Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.164
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003048

RESUMEN

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Asunto(s)
Disruptores Endocrinos , Células Madre , Disruptores Endocrinos/toxicidad , Humanos , Células Madre/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Exposición a Riesgos Ambientales
2.
Int J Nanomedicine ; 19: 10107-10128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381026

RESUMEN

Background: In bone tissue engineering (BTE), cell-laden scaffolds offer a promising strategy for repairing bone defects, particularly when host cell regeneration is insufficient due to age or disease. Exogenous stem cell-based BTE requires bioactive factors to activate these cells. Graphene oxide quantum dots (GOQDs), zero-dimensional derivatives of graphene oxide, have emerged as potential osteogenic nanomedicines. However, constructing biological scaffolds with GOQDs and elucidating their biological mechanisms remain critical challenges. Methods: We utilized GOQDs with a particle size of 10 nm, characterized by a surface rich in C-O-H and C-O-C functional groups. We developed a gelatin methacryloyl (GelMA) hydrogel incorporated with GOQDs-treated dental pulp stem cells (DPSCs). These constructs were transplanted into rat calvarial bone defects to estimate the effectiveness of GOQDs-induced DPSCs in repairing bone defects while also investigating the molecular mechanism underlying GOQDs-induced osteogenesis in DPSCs. Results: GOQDs at 5 µg/mL significantly enhanced the osteogenic differentiation of DPSCs without toxicity. The GOQDs-induced DPSCs showed active osteogenic potential in three-dimensional cell culture system. In vivo, transplantation of GOQDs-preactivated DPSCs/GelMA composite effectively facilitated calvarial bone regeneration. Mechanistically, GOQDs stimulated mitophagy flux through the phosphatase-and-tensin homolog-induced putative kinase 1 (PINK1)/Parkin E3 ubiquitin ligase (PRKN) pathway. Notably, inhibiting mitophagy with cyclosporin A prevented the osteogenic activity of GOQDs. Conclusion: This research presents a well-designed bionic GOQDs/DPSCs/GelMA composite scaffold and demonstrated its ability to promote bone regeneration by enhancing mitophagy. These findings highlight the significant potential of this composite for application in BTE and underscore the crucial role of mitophagy in promoting the osteogenic differentiation of GOQDs-induced stem cells.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Pulpa Dental , Grafito , Mitofagia , Osteogénesis , Puntos Cuánticos , Células Madre , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Animales , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Grafito/química , Grafito/farmacología , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Puntos Cuánticos/química , Ratas , Humanos , Células Madre/efectos de los fármacos , Células Madre/citología , Diferenciación Celular/efectos de los fármacos , Andamios del Tejido/química , Ratas Sprague-Dawley , Gelatina/química , Ingeniería de Tejidos/métodos , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Células Cultivadas , Ubiquitina-Proteína Ligasas/metabolismo , Cráneo/efectos de los fármacos
3.
Acta Odontol Scand ; 83: 546-552, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351898

RESUMEN

OBJECTIVE: To investigate the influence of citric acid on the osteogenic and angiogenic potential of stem cells from apical papillae (SCAPs). MATERIALS AND METHODS: Stem cells from apical papillae were isolated from freshly extracted third permanent molars. These cells were treated with 20 and 100 µM citric acid. Alizarin red staining was used to evaluate mineral deposition. The secreted levels of vascular endothelial growth factor (VEGF) were assessed by ELISA on days 18, 24 and 28. Immunofluorescence analysis was performed to assess the expression of surface markers after exposure to 20 and 100 µM citric acid. RESULTS: Different mineralisation patterns were observed. Supplemented with citric acid, media showed more diffuse and less dense crystals. On day 18, most VEGF was secreted from the cells with no added citric acid. On day 24, there was a significant increase (p < 0.05) in the levels of VEGF secreted from cells treated with 20 µM citric acid. On day 28, cells from the control group did not secrete VEGF. There was a reduction in the levels of VEGF secreted by cells treated with 20 µM citric acid and a significant increase in the cells exposed to 100 µM citric acid (p < 0.05). CONCLUSION: Citric acid can promote the differentiation of SCAPs and angiogenesis.


Asunto(s)
Ácido Cítrico , Células Madre , Factor A de Crecimiento Endotelial Vascular , Ácido Cítrico/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Humanos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Papila Dental/citología , Papila Dental/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Calcificación Fisiológica/efectos de los fármacos
4.
Stem Cell Res Ther ; 15(1): 348, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380035

RESUMEN

BACKGROUND: Vasoactive intestinal peptide (VIP) is a neuronal peptide with prominent distribution along the enteric nervous system. While effects of VIP on intestinal motility, mucosal vasodilation, secretion, and mucosal immune cell function are well-studied, the direct impact of VIP on intestinal epithelial cell turnover and differentiation remains less understood. Intestinal stem and progenitor cells are essential for the maintenance of intestinal homeostasis and regeneration, and their functions can be modulated by factors of the stem cell niche, including neuronal mediators. Here, we investigated the role of VIP in regulating intestinal epithelial homeostasis and regeneration following irradiation-induced injury. METHODS: Jejunal organoids were derived from male and female C57Bl6/J, Lgr5-EGFP-IRES-CreERT2 or Lgr5-EGFP-IRES-CreERT2/R26R-LSL-TdTomato mice and treated with VIP prior to analysis. Injury conditions were induced by exposing organoids to 6 Gy of irradiation (IR). To investigate protective effects of VIP in vivo, mice received 12 Gy of abdominal IR followed by intraperitoneal injections of VIP. RESULTS: We observed that VIP promotes epithelial differentiation towards a secretory phenotype predominantly via the p38 MAPK pathway. Moreover, VIP prominently modulated epithelial proliferation as well as the number and proliferative activity of Lgr5-EGFP+ progenitor cells under homeostatic conditions. In the context of acute irradiation injury in vitro, we observed that IR injury renders Lgr5-EGFP+ progenitor cells more susceptible to VIP-induced modulations, which coincided with the strong promotion of epithelial regeneration by VIP. Finally, the observed effects translate into an in vivo model of abdominal irradiation, where VIP showed to prominently mitigate radiation-induced injury. CONCLUSIONS: VIP prominently governs intestinal homeostasis by regulating epithelial progenitor cell proliferation and differentiation and promotes intestinal regeneration following acute irradiation injury.


Asunto(s)
Diferenciación Celular , Ratones Endogámicos C57BL , Péptido Intestinal Vasoactivo , Animales , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Ratones , Masculino , Femenino , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología , Organoides/metabolismo , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/efectos de la radiación
5.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301638

RESUMEN

Periodontitis, a common oral disease characterized by the progressive infiltration of bacteria, is a leading cause of adult tooth loss. Periodontal stem cells (PDLSCs) possess good self­renewal and multi­potential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. The present study aimed to analyze the roles of Wnt7B and frizzled4 (FZD4) in the osteogenic differentiation and macrophage polarization during periodontitis using an in vitro cell model. First, Wnt7B expression in the periodontitis­affected gingival tissue of patients and lipopolysaccharide (LPS)­stimulated PDLSCs was assessed using the GSE23586 dataset and western blot analysis, respectively. In Wnt7B­overexpressing PDLSCs exposed to LPS, the capacity of osteogenic differentiation was evaluated by detecting alkaline phosphatase activity, the level of Alizarin Red S staining and the expression of genes related to osteogenic differentiation. Subsequently, conditioned medium from PDLSCs overexpressing Wnt7B was used for M0 macrophage culture. The expression of CD86 and INOS was examined using immunofluorescence staining and western blot analysis. In addition, reverse transcription­quantitative PCR was employed to examine the expression of TNF­α, IL­6 and IL­1ß in macrophages. The binding between Wnt7B and FZD4 was estimated using co­immunoprecipitation. In addition, FZD4 was silenced to perform the rescue experiments to elucidate the regulatory mechanism between Wnt7B and FZD4. The results demonstrated a decreased expression of Wnt7B in periodontitis­affected gingival tissue and in LPS­exposed PDLSCs. Wnt7B overexpression promoted the osteogenic differentiation of LPS­exposed PDLSCs and suppressed the M1 polarization of macrophages. Additionally, Wnt7B bound to FZD4 and upregulated FZD4 expression. FZD4 silencing reversed the effects of Wnt7B overexpression on the osteogenic differentiation in LPS­exposed PDLSCs and the M1 polarization of macrophages. In summary, Wnt7B plays an anti­periodontitis role by binding FZD4 to strengthen the osteogenic differentiation of LPS­stimulated PDLSCs and suppress the M1 polarization of macrophages.


Asunto(s)
Diferenciación Celular , Receptores Frizzled , Lipopolisacáridos , Macrófagos , Osteogénesis , Ligamento Periodontal , Células Madre , Proteínas Wnt , Humanos , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Osteogénesis/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Células Madre/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Periodontitis/metabolismo , Periodontitis/patología , Células Cultivadas , Adulto , Unión Proteica
6.
PeerJ ; 12: e17913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193517

RESUMEN

Background: Dental pulp stem cells (DPSCs) possess mesenchymal stem cell characteristics and have potential for cell-based therapy. Cell expansion is essential to achieve sufficient cell numbers. However, continuous cell replication causes cell aging in vitro, which usually accompanies and potentially affect DPSC characteristics and activities. Continuous passaging could alter susceptibility to external factors such as drug treatment. Therefore, this study sought to investigate potential outcome of in vitro passaging on DPSC morphology and activities in the absence or presence of external factor. Methods: Human DPSCs were subcultured until reaching early passages (P5), extended passages (P10), and late passages (P15). Cells were evaluated and compared for cell and nuclear morphologies, cell adhesion, proliferative capacity, alkaline phosphatase (ALP) activity, and gene expressions in the absence or presence of external factor. Alendronate (ALN) drug treatment was used as an external factor. Results: Continuous passaging of DPSCs gradually lost their normal spindle shape and increased in cell and nuclear sizes. DPSCs were vulnerable to ALN. The size and shape were altered, leading to morphological abnormality and inhomogeneity. Long-term culture and ALN interfered with cell adhesion. DPSCs were able to proliferate irrespective of cell passages but the rate of cell proliferation in late passages was slower. ALN at moderate dose inhibited cell growth. ALN caused reduction of ALP activity in early passage. In contrast, extended passage responded differently to ALN by increasing ALP activity. Late passage showed higher collagen but lower osteocalcin gene expressions compared with early passage in the presence of ALN. Conclusion: An increase in passage number played critical role in cell morphology and activities as well as responses to the addition of an external factor. The effects of cell passage should be considered when used in basic science research and clinical applications.


Asunto(s)
Alendronato , Adhesión Celular , Proliferación Celular , Pulpa Dental , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Alendronato/farmacología , Adhesión Celular/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Células Cultivadas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Técnicas de Cultivo de Célula/métodos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular/efectos de los fármacos
7.
Prostaglandins Other Lipid Mediat ; 174: 106882, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151819

RESUMEN

Periodontitis is featured as the periodontium's pathologic destruction caused by the host's overwhelmed inflammation. Omentin-1 has been reported to be aberrantly downregulated in patients with periodontitis, but the specific regulation of Omentin-1 during the pathogenesis of periodontitis remains unclear. In this study, human periodontal ligament stem cells (hPDLSCs) were stimulated by lipopolysaccharide (LPS) from Porphyromonas gingivalis to establish an in vitro inflammatory periodontitis model. hPDLSCs were treated with recombinant human Omentin-1 (250, 500 and 750 ng/mL) for 3 h before LPS stimulation. Results revealed that Omentin-1 significantly inhibited LPS-induced inflammation in hPDLSCs through reducing the production of proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6) and downregulating the expression of Cox2 and iNOS. Meanwhile, Omentin-1 significantly enhanced alkaline phosphatase (ALP) activity and Alizarin red-stained area, accompanied by increasing expression osteogenic markers BMP2, OCN and Runx2, confirming that Omentin-1 restores osteogenic differentiation in LPS-induced hPDLSCs. In addition, the conditioned medium (CM) from LPS-induced hPDLSCs was harvested to culture macrophages, which resulted in macrophage polarization towards M1, while CM from Omentin-1-treated hPDLSCs reduced M1 macrophages polarization and elevated M2 polarization. Furthermore, Omentin-1 also inhibited LPS-triggered endoplasmic reticulum (ER) stress in hPDLSCs, and additional treatment of the ER stress activator tunicamycin (TM) partially reversed the functions of Omentin-1 on inflammation, osteogenic differentiation and macrophages polarization. In summary, Omentin-1 exerted a protective role against periodontitis through inhibiting inflammation and enhancing osteogenic differentiation of hPDLSCs, providing a novelty treatment option for periodontitis.


Asunto(s)
Diferenciación Celular , Citocinas , Estrés del Retículo Endoplásmico , Proteínas Ligadas a GPI , Inflamación , Lectinas , Lipopolisacáridos , Macrófagos , Osteogénesis , Ligamento Periodontal , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Humanos , Lipopolisacáridos/farmacología , Osteogénesis/efectos de los fármacos , Citocinas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Lectinas/farmacología , Diferenciación Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/farmacología , Inflamación/patología , Inflamación/metabolismo , Periodontitis/patología , Periodontitis/metabolismo , Porphyromonas gingivalis , Células Cultivadas
8.
Discov Med ; 36(187): 1657-1671, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190381

RESUMEN

BACKGROUND: Periodontitis is the leading cause of tooth loss and can exacerbate various systemic inflammatory conditions. Periodontal ligament stem cells (PDLSCs) stand out as prominent and favorable candidates for promoting periodontal tissue regeneration. This study aimed to investigate whether the protease-activated receptor type 1 (PAR1) can mitigate the sodium butyrate (NaB)-induced PDLSCs osteogenesis inhibition and unravel the underlying mechanism. METHODS: Public datasets from the Gene Expression Omnibus (GEO) were utilized to analyze differentially expressed genes (DEGs) in periodontitis and subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. PDLSCs were cultured normally in control medium (CM) as the negative control or in osteogenic medium (OM) to induce osteogenesis. PAR1 was either activated or suppressed using a selective agonist or antagonist (OM+agonist and OM+antagonist). The evaluation of PDLSCs osteogenesis was based on the levels of osteogenesis-related markers, including runt-related transcription factor 2 (RUNX2), osterix (OSX), osteocalcin (OCN), and osteopontin (OPN), alkaline phosphatase (ALP) activity, and calcium concentration. Additionally, cell proliferation and osteogenic differentiation were measured through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Alizarin Red Staining. To determine the PAR1 targeting the limb development membrane protein 1 (LMBR1)/bone morphogenetic protein (BMP) pathway, LMBR1 was upregulated through cell transfection and BMP2 was inhibited using the selective inhibitor Noggin protein. Finally, NaB was introduced into PDLSCs to investigate the effect on NaB-induced inhibition of PDLSCs osteogenesis. RESULTS: PAR1, RUNX2, OSX, OCN, OPN, proliferation, ALP activity, calcium concentration, osteogenic differentiation, BMP2, and BMP4 exhibited significant increases in PDLSCs cultured in OM (p < 0.01). These parameters were further elevated by PAR1 agonist and conversely reduced by PAR1 antagonist (p < 0.01). Conversely, LMBR1 was decreased in PDLSCs cultured in OM (p < 0.001), with further reduction induced by PAR1 agonist and a reverse increase observed with PAR1 antagonist (p < 0.001). OE-LMBR1 transfection successfully elevated LMBR1 levels, subsequently inhibiting BMP2 and BMP4 (p < 0.001). Meanwhile, the Noggin protein effectively suppressed BMP2 and BMP4 (p < 0.001). All observed osteogenesis-related changes were reversed by the increased LMBR1 or inhibition of the BMP pathway (p < 0.001). Furthermore, NaB suppressed osteogenesis-related changes in OM-cultured PDLSCs (p < 0.001), and these effects were entirely reversed by PAR1 agonist (p < 0.001). Conversely, the increased LMBR1 or inhibited BMP pathway disrupted the osteogenesis reversion induced by PAR1 agonist (p < 0.001). CONCLUSION: The activation of PAR1, through suppressing LMBR1 signaling and activating BMP pathway, demonstrates the ability to enhance the osteogenesis of PDLSCs and mitigate the inhibitory effects on PDLSCs osteogenesis caused by NaB.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Receptor PAR-1 , Células Madre , Humanos , Proteína Morfogenética Ósea 2/metabolismo , Ácido Butírico/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Periodontitis/metabolismo , Periodontitis/patología , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/citología
9.
Exp Parasitol ; 265: 108823, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39187057

RESUMEN

Trichinosis is a common parasitic disease that affects the striated skeletal muscles, causing apoptotic and degenerative changes associated with myogenin expression in the affected myocytes. Hence, this study aimed to assess the ameliorative effects of stem cells and atorvastatin added to ivermectin on the infected myocytes during the muscular phase of murine trichinosis. 120 laboratory Swiss albino male mice were divided into 10 groups, and each group was subdivided into intestinal and muscular phases (each n = 6); uninfected control; untreated infected control; infected received ivermectin monotherapy; infected received atorvastatin monotherapy; infected received stem cells monotherapy; infected received ivermectin and atorvastatin dual therapy; infected received ivermectin and stem cells dual therapy; infected received atorvastatin and stem cells dual therapy; infected received ivermectin 0.2, atorvastatin 40, and stem cells triple therapy; and infected received ivermectin 0.1, atorvastatin 20, and stem cells triple therapy. Intestinal phase mice were sacrificed on the 5th day post-infection, while those of the muscular phase were sacrificed on the 35th day post-infection. Parasitological, histopathological, ultrastructural, histochemical, biochemical, and myogenin gene expression assessments were performed. The results revealed that mice that received ivermectin, atorvastatin, and stem cell triple therapies showed the maximum reduction in the adult worm and larvae burden, marked improvement in the underlying muscular degenerative changes (as was noticed by histopathological, ultrastructural, and histochemical Feulgen stain assessment), lower biochemical levels of serum NK-κB and tissue NO, and lower myogenin expression. Accordingly, the combination of stem cells, atorvastatin, and ivermectin affords a potential synergistic activity against trichinosis with considerable healing of the underlying degenerative sequel.


Asunto(s)
Apoptosis , Atorvastatina , Ivermectina , Miogenina , Triquinelosis , Animales , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Masculino , Ratones , Ivermectina/farmacología , Ivermectina/uso terapéutico , Triquinelosis/tratamiento farmacológico , Triquinelosis/parasitología , Apoptosis/efectos de los fármacos , Miogenina/genética , Miogenina/metabolismo , Músculo Esquelético/parasitología , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Microscopía Electrónica de Transmisión , Trasplante de Células Madre , Trichinella spiralis/genética , Trichinella spiralis/efectos de los fármacos , Células Madre/efectos de los fármacos
10.
Sci Rep ; 14(1): 19354, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169066

RESUMEN

Fibroblast growth factor 2 (FGF2) is a crucial factor in odontoblast differentiation and dentin matrix deposition, which facilitates pulpodentin repair and regeneration. Nevertheless, the specific biological function of FGF2 in odontoblastic differentiation remains unclear because it is controlled by complex signalling pathways. This study aimed to investigate the mechanism underlying the effect of FGF2 on osteo/odontogenic differentiation of stem cells from the apical papilla (SCAP). SCAP were pretreated with conditioned media containing FGF2 for 1 week, followed by culturing in induced differentiation medium for another week. RNA sequencing (RNA-seq) combined with quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to evaluate the pathways affected by FGF2 in SCAP. Osteo/odontogenic differentiation of SCAP was determined using Alizarin red S staining, alkaline phosphatase staining, RT-qPCR, and western blotting. Pretreatment with FGF2 for 1 week increased the osteo/odontogenic differentiation ability of SCAP. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that phosphatidylinositol 3-kinase (PI3K)/AKT signalling is involved in the osteogenic function of FGF2. RT-qPCR results indicated that SCAP expressed FGF receptors, and western blotting showed that p-AKT was reduced in FGF2-pretreated SCAP. The activation of the PI3K/AKT pathway partially reversed the stimulatory effect of FGF2 on osteo/odontogenic differentiation of SCAP. Our findings suggest that pretreatment with FGF2 enhances the osteo/odontogenic differentiation ability of SCAP by inhibiting the PI3K/AKT pathway.


Asunto(s)
Diferenciación Celular , Papila Dental , Factor 2 de Crecimiento de Fibroblastos , Odontogénesis , Osteogénesis , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Células Madre , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Papila Dental/citología , Papila Dental/metabolismo , Humanos , Odontogénesis/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Células Cultivadas
11.
Int J Nanomedicine ; 19: 8285-8308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161362

RESUMEN

The endometrium is an extremely important component of the uterus and is crucial for individual health and human reproduction. However, traditional methods still struggle to ideally repair the structure and function of damaged endometrium and restore fertility. Therefore, seeking and developing innovative technologies and materials has the potential to repair and regenerate damaged or diseased endometrium. The emergence and functionalization of various nanomedicine and biomaterials, as well as the proposal and development of regenerative medicine and tissue engineering techniques, have brought great hope for solving these problems. In this review, we will summarize various nanomedicine, biomaterials, and innovative technologies that contribute to endometrial regeneration, including nanoscale exosomes, nanomaterials, stem cell-based materials, naturally sourced biomaterials, chemically synthesized biomaterials, approaches and methods for functionalizing biomaterials, as well as the application of revolutionary new technologies such as organoids, organ-on-chips, artificial intelligence, etc. The diverse design and modification of new biomaterials endow them with new functionalities, such as microstructure or nanostructure, mechanical properties, biological functions, and cellular microenvironment regulation. It will provide new options for the regeneration of endometrium, bring new hope for the reconstruction and recovery of patients' reproductive abilities.


Asunto(s)
Materiales Biocompatibles , Endometrio , Nanomedicina , Regeneración , Medicina Regenerativa , Ingeniería de Tejidos , Humanos , Endometrio/efectos de los fármacos , Endometrio/fisiología , Nanomedicina/métodos , Femenino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Regeneración/efectos de los fármacos , Medicina Regenerativa/métodos , Nanoestructuras/química , Animales , Exosomas/química , Células Madre/efectos de los fármacos , Células Madre/citología
12.
Sci Rep ; 14(1): 19940, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39198490

RESUMEN

Metformin has shown outstanding anti-inflammatory and osteogenic abilities. Mesenchymal stem cell-derived extracellular vesicles (EVs) reveal promising therapeutic potency by carrying various biomolecules. This study explored the effects of metformin on the therapeutic potential of EVs derived from human periodontal ligament stem cells (PDLSCs) for periodontitis. PDLSCs were cultured in osteogenic medium with or without metformin, and the supernatant was then collected separately to extract EVs and metformin-treated EVs (M-EVs). After identifying the characteristics, we evaluated the anti-inflammatory and osteogenic effects of EVs and M-EVs in vivo and in vitro. Osteogenic differentiation of PDLSCs was markedly enhanced after metformin treatment, and the effect was dramatically inhibited by GW4896, an inhibitor of EVs' secretion. Metformin significantly increased EVs' yields and improved their effects on cell proliferation, migration, and osteogenic differentiation. Moreover, metformin significantly enhanced the osteogenic ability of EVs on inflammatory PDLSCs. Animal experiments revealed that alveolar bone resorption was dramatically reduced in the EVs and M-EVs groups when compared to the periodontitis group, while the M-EVs group showed the lowest levels of alveolar bone loss. Metformin promoted the osteogenic differentiation of PDLSCs partly through EVs pathway and significantly enhanced the secretion of PDLSCs-EVs with superior pro-osteogenic and anti-inflammatory potential, thus improving EVs' therapeutic potential on periodontitis.


Asunto(s)
Diferenciación Celular , Vesículas Extracelulares , Metformina , Osteogénesis , Ligamento Periodontal , Periodontitis , Células Madre , Metformina/farmacología , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Masculino , Movimiento Celular/efectos de los fármacos , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/metabolismo
13.
Inflammopharmacology ; 32(5): 3443-3459, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39207637

RESUMEN

BACKGROUND: The nucleus pulposus (NP) degradation is a primary factor in intervertebral disk degeneration (IVD) and a major contributor to low back pain. Intervertebral disk-derived stem cell (IVDSC) therapy presents a promising solution, yet identifying suitable cell carriers for NP transplantation remains challenging. The present study investigates this issue by developing smart injectable hydrogels incorporating vanillin (V) and hyaluronic acid (HA) encapsulated with IVDSCs to facilitate IVD regeneration. MATERIALS AND METHODS: The hydrogel was cross linked by carbodiimide-succinimide (EDC-NHS) method. Enhanced mechanical properties were achieved by integrating collagen and HA into the hydrogel. The rheological analysis revealed the pre-gel viscoelastic and shear-thinning characteristics. RESULTS: In vitro, cell viability was maintained up to 500 µg/mL, with a high proliferation rate observed over 14 days. The hydrogels supported multilineage differentiation, as confirmed by osteogenic and adipogenic induction. Anti-inflammatory effects were demonstrated by reduced cytokine release (TNF-α, IL-6, IL-1ß) after 24 h of treatment. Gene expression studies indicated elevated levels of chondrocyte markers (Acan, Sox9, Col2). In vivo, hydrogel injection into the NP was monitored via X-ray imaging, showing a significant increase in disk height index (DHI%) after 8 weeks, alongside improved histologic scores. Biomechanical testing revealed that the hydrogel effectively mimicked NP properties, enhancing compressive stiffness and reducing neutral zone stiffness post-denucleation. CONCLUSION: The results suggest that the synthesized VCHA-NP hydrogel can be used as an alternative to NPs, offering a promising path for IVD regeneration.


Asunto(s)
Benzaldehídos , Diferenciación Celular , Hidrogeles , Degeneración del Disco Intervertebral , Ratas Sprague-Dawley , Animales , Hidrogeles/farmacología , Hidrogeles/administración & dosificación , Ratas , Benzaldehídos/farmacología , Benzaldehídos/administración & dosificación , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Madre/efectos de los fármacos , Núcleo Pulposo/efectos de los fármacos , Modelos Animales de Enfermedad , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Disco Intervertebral/efectos de los fármacos , Disco Intervertebral/patología , Masculino , Células Cultivadas , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo
14.
Stem Cell Res Ther ; 15(1): 247, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113140

RESUMEN

BACKGROUND: The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs. METHODS: The cytotoxicity of NOCA on PDLSCs was assessed using a CCK-8 assay. PDLSCs were then treated with hydrogen peroxide (H2O2) to induce OS. ROS levels, cell viability, and antioxidant factor expression were analyzed using relevant kits after treatment. Small molecule inhibitors U0126 and XAV-939 were employed to block ERK signaling and Wnt pathways respectively. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining of mineralized nodules. Expression levels of osteogenic gene markers and ERK pathway were determined via real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis. ß-catenin nuclear localization was examined by western blotting and confocal microscopy. RESULTS: NOCA exhibited no significant cytotoxicity at concentrations below 20 µM and effectively inhibited H2O2-induced OS in PDLSCs. NOCA also restored ALP activity, mineralized nodule formation, and the expression of osteogenic markers in H2O2-stimulated PDLSCs. Mechanistically, NOCA increased p-ERK level and promoted ß-catenin translocation into the nucleus; however, blocking ERK pathway disrupted the osteogenic protection provided by NOCA and impaired its ability to induce ß-catenin nuclear translocation under OS conditions in PDLSCs. CONCLUSIONS: NOCA protected PDLSCs against H2O2-induced OS and effectively restored impaired osteogenic differentiation in PDLSCs by modulating the ERK/Wnt signaling pathway.


Asunto(s)
Diferenciación Celular , Peróxido de Hidrógeno , Osteogénesis , Estrés Oxidativo , Ligamento Periodontal , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Ligamento Periodontal/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , beta Catenina/metabolismo , Supervivencia Celular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo
15.
Mol Cell Endocrinol ; 592: 112328, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38996835

RESUMEN

Osteoporosis is the most common metabolic bone disorder and is associated with a high incidence of fractures. Angiogenesis and adequate blood flow are important during bone repair and maintenance. Estrogens play a key role in bone formation, in the prevention of bone resorption and vasculature maintenance. Hormone replacement therapy (HRT) has been used with great benefits for bone fracture prevention but has been linked to the development of serious important side effects, including cancer and stroke. Phytoestrogens are an attractive alternative to HRT because their chemical structure is similar to estradiol but, they could behave as selective modulators: acting as antagonists of estrogen receptors in the breast and endometrium and as agonists in the vascular endothelium and bone. Hops contain a wide variety of phytoestrogens that have individually been shown to possess estrogenic activity by either blocking or mimicking. In this study we have to evaluate the in vitro effects and mechanisms of action of hops extracts on the osteogenic and adipogenic capacity of bone marrow progenitor cells (BMPCs), and the angiogenic potential of EA.hy926 endothelial cells. We show that hops extracts increase the proliferative capacity of BMPCs and promote their osteogenic differentiation while decreasing their pro-osteoclastogenic capacity; and that these effects are mediated by the MAPK pathway. Additionally, hops extracts prevent the adipogenic differentiation of BMPCs and promote endothelial cell activity, by mechanisms also partially mediated by MAPK.


Asunto(s)
Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Endoteliales , Humulus , Osteogénesis , Extractos Vegetales , Humulus/química , Osteogénesis/efectos de los fármacos , Humanos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Extractos Vegetales/farmacología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Neovascularización Fisiológica/efectos de los fármacos , Fitoestrógenos/farmacología , Adipogénesis/efectos de los fármacos , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Cultivadas , Línea Celular
17.
Stem Cell Res Ther ; 15(1): 227, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075596

RESUMEN

BACKGROUND: Insulin has been known to regulate bone metabolism, yet its specific molecular mechanisms during the proliferation and osteogenic differentiation of dental pulp stem cells (DPSCs) remain poorly understood. This study aimed to explore the effects of insulin on the bone formation capability of human DPSCs and to elucidate the underlying mechanisms. METHODS: Cell proliferation was assessed using a CCK-8 assay. Cell phenotype was analyzed by flow cytometry. Colony-forming unit-fibroblast ability and multilineage differentiation potential were evaluated using Toluidine blue, Oil red O, Alizarin red, and Alcian blue staining. Gene and protein expressions were quantified by real-time quantitative polymerase chain reaction and Western blotting, respectively. Bone metabolism and biochemical markers were analyzed using electrochemical luminescence and chemical colorimetry. Cell adhesion and growth on nano-hydroxyapatite/collagen (nHAC) were observed with a scanning electron microscope. Bone regeneration was assessed using micro-CT, fluorescent labeling, immunohistochemical and hematoxylin and eosin staining. RESULTS: Insulin enhanced the proliferation of human DPSCs as well as promoted mineralized matrix formation in a concentration-dependent manner. 10- 6 M insulin significantly up-regulated osteogenic differentiation-related genes and proteins markedly increased the secretion of bone metabolism and biochemical markers, and obviously stimulated mineralized matrix formation. However, it also significantly inhibited the expression of genes and proteins of receptors and receptor substrates associated with insulin/insulin-like growth factor-1 signaling (IIS) pathway, obviously reduced the expression of the phosphorylated PI3K and the ratios of the phosphorylated PI3K/total PI3K, and notably increased the expression of the total PI3K, phosphorylated AKT, total AKT and mTOR. The inhibitor LY294002 attenuated the responsiveness of 10- 6 M insulin to IIS/PI3K/AKT/mTOR pathway axis, suppressing the promoting effect of insulin on cell proliferation, osteogenic differentiation and bone formation. Implantation of 10- 6 M insulin treated DPSCs into the backs of severe combined immunodeficient mice and the rabbit jawbone defects resulted in enhanced bone formation. CONCLUSIONS: Insulin induces insulin resistance in human DPSCs and effectively promotes their proliferation, osteogenic differentiation and bone formation capability through gradually inducing the down-regulation of IIS/PI3K/AKT/mTOR pathway axis under insulin resistant states.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Pulpa Dental , Insulina , Osteogénesis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Células Madre , Serina-Treonina Quinasas TOR , Pulpa Dental/citología , Pulpa Dental/metabolismo , Humanos , Osteogénesis/efectos de los fármacos , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones , Animales , Durapatita/farmacología , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Colágeno
18.
Carcinogenesis ; 45(9): 621-629, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39046986

RESUMEN

Notch-1 signaling plays a crucial role in stem cell maintenance and in repair mechanisms in various mucosal surfaces, including airway mucosa. Persistent injury can induce an aberrant activation of Notch-1 signaling in stem cells leading to an increased risk of cancer initiation and progression. Chronic inflammatory respiratory disorders, including chronic obstructive pulmonary disease (COPD) is associated with both overactivation of Notch-1 signaling and increased lung cancer risk. Increased oxidative stress, also due to cigarette smoke, can further contribute to promote cancer initiation and progression by amplifying inflammatory responses, by activating the Notch-1 signaling, and by blocking regulatory mechanisms that inhibit the growth capacity of stem cells. This review offers a comprehensive overview of the effects of aberrant Notch-1 signaling activation in stem cells and of increased oxidative stress in lung cancer. The putative role of natural compounds with antioxidant properties is also described.


Asunto(s)
Estrés Oxidativo , Receptor Notch1 , Transducción de Señal , Humanos , Estrés Oxidativo/efectos de los fármacos , Receptor Notch1/metabolismo , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Progresión de la Enfermedad , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Productos Biológicos/farmacología
19.
Biochem Biophys Res Commun ; 733: 150450, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39067248

RESUMEN

BACKGROUND: Mechano-growth factor (MGF), which is a growth factor produced specifically in response to mechanical stimuli, with potential of tissue repair and regeneration. Our previous research has shown that MGF plays a crucial role in repair of damaged periodontal ligaments by promoting differentiation of periodontal ligament stem cells (PDLSCs). However, the molecular mechanism is not fully understood. This study aimed to investigated the regulatory effect of MGF on differentiation of PDLSCs and its molecular mechanism. METHODS: Initially, we investigated how MGF impacts cell growth and differentiation, and the relationship with the activation of Fyn-p-YAPY357 and LATS1-p-YAPS127. Then, inhibitors were used to interfere Fyn phosphorylation to verify the role of Fyn-p-YAP Y357 signal after MGF stimulation; moreover, siRNA was used to downregulate YAP expression to clarify the function of YAP in PDLSCs proliferation and differentiation. Finally, after C3 was used to inhibit the RhoA expression, we explored the role of RhoA in the Fyn-p-YAP Y357 signaling pathway in PDLSCs proliferation and differentiation. RESULTS: Our study revealed that MGF plays a regulatory role in promoting PDLSCs proliferation and fibrogenic differentiation by inducing Fyn-YAPY357 phosphorylation but not LATS1-YAP S127 phosphorylation. Moreover, the results indicated that Fyn could not activate YAP directly but rather activated YAP through RhoA in response to MGF stimulation. CONCLUSION: The research findings indicated that the Fyn-RhoA-p-YAPY357 pathway is significant in facilitating the proliferation and fibrogenic differentiation of PDLSCs by MGF. Providing new ideas for the study of MGF in promoting periodontal regenerative repair.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Proliferación Celular , Ligamento Periodontal , Proteínas Proto-Oncogénicas c-fyn , Transducción de Señal , Células Madre , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-fyn/genética , Humanos , Proliferación Celular/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células Cultivadas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo
20.
Cell Biochem Biophys ; 82(3): 2787-2795, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38987441

RESUMEN

The potential therapeutic benefits of human dental pulp stem cells (HDPSCs) in dental regenerative medicine have been demonstrated. However, little is known about the molecular mechanisms regulating the biological characteristics of HDPSCs. The experiment aims to explore whether VEGF activates signaling pathways such as FAK, PI3K, Akt, and p38 in HDPSCs, and to investigate the molecular mechanisms by which VEGF influences proliferation and migration of HDPSCs. Normal and inflamed human dental pulp (HDP) samples were collected, and the levels of VEGF in HDP were assessed. HDPSCs were cultured and purified. HDPSCs were stimulated with lipopolysaccharide (LPS) at gradient concentrations, and real-time quantitative polymerase chain reaction (qPCR) was used to assess changes in VEGF mRNA. Gradient concentrations of VEGF were used to stimulate HDPSCs, and cell migration ability was evaluated through scratch assays and Transwell chamber experiments. Phosphorylation levels of FAK, AKT, and P38 were assessed using Western blotting. Inhibitors of VEGFR2, FAK, AKT, P38, and VEGF were separately applied to HDPSCs, and cell migration ability and phosphorylation levels of FAK, AKT, and P38 were determined. The results indicated significant differences in VEGF levels between normal and inflamed HDP tissues, with levels in the inflamed state reaching 435% of normal levels (normal: 87.91 ng/mL, inflamed: 382.76 ng/mL, P < 0.05). LPS stimulation of HDPSCs showed a significant increase in VEGF mRNA expression with increasing LPS concentrations (LPS concentrations of 0.01, 0.1, 1, and 10 µg/mL resulted in VEGF mRNA expressions of 181.2%, 274.2%, 345.8%, and 460.9%, respectively, P < 0.05). VEGF treatment significantly enhanced the migration ability of HDPSCs in Transwell chamber experiments, with migration rates increasing with VEGF concentrations (VEGF concentrations of 0, 1, 10, 20, 50, and 100 ng/mL resulted in migration rates of 8.41%, 9.34%, 21.33%, 28.41%, 42.87%, and 63.15%, respectively, P < 0.05). Inhibitors of VEGFR2, FAK, AKT, P38, and combined VEGF stimulation demonstrated significant migration inhibition, with migration rates decreasing to 8.31%, 12.64%, 13.43%, 18.32%, and 74.17%, respectively. The migration rate with combined VEGF stimulation showed a significant difference (P < 0.05). The analysis of phosphorylation levels revealed that VEGF stimulation significantly activated phosphorylation of FAK, AKT, and P38, with phosphorylation levels increasing with VEGF concentrations (P < 0.05). The VEGF/VEGFR2 signaling axis regulated the migration ability of HDPSCs through the FAK/PI3K/AKT and P38MAPK pathways. This finding highlighted not only the crucial role of VEGF in injury repair of HDPSCs but also provided important clues for a comprehensive understanding of the potential applications of this signaling axis in dental regenerative medicine.


Asunto(s)
Movimiento Celular , Proliferación Celular , Pulpa Dental , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Células Madre , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Movimiento Celular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Lipopolisacáridos/farmacología , Células Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Fosforilación/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA