Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704588

RESUMEN

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Células Madre Hematopoyéticas , Organoides , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antígenos CD34/metabolismo
2.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
3.
Stem Cell Res ; 77: 103438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776701

RESUMEN

Here we present the generation of a human embryonic stem cell line with the potential to escape immune rejection upon transplantation to an alternate species, in this case sus scrofa. For in vivo detection the cells were modified by CRISPR-Cas9 to express human secreted alkaline phosphatase. To avoid immune recognition and subsequent rejection by host, genes encoding hB2M and hCIITA were knocked out and the porcine gene for CD47 was introduced. Upon editing and subsequent culture, cells maintained molecular and phenotypic pluripotent charactaristics and a normal karyotype supporting viability and functionality of the engineered cell line.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas , Animales , Humanos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Porcinos , Línea Celular
4.
Exp Eye Res ; 242: 109883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561106

RESUMEN

Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.


Asunto(s)
Diferenciación Celular , Endotelio Corneal , Células Madre Embrionarias Humanas , Niacinamida , Humanos , Diferenciación Celular/efectos de los fármacos , Niacinamida/farmacología , Endotelio Corneal/metabolismo , Endotelio Corneal/citología , Endotelio Corneal/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células Cultivadas , Complejo Vitamínico B/farmacología , Citometría de Flujo , Movimiento Celular/efectos de los fármacos , Antígenos CD/metabolismo , Antígenos CD/genética
5.
Cytotherapy ; 26(6): 606-615, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38483364

RESUMEN

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) hold great promise in the treatment of diabetic retinopathy (DR), as evidenced by increasing preclinical and clinical studies. However, the absence of standardized and industrialized clinical-grade donor cells hampers the continued development and large-scale clinical application of MSCs-based therapies for DR. Previously, we have identified a unique population of MSCs generated from a clinical-grade human embryonic stem cell (hESC) line under Good Manufacturing Practice conditions that could be a potential source to address the issues. Here, we investigated the therapeutic potential of the clinical-grade hESC line-derived MSCs (hESC-MSCs) on db/db mice with DR. METHODS: hESC-MSCs were initially characterized by morphological assessment, flow cytometry analysis and trilineage differentiation assays. These cells (5 × 106 cells) were then transplanted intravenously into 12-week-old db/db mice via tail vein, with phosphate-buffered saline transplantation and untreated groups used as controls. The retinal alterations in neural functions and microvascular perfusions, and inflammatory responses in peripheral blood and retina were evaluated at 4 and 6 weeks after transplantation using electroretinography, optical coherence tomography angiography and flow cytometry, respectively. Body weight and fasting blood glucose (FBG) levels were also measured to investigate their systemic implications. RESULTS: Compared with controls, intravenous transplantation of hESC-MSCs could significantly: (i) enhance impaired retinal electroretinography functions (including amplitudes of a-, b-wave and oscillatory potentials) at 4 weeks after transplantation; (ii) alleviate microvascular dysfunctions, especially in the inner retina with significance (including reducing non-perfusion area and increasing vascular area density) at 4 weeks after transplantation; (iii) decrease FBG levels at 4 weeks after transplantation and induce weight loss up to 6 weeks after transplantation and (iv) increase both peripheral blood and retinal interleukin-10 levels at 4 weeks after transplantation and modulate peripheral blood inflammatory cytokines and chemokines levels, such as monocyte chemotactic protein-1, up to 6 weeks after transplantation. CONCLUSIONS: The findings of our study indicated that intravenous transplantation of hESC-MSCs ameliorated retinal neural and microvascular dysfunctions, regulated body weight and FBG and modulated peripheral blood and retinal inflammation responses in a mouse model of DR. These results suggest that hESC-MSCs could be a potentially effective clinical-grade cell source for the treatment of DR.


Asunto(s)
Retinopatía Diabética , Células Madre Embrionarias Humanas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Humanos , Retinopatía Diabética/terapia , Ratones , Células Madre Embrionarias Humanas/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Retina , Modelos Animales de Enfermedad , Diabetes Mellitus Experimental/terapia
6.
Nucleic Acids Res ; 52(9): 4935-4949, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38421638

RESUMEN

TGF-ß signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-ß family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-ß signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-ß signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.


Asunto(s)
Diferenciación Celular , Histona Acetiltransferasas , Mesodermo , Transducción de Señal , Proteína Smad4 , Humanos , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Línea Celular , Cromatina/metabolismo , Endodermo/citología , Endodermo/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Mesodermo/metabolismo , Mesodermo/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Proteína Smad4/metabolismo , Proteína Smad4/genética , Factor de Crecimiento Transformador beta/metabolismo
7.
Stem Cells Dev ; 33(9-10): 201-213, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38390839

RESUMEN

Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.


Asunto(s)
Células Madre Embrionarias Humanas , Organoides , Retina , Degeneración Retiniana , Animales , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/trasplante , Degeneración Retiniana/terapia , Degeneración Retiniana/patología , Humanos , Organoides/citología , Organoides/trasplante , Ratas , Retina/citología , Retina/patología , Diferenciación Celular , Trasplante de Células Madre/métodos , Supervivencia Celular , Tomografía de Coherencia Óptica
8.
Nature ; 626(8000): 881-890, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297124

RESUMEN

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas , Células-Madre Neurales , Neurogénesis , Neuronas , Adulto , Animales , Humanos , Ratones , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Factores de Tiempo , Transcripción Genética
9.
Ophthalmology ; 131(6): 682-691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38160882

RESUMEN

PURPOSE: To report long-term results from a phase 1/2a clinical trial assessment of a scaffold-based human embryonic stem cell-derived retinal pigmented epithelium (RPE) implant in patients with advanced geographic atrophy (GA). DESIGN: A single-arm, open-label phase 1/2a clinical trial approved by the United States Food and Drug Administration. PARTICIPANTS: Patients were 69-85 years of age at the time of enrollment and were legally blind in the treated eye (best-corrected visual acuity [BCVA], ≤ 20/200) as a result of GA involving the fovea. METHODS: The clinical trial enrolled 16 patients, 15 of whom underwent implantation successfully. The implant was administered to the worse-seeing eye with the use of a custom subretinal insertion device. The companion nonimplanted eye served as the control. The primary endpoint was at 1 year; thereafter, patients were followed up at least yearly. MAIN OUTCOME MEASURES: Safety was the primary endpoint of the study. The occurrence and frequency of adverse events (AEs) were determined by scheduled eye examinations, including measurement of BCVA and intraocular pressure and multimodal imaging. Serum antibody titers were collected to monitor systemic humoral immune responses to the implanted cells. RESULTS: At a median follow-up of 3 years, fundus photography revealed no migration of the implant. No unanticipated, severe, implant-related AEs occurred, and the most common anticipated severe AE (severe retinal hemorrhage) was eliminated in the second cohort (9 patients) through improved intraoperative hemostasis. Nonsevere, transient retinal hemorrhages were noted either during or after surgery in all patients as anticipated for a subretinal surgical procedure. Throughout the median 3-year follow-up, results show that implanted eyes were more likely to improve by > 5 letters of BCVA and were less likely to worsen by > 5 letters compared with nonimplanted eyes. CONCLUSIONS: This report details the long-term follow-up of patients with GA to receive a scaffold-based stem cell-derived bioengineered RPE implant. Results show that the implant, at a median 3-year follow-up, is safe and well tolerated in patients with advanced dry age-related macular degeneration. The safety profile, along with the early indication of efficacy, warrants further clinical evaluation of this novel approach for the treatment of GA. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Atrofia Geográfica , Epitelio Pigmentado de la Retina , Agudeza Visual , Humanos , Atrofia Geográfica/cirugía , Atrofia Geográfica/fisiopatología , Epitelio Pigmentado de la Retina/trasplante , Epitelio Pigmentado de la Retina/patología , Anciano , Agudeza Visual/fisiología , Femenino , Anciano de 80 o más Años , Masculino , Estudios de Seguimiento , Tomografía de Coherencia Óptica , Células Madre Embrionarias Humanas/trasplante , Células Madre Embrionarias Humanas/citología , Trasplante de Células Madre , Resultado del Tratamiento
10.
Sci Rep ; 12(1): 2516, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169157

RESUMEN

Clinical use of human pluripotent stem cells (hPSCs) is hampered by the technical limitations of their expansion. Here, we developed a chemically synthetic culture substrate for human pluripotent stem cell attachment and maintenance. The substrate comprises a hydrophobic polyvinyl butyral-based polymer (PVB) and a short peptide that enables easy and uniform coating of various types of cell culture ware. The coated ware exhibited thermotolerance, underwater stability and could be stored at room temperature. The substrate supported hPSC expansion in combination with most commercial culture media with an efficiency similar to that of commercial substrates. It supported not only the long-term expansion of examined iPS and ES cell lines with normal karyotypes during their undifferentiated state but also directed differentiation of three germ layers. This substrate resolves major concerns associated with currently used recombinant protein substrates and could be applied in large-scale automated manufacturing; it is suitable for affordable and stable production of clinical-grade hPSCs and hPSC-derived products.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Péptidos/farmacología , Polivinilos/farmacología , Andamios del Tejido/química , Adhesión Celular/efectos de los fármacos , Línea Celular , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos/metabolismo , Polivinilos/metabolismo
11.
Cell Rep ; 38(7): 110395, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172133

RESUMEN

Aneuploidy, defective differentiation, and inactivation of the tumor suppressor TP53 all occur frequently during tumorigenesis. Here, we probe the potential links among these cancer traits by inactivating TP53 in human embryonic stem cells (hESCs). TP53-/- hESCs exhibit increased proliferation rates, mitotic errors, and low-grade structural aneuploidy; produce poorly differentiated immature teratomas in mice; and fail to differentiate into neural progenitor cells (NPCs) in vitro. Genome-wide CRISPR screen reveals requirements of ciliogenesis and sonic hedgehog (Shh) pathways for hESC differentiation into NPCs. TP53 deletion causes abnormal ciliogenesis in neural rosettes. In addition to restraining cell proliferation through CDKN1A, TP53 activates the transcription of BBS9, which encodes a ciliogenesis regulator required for proper Shh signaling and NPC formation. This developmentally regulated transcriptional program of TP53 promotes ciliogenesis, restrains Shh signaling, and commits hESCs to neural lineages.


Asunto(s)
Linaje de la Célula , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Organogénesis , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Secuencias de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Genoma Humano , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Teratoma/patología , Proteína p53 Supresora de Tumor/química
12.
Life Sci ; 291: 120273, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016877

RESUMEN

AIM: Eye organoids are 3D models of the retina that provide new possibilities for studying retinal development, drug toxicity and the molecular mechanisms of diseases. Although there are several protocols that can be used to generate functional tissues, none have been used to assemble human retinal organoids containing mesenchymal stem cells (MSCs). MAIN METHODS: In this study we intend to assess the effective interactions of MSCs and human embryonic stem cells (hESCs) during retinal organoid formation. We evaluated the inducing activities of bone marrow MSCs (BM-MSCs), trabecular meshwork (TM), and stem cells from apical papilla (SCAP)-derived MSCs in differentiation of hESCs in a three-dimensional (3D) direct co-culture system. KEY FINDINGS: In comparison with the two other MSC sources, the induction potential of SCAP was confirmed in the co-culture system. Although the different SCAP cell ratios did not show any significant morphology changes during the first seven days, increasing the number of SCAPs improved formation of the optic vesicle (OV) structure, which was confirmed by assessment of specific markers. The OVs subsequently developed to an optic cup (OC), which was similar to the in vivo environment. These arrangements expressed MITF in the outer layer and CHX10 in the inner layer. SIGNIFICANCE: We assessed the inducing activity of SCAP during differentiation of hESCs towards a retinal fate in a 3D organoid system. However, future studies be conducted to gather additional details about the development of the eye field, retinal differentiation, and the molecular mechanisms of diseases.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Encía/citología , Retina/citología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Ojo/citología , Encía/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Retina/crecimiento & desarrollo
13.
Nat Commun ; 13(1): 142, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013231

RESUMEN

The establishment of cell identity during embryonic development involves the activation of specific gene expression programmes and is underpinned by epigenetic factors including DNA methylation and histone post-translational modifications. G-quadruplexes are four-stranded DNA secondary structures (G4s) that have been implicated in transcriptional regulation and cancer. Here, we show that G4s are key genomic structural features linked to cellular differentiation. We find that G4s are highly abundant in human embryonic stem cells and are lost during lineage specification. G4s are prevalent in enhancers and promoters. G4s that are found in common between embryonic and downstream lineages are tightly linked to transcriptional stabilisation of genes involved in essential cellular functions as well as transitions in the histone post-translational modification landscape. Furthermore, the application of small molecules that stabilise G4s causes a delay in stem cell differentiation, keeping cells in a more pluripotent-like state. Collectively, our data highlight G4s as important epigenetic features that are coupled to stem cell pluripotency and differentiation.


Asunto(s)
Linaje de la Célula/genética , Epigénesis Genética , G-Cuádruplex , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes/metabolismo , Procesamiento Proteico-Postraduccional , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , ADN/genética , ADN/metabolismo , Metilación de ADN , Elementos de Facilitación Genéticos , Expresión Génica , Histonas/genética , Células Madre Embrionarias Humanas/citología , Humanos , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo
14.
Stem Cell Reports ; 17(1): 159-172, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34971563

RESUMEN

Transplantation in Parkinson's disease using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons is a promising future treatment option. However, many of the mechanisms that govern their differentiation, maturation, and integration into the host circuitry remain elusive. Here, we engrafted hESCs differentiated toward a ventral midbrain DA phenotype into the midbrain of a preclinical rodent model of Parkinson's disease. We then injected a novel DA-neurotropic retrograde MNM008 adeno-associated virus vector capsid, into specific DA target regions to generate starter cells based on their axonal projections. Using monosynaptic rabies-based tracing, we demonstrated for the first time that grafted hESC-derived DA neurons receive distinctly different afferent inputs depending on their projections. The similarities to the host DA system suggest a previously unknown directed circuit integration. By evaluating the differential host-to-graft connectivity based on projection patterns, this novel approach offers a tool to answer outstanding questions regarding the integration of grafted hESC-derived DA neurons.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/metabolismo , Biomarcadores , Rastreo Celular , Expresión Génica , Genes Reporteros , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Mesencéfalo/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Trasplante de Células Madre
15.
Sci Rep ; 11(1): 22050, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764308

RESUMEN

Gamma-aminobutyric acid (GABA)-releasing interneurons modulate neuronal network activity in the brain by inhibiting other neurons. The alteration or absence of these cells disrupts the balance between excitatory and inhibitory processes, leading to neurological disorders such as epilepsy. In this regard, cell-based therapy may be an alternative therapeutic approach. We generated light-sensitive human embryonic stem cell (hESC)-derived GABAergic interneurons (hdIN) and tested their functionality. After 35 days in vitro (DIV), hdINs showed electrophysiological properties and spontaneous synaptic currents comparable to mature neurons. In co-culture with human cortical neurons and after transplantation (AT) into human brain tissue resected from patients with drug-resistant epilepsy, light-activated channelrhodopsin-2 (ChR2) expressing hdINs induced postsynaptic currents in human neurons, strongly suggesting functional efferent synapse formation. These results provide a proof-of-concept that hESC-derived neurons can integrate and modulate the activity of a human host neuronal network. Therefore, this study supports the possibility of precise temporal control of network excitability by transplantation of light-sensitive interneurons.


Asunto(s)
Neuronas GABAérgicas/citología , Células Madre Embrionarias Humanas/citología , Red Nerviosa/citología , Animales , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Neuronas GABAérgicas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Red Nerviosa/fisiología , Neurogénesis , Potenciales Sinápticos
16.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768848

RESUMEN

Obstructive sleep apnea syndrome (OSAS) patients suffer from cardiovascular morbidity, which is the leading cause of death in this disease. Based on our previous work with transformed cell lines and primary rat cardiomyocytes, we determined that upon incubation with sera from pediatric OSAS patients, the cell's morphology changes, NF-κB pathway is activated, and their beating rate and viability decreases. These results suggest an important link between OSAS, systemic inflammatory signals and end-organ cardiovascular diseases. In this work, we confirmed and expanded these observations on a new in vitro system of beating human cardiomyocytes (CM) differentiated from human embryonic stem cells (hES). Our results show that incubation with pediatric OSAS sera, in contrast to sera from healthy children, induces over-expression of NF-κB p50 and p65 subunits, marked reduction in CMs beating rate, contraction amplitude and a strong reduction in intracellular calcium signal. The use of human CM cells derived from embryonic stem cells has not been previously reported in OSAS research. The results further support the hypothesis that NF-κB dependent inflammatory pathways play an important role in the evolution of cardiovascular morbidity in OSAS. This study uncovers a new model to investigate molecular and functional aspects of cardiovascular pathology in OSAS.


Asunto(s)
Enfermedades Cardiovasculares/patología , Frecuencia Cardíaca/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Apnea Obstructiva del Sueño/sangre , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Niño , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Subunidad p50 de NF-kappa B/metabolismo , Suero , Apnea Obstructiva del Sueño/patología , Factor de Transcripción ReIA/metabolismo
17.
EBioMedicine ; 74: 103713, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34837851

RESUMEN

BACKGROUND: Exercise can protect myocardial infarction (MI) and downregulate cardiac Homeodomain-Interacting Protein Kinase 2 (HIPK2). However, the role of HIPK2 in MI is unclear. METHODS: HIPK2-/- mice and miR-222-/- rats, HIPK2 inhibitor (PKI1H) and adeno-associated virus serotype 9 (AAV9) carrying miR-222 were applied in the study. Animals were subjected to running, swimming, acute MI or post-MI remodeling. HIPK2 inhibition and P53 activator were used in neonatal rat cardiomyocytes (NRCMs) and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to oxygen glucose deprivation/reperfusion (OGD/R). Serum miR-222 levels were analyzed in healthy people and MI patients that were survival or readmitted to the hospital and/or died. FINDINGS: Cardiac HIPK2 protein levels were reduced by exercise while increased in MI. In vitro, HIPK2 suppression by lentiviral vectors or inhibitor prevented apoptosis induced by OGD/R in NRCMs and hESC-CMs. HIPK2 inhibitor-treated mice and HIPK2-/- mice reduced infarct size after acute MI, and preserved cardiac function in MI remodeling. Mechanistically, protective effect against apoptosis by HIPK2 suppression was reversed by P53 activators. Furthermore, increasing levels of miR-222, targeting HIPK2, protected post-MI cardiac dysfunction, whereas cardiac dysfunction post-MI was aggravated in miR-222-/- rats. Moreover, serum miR-222 levels were significantly reduced in MI patients, as well as in MI patients that were readmitted to the hospital and/or died compared to those not. INTERPRETATION: Exercise-induced HIPK2 suppression attenuates cardiomyocytes apoptosis and protects MI by decreasing P-P53. Inhibition of HIPK2 represents a potential novel therapeutic intervention for MI. FUNDING: This work was supported by the grants from National Key Research and Development Project (2018YFE0113500 to JJ Xiao), National Natural Science Foundation of China (82020108002, 81722008, and 81911540486 to JJ Xiao, 81400647 to MJ Xu, 81800265 to YJ Liang), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from Science and Technology Commission of Shanghai Municipality (18410722200 and 17010500100 to JJ Xiao), the "Dawn" Program of Shanghai Education Commission (19SG34 to JJ Xiao), Shanghai Sailing Program (21YF1413200 to QL Zhou). JS is supported by Horizon2020 ERC-2016-COG EVICARE (725229).


Asunto(s)
Proteínas Portadoras/genética , Regulación hacia Abajo , Ejercicio Físico/fisiología , MicroARNs/sangre , MicroARNs/genética , Infarto del Miocardio/genética , Proteínas Serina-Treonina Quinasas/genética , Adulto , Animales , Animales Recién Nacidos , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Células Madre Embrionarias Humanas/química , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Ratones , Persona de Mediana Edad , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/terapia , Miocitos Cardíacos/química , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Carrera/fisiología , Natación/fisiología
18.
Cells ; 10(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34831120

RESUMEN

Medullary thyroid carcinoma contributes to about 3-4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid C cell-like cells through definitive endoderm and anterior foregut endoderm and ultimobranchial body-like intermediates in monolayer and 3D Matrigel culture conditions. The protocol involved sequential treatment with interferon/transferrin/selenium/pyruvate, foetal bovine serum, and activin A, then IGF-1 (Insulin-like growth factor 1), on the basis of embryonic thyroid developmental sequence. As well as expressing C cell lineage relative to follicular-lineage markers by qPCR (quantitative polymerase chain reaction) and immunolabelling, these cells by ELISA (enzyme-linked immunoassay) exhibited functional properties in vitro of calcitonin storage and release of calcitonin on calcium challenge. This method will contribute to developmental studies of the human thyroid gland and facilitate in vitro modelling of medullary thyroid carcinoma and provide a valuable platform for drug screening.


Asunto(s)
Células Madre Pluripotentes/citología , Glándula Tiroides/citología , Andamios del Tejido/química , Biomarcadores/metabolismo , Calcitonina/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Colágeno/farmacología , Combinación de Medicamentos , Endodermo/citología , Tracto Gastrointestinal/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Laminina/farmacología , Sistemas Neurosecretores/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Proteoglicanos/farmacología
19.
Nat Protoc ; 16(12): 5377-5397, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663963

RESUMEN

The epigenome is multidimensional, with individual molecular components operating on different levels to control transcriptional output. Techniques that combine measurements of these features can reveal their precise correspondence in genomic space, or temporal connectivity, to better understand how they jointly regulate genes. ATAC-Me is an integrated method to probe DNA methylation and chromatin accessibility from a single DNA fragment library. Intact nuclei undergo Tn5 transposition to isolate DNA fragments within nucleosome-free regions. Isolated fragments are exposed to sodium bisulfite before library amplification and sequencing. A typical ATAC-Me experiment detects ~60,000-75,000 peak regions (P < 0.05), covering ~3-4 million CpG sites with at least 5× coverage. These sites display a range of methylation values depending on the cellular and genomic context. The approach is well suited for time course studies that aim to capture chromatin and DNA methylation dynamics in tandem during cellular differentiation. The protocol is completed in 2 d with standard molecular biology equipment and expertise. Analysis of resulting data uses publicly available software requiring basic bioinformatics skills to interpret results.


Asunto(s)
Bioensayo , Cromatina/metabolismo , Biología Computacional/métodos , Metilación de ADN , ADN/metabolismo , Epigénesis Genética , Linfocitos B/citología , Linfocitos B/metabolismo , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Cromatina/química , Islas de CpG , ADN/genética , Elementos Transponibles de ADN , Biblioteca de Genes , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Programas Informáticos , Sulfitos/química , Células THP-1 , Transcripción Genética , Transposasas/genética , Transposasas/metabolismo
20.
Cells ; 10(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34685588

RESUMEN

The heart tissue is a potential target of various noxae contributing to the onset of cardiovascular diseases. However, underlying pathophysiological mechanisms are largely unknown. Human stem cell-derived models are promising, but a major concern is cell immaturity when estimating risks for adults. In this study, 3D aggregates of human embryonic stem cell-derived cardiomyocytes were cultivated for 300 days and characterized regarding degree of maturity, structure, and cell composition. Furthermore, effects of ionizing radiation (X-rays, 0.1-2 Gy) on matured aggregates were investigated, representing one of the noxae that are challenging to assess. Video-based functional analyses were correlated to changes in the proteome after irradiation. Cardiomyocytes reached maximum maturity after 100 days in cultivation, judged by α-actinin lengths, and displayed typical multinucleation and branching. At this time, aggregates contained all major cardiac cell types, proven by the patch-clamp technique. Matured and X-ray-irradiated aggregates revealed a subtle increase in beat rates and a more arrhythmic sequence of cellular depolarisation and repolarisation compared to non-irradiated sham controls. The proteome analysis provides first insights into signaling mechanisms contributing to cardiotoxicity. Here, we propose an in vitro model suitable to screen various noxae to target adult cardiotoxicity by preserving all the benefits of a 3D tissue culture.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Noxas/farmacología , Rayos X , Adulto , Cardiotoxicidad/tratamiento farmacológico , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Noxas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA