


Asunto(s)
Apoptosis , Ferroptosis , Células Espumosas , Lipidómica , Metabolómica , Análisis de la Célula Individual , Células Espumosas/metabolismo , Lipidómica/métodos , Metabolómica/métodos , Humanos , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/citología
11.
Cell Mol Life Sci ; 81(1): 331, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107572

RESUMEN

The rising incidences of atherosclerosis have necessitated efforts to identify novel targets for therapeutic interventions. In the present study, we observed increased expression of the mechanosensitive calcium channel Piezo1 transcript in mouse and human atherosclerotic plaques, correlating with infiltration of PIEZO1-expressing macrophages. In vitro administration of Yoda1, a specific agonist for PIEZO1, led to increased foam cell apoptosis and enhanced phagocytosis by macrophages. Mechanistically, PIEZO1 activation resulted in intracellular F-actin rearrangement, elevated mitochondrial ROS levels and induction of mitochondrial fragmentation upon PIEZO1 activation, as well as increased expression of anti-inflammatory genes. In vivo, ApoE-/- mice treated with Yoda1 exhibited regression of atherosclerosis, enhanced stability of advanced lesions, reduced plaque size and necrotic core, increased collagen content, and reduced expression levels of inflammatory markers. Our findings propose PIEZO1 as a novel and potential therapeutic target in atherosclerosis.


Asunto(s)
Apoptosis , Aterosclerosis , Células Espumosas , Canales Iónicos , Macrófagos , Fagocitosis , Animales , Canales Iónicos/metabolismo , Canales Iónicos/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Ratones , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Tiofenos/farmacología , Masculino , Especies Reactivas de Oxígeno/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Mitocondrias/metabolismo , Pirazinas , Tiadiazoles
12.
Innate Immun ; 30(5): 82-89, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39090856

RESUMEN

Cardiovascular diseases (CVDs) linked to atherosclerosis remains the leading cause of death worldwide. Atherosclerosis is primarily caused by the accumulation of oxidized forms of low density lipoprotein (LDL) in macrophages (MΦs) in the subendothelial layer of arteries leading to foam cell and fatty streak formation. Many studies suggest that LDL that is modified by myeloperoxidase (MPO) is a key player in the development of atherosclerosis. MΦs can adopt a variety of functional phenotypes that include mainly the proinflammatory M1 and the anti-inflammatory M2 MΦ phenotypes which are both implicated in the process of atherogenesis. In fact, MΦs that reside in atherosclerostic lesions were shown to express a variety of phenotypes ranging between the M1- and M2 MΦ types. Recently, we pointed out the involvement of MPO oxidized-LDL (Mox-LDL) in increasing inflammation in MΦs by reducing their secretion of IL-10. Since little is known about Mox-LDL-mediated pro-atherosclerostic responses in MΦs, our study aimed at analyzing the in vitro effects of Mox-LDL at this level through making use of the well-established model of human THP-1-derived Mφs. Our results demonstrate that Mox-LDL has no effect on apoptosis, reactive oxygen species (ROS) generation and cell death in our cell model; yet, interestingly, our results show that Mox-LDL is significantly engulfed at a higher rate in the different MΦ subtypes supporting its key role in foam cell formation during the progression of the disease as well as previous data that were generated using another primary MΦ cell model of atherosclerosis.


Asunto(s)
Aterosclerosis , Lipoproteínas LDL , Macrófagos , Peroxidasa , Especies Reactivas de Oxígeno , Humanos , Lipoproteínas LDL/metabolismo , Peroxidasa/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Células THP-1 , Células Espumosas/metabolismo , Interleucina-10/metabolismo , Inflamación
13.
Nat Commun ; 15(1): 6540, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095402

RESUMEN

Foam cells in atheroma are engorged with lipid droplets (LDs) that contain esters of regulatory lipids whose metabolism remains poorly understood. LD-associated hydrolase (LDAH) has a lipase structure and high affinity for LDs of foam cells. Using knockout and transgenic mice of both sexes, here we show that LDAH inhibits atherosclerosis development and promotes stable lesion architectures. Broad and targeted lipidomic analyzes of primary macrophages and comparative lipid profiling of atheroma identified a broad impact of LDAH on esterified sterols, including natural liver X receptor (LXR) sterol ligands. Transcriptomic analyzes coupled with rescue experiments show that LDAH modulates the expression of prototypical LXR targets and leads macrophages to a less inflammatory phenotype with a profibrotic gene signature. These studies underscore the role of LDs as reservoirs and metabolic hubs of bioactive lipids, and suggest that LDAH favorably modulates macrophage activation and protects against atherosclerosis via lipolytic mobilization of regulatory sterols.


Asunto(s)
Aterosclerosis , Gotas Lipídicas , Receptores X del Hígado , Macrófagos , Ratones Noqueados , Animales , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/patología , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Ratones , Masculino , Ligandos , Femenino , Gotas Lipídicas/metabolismo , Macrófagos/metabolismo , Esteroles/metabolismo , Células Espumosas/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Activación de Macrófagos , Esterol Esterasa
14.
Proc Natl Acad Sci U S A ; 121(33): e2403740121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102540

RESUMEN

The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.


Asunto(s)
Aterosclerosis , Células Espumosas , Oro , Proteína con Dominio Pirina 3 de la Familia NLR , Aterosclerosis/patología , Animales , Oro/química , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Espumosas/patología , Células Espumosas/metabolismo , Macrófagos/patología , Macrófagos/metabolismo , Humanos , Lisosomas/metabolismo , Inflamasomas/metabolismo , Nanotubos/química , Reología
15.
Tissue Cell ; 90: 102476, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047550

RESUMEN

BACKGROUND: Defective clearance of apoptotic and foam cells achieved by arterial macrophage efferocytosis propels the progression of inflammatory atherosclerosis, but related molecular mechanisms in this process remain unclear. Herein, this study is engineered to probe into the mechanism of peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC1α) on atherosclerosis. METHODS: The PGC1α/NLR family pyrin domain containing 3 (NLRP3)/peroxisome proliferator activated receptor alpha (PPARα) axis in oxidized low-density lipoprotein (ox-LDL)-induced RAW264.7 cells was verified using Western blot. Inflammatory response, NLRP3 activation, efferocytotic efficiency and lipid uptake of the ox-LDL-stimulated cells overexpressing PGC1α or/and silencing PPARα were detected by enzyme-linked immunosorbent assay, immunofluorescence, tracing of apoptotic Jurkat cells and Oil red O staining. RESULTS: PGC1α and PPARα levels were decreased, but NLRP3 level was increased in ox-LDL-stimulated RAW264.7 cells (P<0.001). PGC1α overexpression repressed the levels of IL-1ß, IL-6 and TNF-α, NLRP3 expression or activation and foam cell formation (P<0.05), but enhanced efferocytosis as well as expressions of AXL, MERTK and TYRO3 in ox-LDL-stimulated cells (P<0.001). PGC1α overexpression increased PPARα expression. However, PPARα silencing reversed the effects of PGC1α overexpression on protecting macrophages against ox-LDL-induced inflammation, efferocytotic impairment and foam cell formation (P<0.05). CONCLUSION: Overexpression PGC1α decreased NLRP3 activation to promoted the expression of PPARα, which alleviated the impairment of macrophage efferocytosis and inhibited the development of atherosclerosis development.


Asunto(s)
Lipoproteínas LDL , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , PPAR alfa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , PPAR alfa/metabolismo , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Células RAW 264.7 , Macrófagos/metabolismo , Humanos , Transducción de Señal , Apoptosis , Fagocitosis , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Espumosas/metabolismo , Células Espumosas/patología , Eferocitosis
16.
Phytomedicine ; 132: 155827, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955059

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the main pathological basis for the development of cardiovascular diseases. Vascular inflammation is an important factor in the formation of AS, and macrophage pyroptosis plays a key role in AS due to its unique inflammatory response. Guizhitongluo Tablet (GZTLT) has shown clinically effective in treating patients with AS, but its mechanism is elusive. PURPOSE: This study was to determine the effects of GZTLT on atherosclerotic vascular inflammation and pyroptosis and to understand its underlying mechanism. MATERIALS AND METHODS: The active constituents of GZTLT were analysed by means of UPLC-HRMS. In vivo experiments were performed using ApoE-/- mice fed a high fat diet for 8 weeks, followed by treatment with varying concentrations of GZTLT orally by gavage and GsMTx4 (GS) intraperitoneally and followed for another 8 weeks. Oil red O, Haematoxylin-eosin (HE) and Masson staining were employed to examine the lipid content, plaque size, and collagen fibre content of the mouse aorta. Immunofluorescence staining was utilised to identify macrophage infiltration, as well as the expression of Piezo1 and NLRP3 proteins in aortic plaques. The levels of aortic inflammatory factors were determined using RT-PCR and ELISA. In vitro, foam cell formation in bone marrow-derived macrophages (BMDMs) was observed using Oil Red O staining. Intracellular Ca2+ measurements were performed to detect the calcium influx in BMDMs, and the expression of NLRP3 and its related proteins were detected by Western blot. RESULTS: The UPLC-HRMS analysis revealed 31 major components of GZTLT. Our data showed that GZTLT inhibited aortic plaque formation in mice and increased plaque collagen fibre content to stabilise plaques. In addition, GZTLT could restrain the expression of serum lipid levels and suppress macrophage foam cell formation. Further studies found that GZTLT inhibited macrophage infiltration in aortic plaques and suppressed the expression of inflammatory factors. It is noteworthy that GZTLT can restrain Piezo1 expression and reduce Ca2+ influx in BMDMs. Additionally, we found that GZTLT could regulate NLRP3 activation and pyroptosis by inhibiting Piezo1. CONCLUSION: The present study suggests that GZTLT inhibits vascular inflammation and macrophage pyroptosis through the Piezo1/NLRP3 signaling pathway, thereby delaying AS development. Our finding provides a potential target for AS treatment and drug discovery.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Células Espumosas , Canales Iónicos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Ratones , Medicamentos Herbarios Chinos/farmacología , Canales Iónicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Comprimidos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Aorta/efectos de los fármacos , Ratones Noqueados para ApoE , Dieta Alta en Grasa , Placa Aterosclerótica/tratamiento farmacológico
17.
Phytomedicine ; 132: 155864, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032281

RESUMEN

BACKGROUND: Atherosclerosis is a long-lasting inflammatory condition affecting the walls of arteries, marked by the buildup of fats, plaque formation, and vascular remodeling. Recent findings highlight the significance of cholesterol removal pathways in influencing atherosclerosis, yet the connection between cholesterol removal and regulation of macrophage inflammation remains poorly understood. RBAP could serve as an anti-inflammatory agent; however, its role in atherosclerosis and the mechanism behind it are still not well understood. PURPOSE: The objective of this research is to explore how RBAP impacts cholesterol efflux, which is a considerable element in the advancement of atherosclerosis. METHODS: An atherosclerosis mouse model was established by using an ApoE KO strain mouse on a high-fat diet (HFD) to assess the effects of RBAP, conducted either orally or through injection. Additionally, in vitro experiments were conducted where the induction of THP-1 cells was conducted for the differentiation towards macrophages, and along with mouse RAW264.7 cells, were challenged with ox-LDL to evaluate the impact of RBAP. RESULTS: In this study, RBAP was found to reduce the production and downregulate TNF-α, IL-1ß, and IL-6 levels and inhibited the activation of the TLR4/MyD88/NF-κB signaling in atherosclerosis model mice, as well as in ox-LDL-challenged THP-1 cells and mouse RAW264.7 macrophages. RBAP's effectiveness also improved the enhancement of reverse cholesterol transport (RCT) and cholesterol removal to HDL and apoA1 by increasing the activity of genes related to cholesterol removal PPARγ/LXRα/ABCA1/ABCG1, both in ApoE-/- mice and in THP-1 cells and mouse RAW264.7 macrophages. Notably, RBAP exerted similar effects on atherosclerosis model mice and macrophages to those of TAK-242, an inhibitor of the TLR4 signaling. When RBAP and TAK-242 were applied simultaneously, the improvement was not enhanced compared with either RBAP or TAK-242 treatment alone. CONCLUSION: These findings suggest that RBAP, as a TLR4 inhibitor, has anti-atherosclerotic effects by improving inflammation and promoting cholesterol effection, indicating its therapeutic potential in intervening atherosclerosis.


Asunto(s)
Aterosclerosis , Diferenciación Celular , Colesterol , Células Espumosas , Macrófagos , Oryza , Receptor Toll-Like 4 , Animales , Aterosclerosis/tratamiento farmacológico , Ratones , Colesterol/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Células RAW 264.7 , Diferenciación Celular/efectos de los fármacos , Humanos , Receptor Toll-Like 4/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Células THP-1 , Masculino , Dieta Alta en Grasa , Transportador 1 de Casete de Unión a ATP/metabolismo , Lipoproteínas LDL/metabolismo , Ratones Endogámicos C57BL , Péptidos/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Ratones Noqueados para ApoE , FN-kappa B/metabolismo , Apolipoproteínas E , Antiinflamatorios/farmacología
18.
Curr Microbiol ; 81(9): 263, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997545

RESUMEN

This study was to investigate the therapeutic effect of Bacillus amyloliquefaciens (Ba) on atherosclerosis (AS). THP-1 monocyte was differentiated to THP-1 macrophage (THP-M) through phorbol 12-myristate 13-acetate. After pre-treatment by 108 cfu/ml Ba lasting 6 h, THP-M was induced with 100 mg/l ox-LDL lasting 48 h to form macrophage foam cell (THP-F). RT-qPCR and flow cytometry were employed to determine the polarization of THP-M and THP-F. ApoE-/- mice with high-fat and high-cholesterol diet were used for constructing an AS model to evaluate the effect of Ba on AS. Our in vitro results showed that Ba vegetative cells pre-treatment distinctly inhibited the levels of iNOS and CD16/CD32 (M1 macrophage markers), and increased the levels of FIZZ1, Ym1, Arg1, CD163, and CD206 (M2 macrophage markers), indicating that Ba pre-treatment promoted anti-inflammatory M2-like polarization both in THP-M and THP-F. Meanwhile, it also suppressed cholesterol uptake, esterification, and hydrolysis, and efflux by THP-M and THP-F. Additionally, our animal experiments demonstrated that Ba vegetative cells treatment suppressed high cholesterol, hyperglycemia, hyperlipidemia, and the release of inflammatory factors (TNF-α, IL-6 and IL-1ß) in ApoE-/- AS mice. In a word, our results indicated that Ba may protect against AS through alleviating foam cell formation and macrophage polarization through targeting certain stages of AS.


Asunto(s)
Aterosclerosis , Bacillus amyloliquefaciens , Células Espumosas , Macrófagos , Animales , Células Espumosas/metabolismo , Aterosclerosis/prevención & control , Ratones , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células THP-1 , Citocinas/metabolismo , Modelos Animales de Enfermedad
19.
Aging (Albany NY) ; 16(13): 10784-10798, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38990203

RESUMEN

Atherosclerosis (AS) is the main pathological basis of cardiovascular diseases such as coronary heart disease. Black phosphorus quantum dots (BPQDs) are a novel nanomaterial with good optical properties and biocompatibility, which was applied in the treatment of AS in mice, with good results shown in our previous study. In this study, BPQDs were injected into high-fat diet-fed apolipoprotein E knockout mice as a preventive drug for 12 weeks. Simvastatin, a classic preventive drug for AS, was used as a control to verify the preventive effect of BPQDs. The results showed that after preventive treatment with BPQDs, the plaque area in mice was significantly reduced, the vascular elasticity was increased, and serum lipid levels were significantly lower than those in the model group. To explore the mechanism, macrophages were induced to become foam cells using oxidized low-density lipoprotein. We found that BPQDs treatment could increase cell autophagy, thereby regulating intracellular lipid metabolism. Taken together, these data revealed that BPQDs may serve as a functional drug in preventing the development of AS.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Fósforo , Puntos Cuánticos , Animales , Dieta Alta en Grasa/efectos adversos , Aterosclerosis/prevención & control , Ratones , Fósforo/sangre , Ratones Noqueados , Apolipoproteínas E/genética , Masculino , Autofagia/efectos de los fármacos , Ratones Noqueados para ApoE , Metabolismo de los Lípidos/efectos de los fármacos , Modelos Animales de Enfermedad , Placa Aterosclerótica/prevención & control , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/sangre , Simvastatina/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159533, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39009241

RESUMEN

Macrophage lipid accumulation indicates a pathological change in atherosclerosis. Ilexgenin A (IA), a pentacyclic triterpenoid compound, plays a role in preventing inflammation, bacterial infection, and fatty liver and induces a potential anti-atherogenic effect. However, the anti-atherosclerotic mechanism remains unclear. The present study investigated the effects of IA on lipid accumulation in macrophage-derived foam cells and atherogenesis in apoE-/- mice. Our results indicated that the expression of adenosine triphosphate-binding cassette transporter A1 (ABCA1) was up-regulated by IA, promoting cholesterol efflux and reducing lipid accumulation in macrophages, which may be regulated by the protein tyrosine phosphatase non-receptor type 2 (PTPN2)/ERK1/2 signalling pathway. IA attenuated the progression of atherosclerosis in high-fat diet-fed apoE-/- mice. PTPN2 knockdown with siRNA or treatment with an ERK1/2 agonist (Ro 67-7476) impeded the effects of IA on ABCA1 upregulation and cholesterol efflux in macrophages. These results suggest that IA inhibits macrophage lipid accumulation and alleviates atherosclerosis progression via the PTPN2/ERK1/2 signalling pathway.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Aterosclerosis , Metabolismo de los Lípidos , Sistema de Señalización de MAP Quinasas , Macrófagos , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Masculino , Triterpenos/farmacología , Colesterol/metabolismo , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/patología , Ratones Endogámicos C57BL , Progresión de la Enfermedad , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA