Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cardiovasc Res ; 120(6): 630-643, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38230606

RESUMEN

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.


Asunto(s)
Diferenciación Celular , Ácidos Grasos , Miocitos Cardíacos , Miofibrillas , Fosforilación Oxidativa , Proteína 2 de Unión a Retinoblastoma , Humanos , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Histonas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Miofibrillas/enzimología , Oxidación-Reducción , Regiones Promotoras Genéticas , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética
2.
Sci Rep ; 12(1): 347, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013447

RESUMEN

Cancer stem cells (CSCs) are capable of continuous proliferation, self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. We have established a model of CSCs that was originally developed from mouse induced pluripotent stem cells (miPSCs) by proposing miPSCs to the conditioned medium (CM) of cancer derived cells, which is a mimic of carcinoma microenvironment. Further research found that not only PI3K-Akt but also EGFR signaling pathway was activated during converting miPSCs into CSCs. In this study, we tried to observe both of PI3Kγ inhibitor Eganelisib and EGFR inhibitor Gefitinib antitumor effects on the models of CSCs derived from miPSCs (miPS-CSC) in vitro and in vivo. As the results, targeting these two pathways exhibited significant inhibition of cell proliferation, self-renewal, migration and invasion abilities in vitro. Both Eganelisib and Gefitinib showed antitumor effects in vivo while Eganelisib displayed more significant therapeutic efficacy and less side effects than Gefitinib on all miPS-CSC models. Thus, these data suggest that the inhibitiors of PI3K and EGFR, especially PI3Kγ, might be a promising therapeutic strategy against CSCs defeating cancer in the near future.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Receptores ErbB/antagonistas & inhibidores , Gefitinib/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Transducción de Señal , Carga Tumoral/efectos de los fármacos
3.
Arch Toxicol ; 95(3): 907-922, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33263786

RESUMEN

Human intestinal organoids (HIOs) are a promising in vitro model consisting of different intestinal cell types with a 3D microarchitecture resembling native tissue. In the current study, we aimed to assess the expression of the most common intestinal CYP enzymes in a human induced pluripotent stem cell (hiPSC)-derived HIO model, and the suitability of that model to study chemical-induced changes in CYP expression and activity. We compared this model with the commonly used human colonic adenocarcinoma cell line Caco-2 and with a human primary intestinal epithelial cell (IEC)-based model, closely resembling in vivo tissue. We optimized an existing protocol to differentiate hiPSCs into HIOs and demonstrated that obtained HIOs contain a polarized epithelium with tight junctions consisting of enterocytes, goblet cells, enteroendocrine cells and Paneth cells. We extensively characterized the gene expression of CYPs and activity of CYP3A4/5, indicating relatively high gene expression levels of the most important intestinal CYP enzymes in HIOs compared to the other models. Furthermore, we showed that CYP1A1 and CYP1B1 were induced by ß-naphtoflavone in all three models, whereas CYP3A4 was induced by phenobarbital and rifampicin in HIOs, in the IEC-based model (although not statistically significant), but not in Caco-2 cells. Interestingly, CYP2B6 expression was not induced in any of the models by the well-known liver CYP2B6 inducer phenobarbital. In conclusion, our study indicates that hiPSC-based HIOs are a useful in vitro intestinal model to study biotransformation of chemicals in the intestine.


Asunto(s)
Inductores de las Enzimas del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/genética , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo , Adulto , Células CACO-2 , Línea Celular , Células Cultivadas , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Mucosa Intestinal/citología , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo
4.
Sci Rep ; 10(1): 14302, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868812

RESUMEN

Recent findings suggest a pathologic role of skeletal muscle in amyotrophic lateral sclerosis (ALS) onset and progression. However, the exact mechanism by which this occurs remains elusive due to limited human-based studies. To this end, phenotypic ALS skeletal muscle models were developed from induced pluripotent stem cells (iPSCs) derived from healthy individuals (WT) and ALS patients harboring mutations in the superoxide dismutase 1 (SOD1) gene. Although proliferative, SOD1 myoblasts demonstrated delayed and reduced fusion efficiency compared to WT. Additionally, SOD1 myotubes exhibited significantly reduced length and cross-section. Also, SOD1 myotubes had loosely arranged myosin heavy chain and reduced acetylcholine receptor expression per immunocytochemical analysis. Functional analysis indicated considerably reduced contractile force and synchrony in SOD1 myotubes. Mitochondrial assessment indicated reduced inner mitochondrial membrane potential (ΔΨm) and metabolic plasticity in the SOD1-iPSC derived myotubes. This work presents the first well-characterized in vitro iPSC-derived muscle model that demonstrates SOD1 toxicity effects on human muscle regeneration, contractility and metabolic function in ALS. Current findings align with previous ALS patient biopsy studies and suggest an active contribution of skeletal muscle in NMJ dysfunction. Further, the results validate this model as a human-relevant platform for ALS research and drug discovery studies.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/patología , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/genética , Linaje de la Célula/genética , Progresión de la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mutación/genética , Mioblastos/enzimología , Mioblastos/patología
5.
J Physiol Sci ; 70(1): 39, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895058

RESUMEN

Signal regulators during early cardiogenetic differentiation for the cellular automaticity are largely unknown. Our investigations were designed to clarify the role of transcription factors and their modulators in P19-derived cardiomyocytes to the expression of cardiac pacemaker ion channels. Transcription factors Csx/Nkx2.5 and GATA4 but not MEF2C were markedly inhibited by p38 MAP kinase inhibition in a distinct manner; expression but not phosphorylation of GATA4 was reduced by inhibition of p38 MAP kinase actions. In the presence of an ERK1/2,5 inhibitor PD98059 or a JNK MAP kinase inhibitor SP600125, P19 cells successfully differentiated into cardiomyocytes displaying spontaneous beatings with expression of three types of pacemaker ion channels. We demonstrate that acquisition of cellular automaticity and the expression of pacemaker ion channels are regulated by the transcription factors, Csx/Nkx2.5 and GATA4, through intracellular signals including p38 MAP kinase in the process of P19-derived pluripotent cells differentiation into cardiomyocytes.


Asunto(s)
Relojes Biológicos , Diferenciación Celular , Frecuencia Cardíaca , Células Madre Pluripotentes Inducidas/enzimología , Canales Iónicos/metabolismo , Miocitos Cardíacos/enzimología , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Potenciales de Acción , Animales , Línea Celular Tumoral , Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Factores de Transcripción MEF2/metabolismo , Ratones , Fenotipo , Fosforilación , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética
6.
FASEB J ; 34(7): 9141-9155, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32421247

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) are invaluable sources for drug screening and toxicity tests because of their differentiation potential and proliferative capacity. Recently, the CRISPR-Cas9-mediated homologous recombination system has enabled reporter knock-ins at desired loci in hiPSCs, and here, we generated a hiPSC reporter line expressing mCherry-tagged cytochrome P450 1A1 (CYP1A1), which can be utilized to screen for the modulators of aryl hydrocarbon receptor (AHR) in live cells. CYP1A1-mCherry hiPSCs exhibited typical characteristics of pluripotent stem cells such as marker expression, differentiation potential, and normal karyotype. After differentiation into hepatocyte-like cells (HLCs), CYP1A1-mCherry fusion protein was expressed and localized at the endoplasmic reticulum, and induced by AHR agonists. We obtained 23 hits modulating CYP1A1 expression from high-content screening with 241 hepatotoxicity chemicals and nuclear receptor ligands, and identified three upregulating chemicals and two downregulating compounds. Responses of hiPSC-HLCs against an AHR agonist were more similar to human primary hepatocytes than of HepG2 hepatocellular carcinoma cells. This platform has the advantages of live-cell screening without sacrificing cells (unlike previously available CYP1A1 reporter cell lines), as well as an indefinite supply of cells, and can be utilized in a wide range of screening related to AHR- and CYP1A1-associated diseases in desired cell types.


Asunto(s)
Citocromo P-450 CYP1A1/química , Fluorescencia , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Preparaciones Farmacéuticas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Diferenciación Celular , Citocromo P-450 CYP1A1/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Transducción de Señal
7.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134364

RESUMEN

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatías Diabéticas/etiología , Glucosa/toxicidad , Hiperglucemia/complicaciones , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/fisiopatología , Activación Enzimática , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicosilación , Humanos , Hiperglucemia/enzimología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/enzimología , NADPH Oxidasa 2/deficiencia , NADPH Oxidasa 2/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología
8.
Am J Physiol Cell Physiol ; 318(1): C94-C102, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31618079

RESUMEN

Matrix metalloproteinases (MMP) are important for cardiac remodeling. Recently, microRNA (miR)-451a has been found to inhibit the expression of both MMP-2 and MMP-9 in human malignancies, but its role in cardiomyocytes has not been explored. We hypothesized that miR-451a modulates MMP-2 and MMP-9 levels in human cardiomyocytes. The role of miR-451a on regulation of MMP-2 and MMP-9 was evaluated in two separate pathological models using Cor.4U human inducible pluripotent stem cell-derived cardiomyocytes (hiPS-CMs): 1) endothelin-1 (ET-1), and 2) 48-h hypoxia (1% O2). Both models were transfected with synthetic miR-451a mimics or scramble control. Expression of both mRNA and miR was determined by quantitative real-time polymerase chain reaction and protein activity by (MMP-2/9) activity assay. Bioinformatic analyses were performed using Targetscan 7.1 and STRING 10.5. hiPS-CMs stimulated by hypoxia increased both MMP-2 and MMP-9 expression levels compared with normoxia (P < 0.05), whereas ET-1 stimulation only increased the MMP-9 level compared with vehicle controls (P < 0.05). miR-451a mimics prevented the increase of MMP-2 and MMP-9 expression in both models. Protein activity of MMP-2 and MMP-9 was confirmed to be lower following treatment with miR-451a mimic compared with scramble-controls. Six of 28 predicted gene transcripts of miR-451a were linked to MMP-2 and MMP-9; Macrophage migration inhibitory factor (MIF) was the only predicted target of miR-451a that was increased by ET-1 and hypoxia and reduced following miR-451a mimic transfection. miR-451a prevent the increase of MMP-2 and MMP-9 in human cardiomyocytes during pathological stress. The modulation by miR-451a on MMP-2 and MMP-9 is caused by MIF.


Asunto(s)
Cardiomegalia/enzimología , Células Madre Pluripotentes Inducidas/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Diferenciación Celular , Hipoxia de la Célula , Línea Celular , Endotelina-1/toxicidad , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , MicroARNs/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Transducción de Señal
9.
Cell Stem Cell ; 25(5): 622-638.e13, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31588046

RESUMEN

Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, "hyper-pluripotent" state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency.


Asunto(s)
Diferenciación Celular/genética , Plasticidad de la Célula/genética , ARN Helicasas DEAD-box/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Línea Celular , Ensamble y Desensamble de Cromatina/genética , ARN Helicasas DEAD-box/genética , Metilación de ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/genética , Ontología de Genes , Homeostasis/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/enzimología , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Homeótica Nanog/metabolismo , Organoides/citología , Organoides/diagnóstico por imagen , Organoides/metabolismo , Biosíntesis de Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/metabolismo , RNA-Seq , Ribonucleoproteínas/genética , Ribosomas/metabolismo
10.
Cell Transplant ; 28(11): 1345-1357, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31313605

RESUMEN

Best dystrophy (BD), also termed best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and can cause central visual loss. Unfortunately, there is no clear definite therapy for BD or improving the visual function on this progressive disease. The human induced pluripotent stem cell (iPSC) system has been recently applied as an effective tool for genetic consultation and chemical drug screening. In this study, we developed patient-specific induced pluripotent stem cells (BD-iPSCs) from BD patient-derived dental pulp stromal cells and then differentiated BD-iPSCs into retinal pigment epithelial cells (BD-RPEs). BD-RPEs were used as an expandable platform for in vitro candidate drug screening. Compared with unaffected sibling-derived iPSC-derived RPE cells (Ctrl-RPEs), BD-RPEs exhibited typical RPE-specific markers with a lower expression of the tight junction protein ZO-1 and Bestrophin-1 (BEST1), as well as reduced phagocytic capabilities. Notably, among all candidate drugs, curcumin was the most effective for upregulating both the BEST1 and ZO-1 genes in BD-RPEs. Using the iPSC-based drug-screening platform, we further found that curcumin can significantly improve the mRNA expression levels of Best gene in BD-iPSC-derived RPEs. Importantly, we demonstrated that curcumin-loaded PLGA nanoparticles (Cur-NPs) were efficiently internalized by BD-RPEs. The Cur-NPs-based controlled release formulation further increased the expression of ZO-1 and Bestrophin-1, and promoted the function of phagocytosis and voltage-dependent calcium channels in BD-iPSC-derived RPEs. We further demonstrated that Cur-NPs enhanced the expression of antioxidant enzymes with a decrease in intracellular ROS production and hydrogen peroxide-induced oxidative stress. Collectively, these data supported that Cur-NPs provide a potential cytoprotective effect by regulating the anti-oxidative abilities of degenerated RPEs. In addition, the application of patient-specific iPSCs provides an effective platform for drug screening and personalized medicine in incurable diseases.


Asunto(s)
Canales de Calcio/metabolismo , Curcumina/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Distrofia Macular Viteliforme/metabolismo , Bestrofinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/ultraestructura , Fagocitosis/efectos de los fármacos , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
11.
Mol Genet Metab ; 127(2): 158-165, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31178256

RESUMEN

Hypophosphatasia (HPP) is an inheritable disease affecting both skeletal systems and extra-skeletal organs due to mutations of the gene ALPL, which encodes tissue-nonspecific alkaline phosphatase. Recently, an enzyme replacement therapy using asfotase alfa was developed to ameliorate the complications of HPP. However, it requires frequent injections and is expensive to maintain. As an alternative, cell and gene therapy using human induced pluripotent stem cells (iPSCs) after precise correction of the mutation is feasible due to advances in genome-editing technology. In the study, we examined the alkaline phosphatase (ALP) activity and calcification in vitro of two childhood HPP patient-derived iPSCs after the correction of the c.1559delT mutation, which is the most frequent mutation in Japanese patients with HPP, using transcription activator-like effector nucleases (TALENs). The gene correction targeting vector was designed for site-directed mutagenesis using TALEN. After selection with antibiotics, some clones with the selection cassette were obtained. Gene correction was confirmed by Sanger sequencing. The mutation was corrected in one allele of ALPL in homozygous patients and compound heterozygous patients. The correction of ALPL did not result in an increase in ALP when the selection cassette remained. Conversely, iPSCs exhibited ALP activity after the elimination of the cassette using Cre/LoxP. The quantitative analysis showed the half ALP activity in corrected iPSCs of that of control iPSCs, corresponding to heterozygous correction of the mutation. In addition, osteoblasts differentiated from the corrected iPSCs exhibited high ALP activity and some calcification in vitro. Moreover, the osteoblast-like phenotype was confirmed by increased expression of osteoblast-specific genes such as COL1A1 and osteocalcin. These results suggest that gene correction in iPSCs may be a candidate treatment for HPP patients.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Mutación , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Fosfatasa Alcalina/genética , Biopsia , Calcificación Fisiológica , Células Cultivadas , Femenino , Edición Génica , Marcación de Gen/métodos , Humanos , Masculino , Mutagénesis Sitio-Dirigida , Osteoblastos/fisiología , Fenotipo , Piel/patología
12.
Clin Sci (Lond) ; 133(13): 1387-1399, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31239293

RESUMEN

Recent evidence has shown that cardiomyocytes (CMs) can proliferate at a low level after myocardial infarction (MI), but it is insufficient to reestablish heart function. Several microRNAs (miRNAs) have been proven to sufficiently induce rodent CM proliferation. However, whether miRNAs identified in rodents can promote human CM proliferation is unknown due to the poorly conserved functions of miRNAs among species. In the present study, we demonstrate that i) expression of microRNA-302d (miR-302d) decreased significantly during CM differentiation from human pluripotent stem cells (hPSCs) from day 4 to day 18; ii) miR-302d efficiently promoted proliferation of hPSC-derived CMs; iii) miR-302d promoted CM proliferation by targeting LATS2 in the Hippo pathway; and iv) RNA-sequencing analysis revealed that overexpression of miR-302d induced changes in gene expression, which mainly converged on the cell cycle. Our study provides further evidence for the therapeutic potential of miR-302d.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Pluripotentes Inducidas/enzimología , MicroARNs/metabolismo , Miocitos Cardíacos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Linaje de la Célula , Regulación de la Expresión Génica , Vía de Señalización Hippo , Humanos , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
13.
Cell Death Dis ; 10(3): 171, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787270

RESUMEN

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, disease treatment, and organ transplantation. As the ethical issue of human ESCs and similarity of pig in human genome and physiological characteristics, the porcine iPSCs (piPSCs) have become an ideal alternative study model. N6-methyladenosine (m6A) methylation is the most prevalent modification in eukaryotic mRNAs, regulating the self-renewal and differentiation of pluripotency stem cells. However, the explicit m6A-regulating machinery remains controversial. Here, we demonstrate that m6A modification and its modulators play a crucial role in mediating piPSCs pluripotency. In brief, loss of METTL3 significantly impairs self-renewal and triggers differentiation of piPSCs by interfering JAK2 and SOCS3 expression, further inactivating JAK2-STAT3 pathway, which then blocks the transcription of KLF4 and SOX2. We identify that both of JAK2 and SOSC3 have m6A modification at 3'UTR by m6A-seq analysis. Dual-luciferase assay shows that METTL3 regulates JAK2 and SOCS3 expression in an m6A-dependent way. RIP-qPCR validates JAK2 and SOCS3 are the targets of YTHDF1 and YTHDF2, respectively. SiMETTL3 induced lower m6A levels of JAK2 and SOCS3 lead to the inhibition of YTHDF1-mediated JAK2 translation and the block of YTHDF2-dependent SOCS3 mRNA decay. Subsequently, the altered protein expressions of JAK2 and SOCS3 inhibit JAK2-STAT3 pathway and then the pluripotency of piPSCs. Collectively, our work uncovers the critical role of m6A modification and its modulators in regulating piPSCs pluripotency and provides insight into an orchestrated network linking the m6A methylation and SOCS3/JAK2/STAT3 pathway in pluripotency regulation.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Janus Quinasa 2/metabolismo , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Regiones no Traducidas 3' , Células 3T3-L1 , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Janus Quinasa 2/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Ratones , Estabilidad del ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Porcinos
14.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769780

RESUMEN

Human induced pluripotent stem cells (iPSCs) hold enormous promise for regenerative medicine. The major safety concern is the tumorigenicity of transplanted cells derived from iPSCs. A potential solution would be to introduce a suicide gene into iPSCs as a safety switch. The herpes simplex virus type 1 thymidine kinase (HSV-TK) gene, in combination with ganciclovir, is the most widely used enzyme/prodrug suicide system from basic research to clinical applications. In the present study, we attempted to establish human iPSCs that stably expressed HSV-TK with either lentiviral vectors or CRISPR/Cas9-mediated genome editing. However, this task was difficult to achieve, because high-level and/or constitutive expression of HSV-TK resulted in the induction of cell death or silencing of HSV-TK expression. A nucleotide metabolism analysis suggested that excessive accumulation of thymidine triphosphate, caused by HSV-TK expression, resulted in an imbalance in the dNTP pools. This unbalanced state led to DNA synthesis inhibition and cell death in a process similar to a "thymidine block", but more severe. We also demonstrated that the Tet-inducible system was a feasible solution for overcoming the cytotoxicity of HSV-TK expression. Our results provided a warning against using the HSV-TK gene in human iPSCs, particularly in clinical applications.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas/enzimología , Simplexvirus/enzimología , Timidina Quinasa/genética , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ganciclovir/farmacología , Edición Génica , Regulación Enzimológica de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Genes Transgénicos Suicidas/genética , Vectores Genéticos/uso terapéutico , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Lentivirus/genética , Nucleótidos/biosíntesis , Nucleótidos/genética , Simplexvirus/genética
15.
Metab Eng ; 53: 35-47, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30779965

RESUMEN

Reprogramming of 'adult' differentiated somatic cells to 'embryonic' pluripotent stem cells accompanied by increased rate of glycolysis. Conversely, glycolysis triggers accumulation of advanced glycation end products (AGEs), a potential causative factor in aging, by promoting methylglyoxal production. Therefore, it is reasonable that pluripotent stem cells (PSCs) would specifically regulate glycolysis to maintain their embryonic features. In this study, we focused on glycine decarboxylase (GLDC), a key enzyme in the glycine cleavage system that regulates glycolysis and methylglyoxal production in cancer. GLDC was exclusively expressed in PSCs, and inhibition of this enzyme induced alterations of metabolome and AGE accumulation, thereby suppressing the embryonic pluripotent state. Surprisingly, the level of accumulated AGEs in somatic cells gradually decreased during reprogramming, ultimately disappearing in iPSCs. In addition, ectopic expression of GLDC or treatment with the AGE inhibitor LR-90 promoted reprogramming. Together, these findings suggest that GLDC-mediated regulation of glycolysis and controlling AGE accumulation is related to maintenance and induction of pluripotency.


Asunto(s)
Reprogramación Celular , Regulación Enzimológica de la Expresión Génica , Productos Finales de Glicación Avanzada/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/biosíntesis , Glucólisis , Células Madre Pluripotentes Inducidas/enzimología , Butiratos/farmacología , Línea Celular , Productos Finales de Glicación Avanzada/genética , Glicina/genética , Glicina/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/genética , Humanos , Células Madre Pluripotentes Inducidas/citología
16.
Circ Res ; 124(5): 696-711, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30620686

RESUMEN

RATIONALE: Secreted and membrane-bound proteins, which account for 1/3 of all proteins, play critical roles in heart health and disease. The endoplasmic reticulum (ER) is the site for synthesis, folding, and quality control of these proteins. Loss of ER homeostasis and function underlies the pathogenesis of many forms of heart disease. OBJECTIVE: To investigate mechanisms responsible for regulating cardiac ER function, and to explore therapeutic potentials of strengthening ER function to treat heart disease. METHODS AND RESULTS: Screening a range of signaling molecules led to the discovery that Pak (p21-activated kinase)2 is a stress-responsive kinase localized in close proximity to the ER membrane in cardiomyocytes. We found that Pak2 cardiac deleted mice (Pak2-CKO) under tunicamycin stress or pressure overload manifested a defective ER response, cardiac dysfunction, and profound cell death. Small chemical chaperone tauroursodeoxycholic acid treatment of Pak2-CKO mice substantiated that Pak2 loss-induced cardiac damage is an ER-dependent pathology. Gene array analysis prompted a detailed mechanistic study, which revealed that Pak2 regulation of protective ER function was via the IRE (inositol-requiring enzyme)-1/XBP (X-box-binding protein)-1-dependent pathway. We further discovered that this regulation was conferred by Pak2 inhibition of PP2A (protein phosphatase 2A) activity. Moreover, IRE-1 activator, Quercetin, and adeno-associated virus serotype-9-delivered XBP-1s were able to relieve ER dysfunction in Pak2-CKO hearts. This provides functional evidence, which supports the mechanism underlying Pak2 regulation of IRE-1/XBP-1s signaling. Therapeutically, inducing Pak2 activation by genetic overexpression or adeno-associated virus serotype-9-based gene delivery was capable of strengthening ER function, improving cardiac performance, and diminishing apoptosis, thus protecting the heart from failure. CONCLUSIONS: Our findings uncover a new cardioprotective mechanism, which promotes a protective ER stress response via the modulation of Pak2. This novel therapeutic strategy may present as a promising option for treating cardiac disease and heart failure.


Asunto(s)
Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Quinasas p21 Activadas/metabolismo , Animales , Apoptosis , Línea Celular , Modelos Animales de Enfermedad , Terapia Genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Células Madre Pluripotentes Inducidas/enzimología , Macaca mulatta , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Miocitos Cardíacos/patología , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal , Proteína 1 de Unión a la X-Box/metabolismo , Quinasas p21 Activadas/deficiencia , Quinasas p21 Activadas/genética
17.
Cardiovasc Res ; 115(2): 343-356, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107391

RESUMEN

Aims: The effectiveness of cell-based treatments for regenerative myocardial therapy is limited by low rates of cell engraftment. Y-27632 inhibits Rho-associated protein kinase (ROCK), which regulates the cytoskeletal changes associated with cell adhesion, and has been used to protect cultured cells during their passaging. Here, we investigated whether preconditioning of cardiomyocytes, derived from human-induced pluripotent stem cells (hiPSC-CM), with Y-27632 improves their survival and engraftment in a murine model of acute myocardial infarction (MI). Methods and results: After MI induction, mice were subjected to intramyocardial injections of phosphate-buffered saline, hiPSC-CM cultured under standard conditions (hiPSC-CM-RI), or Y-27632-preconditioned hiPSC-CM (hiPSC-CM+RI). The resulting engraftment rate calculated 4 weeks after implantation was significantly higher and the abundance of apoptotic transplanted cells was significantly lower in hiPSC-CM+RI recipients than in hiPSC-CM-RI animals. In cultured hiPSC-CM, Y-27632-preconditioning reversibly reduced contractile activity and the expression of troponin genes, while increasing their attachment to an underlying mouse cardiomyocyte (HL1) monolayer. Y-27632 preconditioning also increased the expression of N-cadherin and integrin ß1, the two cell junction proteins. hiPSC-CM+RI were also larger in cell area with greater cytoskeletal alignment and a more rod-like shape than hiPSC-CM-RI, both after transplantation (in vivo) and in culture. The effects of Y-27632 preconditioning on contractile activity and morphology of hiPSC-CMs in culture, as well as on their engraftment rate and apoptotic death in MI mouse grafts, could be recapitulated by hiPSC-CM treatment with the L-type calcium-channel blocker verapamil. Conclusion: Preconditioning with the ROCK inhibitor Y-27632 increased the engraftment of transplanted hiPSC-CM in a murine MI model, while reversibly impairing hiPSC-CM contractility and promoting adhesion.


Asunto(s)
Amidas/farmacología , Diferenciación Celular , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/trasplante , Infarto del Miocardio/cirugía , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/trasplante , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Supervivencia de Injerto/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Ratones Endogámicos NOD , Ratones SCID , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/enzimología , Fenotipo , Recuperación de la Función , Factores de Tiempo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
18.
Autophagy ; 15(4): 631-651, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30335591

RESUMEN

Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3- and TFEB-dependent manner. TFEB silencing counteracted the trehalose pro-degradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration. Abbreviations: ALS: amyotrophic lateral sclerosis; AR: androgen receptor; ATG: autophagy related; AV: autophagic vacuole; BAG3: BCL2-associated athanogene 3; BECN1: beclin 1, autophagy related; CASA: chaperone-assisted selective autophagy; CTSB: cathepsin b; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; EGFP: enhanced green fluorescent protein; fALS, familial amyotrophic lateral sclerosis; FRA: filter retardation assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLA: galactosidase, alpha; HD: Huntington disease; hIPSCs: human induced pluripotent stem cells; HSPA8: heat shock protein A8; HSPB8: heat shock protein B8; IF: immunofluorescence analysis; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LGALS3: lectin, galactose binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; Lys: lysosomes; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NDs: neurodegenerative diseases; NSC34: neuroblastoma x spinal cord 34; PBS: phosphate-buffered saline; PD: Parkinson disease; polyQ: polyglutamine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; RT-qPCR: real-time quantitative polymerase chain reaction; SBMA: spinal and bulbar muscular atrophy; SCAs: spinocerebellar ataxias; siRNA: small interfering RNA; SLC2A8: solute carrier family 2, (facilitated glucose transporter), member 8; smNPCs: small molecules neural progenitors cells; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STUB1: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPP1: tripeptidyl peptidase I; TREH: trehalase (brush-border membrane glycoprotein); WB: western blotting; ZKSCAN3: zinc finger with KRAB and SCAN domains 3.


Asunto(s)
Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Calcineurina/metabolismo , Lisosomas/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Trehalosa/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/enzimología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Atrofia Bulboespinal Ligada al X/tratamiento farmacológico , Atrofia Bulboespinal Ligada al X/metabolismo , Calcineurina/genética , Calcio/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Regulación hacia Abajo/genética , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Lisosomas/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas Motoras/enzimología , Neuronas Motoras/ultraestructura , Neuroprotección/efectos de los fármacos , Neuroprotección/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Trehalosa/análogos & derivados , Tripeptidil Peptidasa 1 , Respuesta de Proteína Desplegada/genética
19.
Stem Cells ; 37(3): 306-317, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30471152

RESUMEN

Directed differentiation of human induced pluripotent stem cells (iPSCs) toward hepatobiliary lineages has been increasingly used as models of human liver development/diseases. As protein kinases are important components of signaling pathways regulating cell fate changes, we sought to define the key molecular mediators regulating human liver development using inhibitors targeting tyrosine kinases during hepatic differentiation of human iPSCs. A library of tyrosine kinase inhibitors was used for initial screening during the multistage differentiation of human iPSCs to hepatic lineage. Among the 80 kinase inhibitors tested, only Src inhibitors suppressed endoderm formation while none had significant effect on later stages of hepatic differentiation. Transient inhibition of c-Src during endodermal induction of human iPSCs reduced endodermal commitment and expression of endodermal markers, including SOX17 and FOXA2, in a dose-dependent manner. Interestingly, the transiently treated cells later developed into profibrogenic cholangiocyte-like cells expressing both cholangiocyte markers, such as CK7 and CK19, and fibrosis markers, including Collagen1 and smooth muscle actin. Further analysis of these cells revealed colocalized expression of collagen and yes-associated protein (YAP; a marker associated with bile duct proliferation/fibrosis) and an increased production of interleukin-6 and tumor necrosis factor-α. Moreover, treatment with verteporfin, a YAP inhibitor, significantly reduced expression of fibrosis markers. In summary, these results suggest that c-Src has a critical role in cell fate determination during endodermal commitment of human iPSCs, and its alteration in early liver development in human may lead to increased production of abnormal YAP expressing profibrogenic proinflammatory cholangiocytes, similar to those seen in livers of patients with biliary fibrosis. Stem Cells 2019;37:306-317.


Asunto(s)
Proteína Tirosina Quinasa CSK/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Endodermo/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Conductos Biliares/enzimología , Conductos Biliares/patología , Proteína Tirosina Quinasa CSK/metabolismo , Endodermo/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Hígado/enzimología , Hígado/patología
20.
Circ Res ; 123(9): 1066-1079, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30355156

RESUMEN

RATIONALE: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a readily available, robustly reproducible, and physiologically appropriate human cell source for cardiac disease modeling, drug discovery, and toxicity screenings in vitro. However, unlike adult myocardial cells in vivo, hPSC-CMs cultured in vitro maintain an immature metabolic phenotype, where majority of ATP is produced through aerobic glycolysis instead of oxidative phosphorylation in the mitochondria. Little is known about the underlying signaling pathways controlling hPSC-CMs' metabolic and functional maturation. OBJECTIVE: To define the molecular pathways controlling cardiomyocytes' metabolic pathway selections and improve cardiomyocyte metabolic and functional maturation. METHODS AND RESULTS: We cultured hPSC-CMs in different media compositions including glucose-containing media, glucose-containing media supplemented with fatty acids, and glucose-free media with fatty acids as the primary carbon source. We found that cardiomyocytes cultured in the presence of glucose used primarily aerobic glycolysis and aberrantly upregulated HIF1α (hypoxia-inducible factor 1α) and its downstream target lactate dehydrogenase A. Conversely, glucose deprivation promoted oxidative phosphorylation and repressed HIF1α. Small molecule inhibition of HIF1α or lactate dehydrogenase A resulted in a switch from aerobic glycolysis to oxidative phosphorylation. Likewise, siRNA inhibition of HIF1α stimulated oxidative phosphorylation while inhibiting aerobic glycolysis. This metabolic shift was accompanied by an increase in mitochondrial content and cellular ATP levels. Furthermore, functional gene expressions, sarcomere length, and contractility were improved by HIF1α/lactate dehydrogenase A inhibition. CONCLUSIONS: We show that under standard culture conditions, the HIF1α-lactate dehydrogenase A axis is aberrantly upregulated in hPSC-CMs, preventing their metabolic maturation. Chemical or siRNA inhibition of this pathway results in an appropriate metabolic shift from aerobic glycolysis to oxidative phosphorylation. This in turn improves metabolic and functional maturation of hPSC-CMs. These findings provide key insight into molecular control of hPSC-CMs' metabolism and may be used to generate more physiologically mature cardiomyocytes for drug screening, disease modeling, and therapeutic purposes.


Asunto(s)
Aminoquinolinas/farmacología , Diferenciación Celular/efectos de los fármacos , Disulfuros/farmacología , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Alcaloides Indólicos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sulfonamidas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Glucólisis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/enzimología , Fosforilación Oxidativa/efectos de los fármacos , Fenotipo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA