Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.146
Filtrar
1.
Nature ; 628(8006): 162-170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538791

RESUMEN

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Asunto(s)
Inmunidad Adaptativa , Envejecimiento , Linaje de la Célula , Células Madre Hematopoyéticas , Linfocitos , Células Mieloides , Rejuvenecimiento , Animales , Femenino , Masculino , Ratones , Inmunidad Adaptativa/inmunología , Envejecimiento/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Inflamación/inmunología , Inflamación/patología , Linfocitos/citología , Linfocitos/inmunología , Linfopoyesis , Células Mieloides/citología , Células Mieloides/inmunología , Mielopoyesis , Fenotipo , Linfocitos T/citología , Linfocitos T/inmunología , Virus/inmunología
2.
Mol Cell ; 83(14): 2417-2433.e7, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37348497

RESUMEN

Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.


Asunto(s)
Envejecimiento , Aldehídos , Daño del ADN , Hematopoyesis , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Aldehídos/metabolismo , Transcriptoma , Análisis de Expresión Génica de una Sola Célula , Células Madre Hematopoyéticas/citología , Células Mieloides/citología , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología
3.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35043940

RESUMEN

Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Hemangioblastos/citología , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/citología , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Células Mieloides/metabolismo , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptores Toll-Like/metabolismo
4.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34919128

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.


Asunto(s)
Aorta/citología , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Aorta/embriología , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/embriología , Células Madre Hematopoyéticas/citología , Mutación con Pérdida de Función , Células Mieloides/citología , Células Mieloides/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Pez Cebra , Proteínas de Pez Cebra/genética
5.
STAR Protoc ; 2(4): 100957, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825218

RESUMEN

Current single-cell RNA sequencing (scRNA-seq) protocols are limited by the number of cells that can be simultaneously sequenced, restricting the ability to resolve heterogeneity of rare cell types. We describe here a protocol for rapid isolation of myeloid cells from tumor-harboring mouse cerebellum without cell sorting to minimize cell damage for scRNA-seq. This protocol includes the procedures for further enrichment of myeloid cells using CD11b+ magnetic beads, followed by the generation of scRNA library and sequencing analysis. For complete details on the use and execution of this protocol, please refer to Dang et al. (2021).


Asunto(s)
Neoplasias Encefálicas/patología , Separación Celular/métodos , Células Mieloides/citología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Encéfalo/citología , Masculino , Ratones , Ratones Transgénicos
6.
Cells ; 10(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34831209

RESUMEN

Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.


Asunto(s)
Diferenciación Celular , Metilación de ADN/genética , NAD/farmacología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Desmetilación del ADN/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Neoplasias/genética , Neoplasias/patología , Fosforilación Oxidativa/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos
7.
Cell Rep ; 37(6): 109967, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758323

RESUMEN

Stem and progenitor cells have the capacity to balance self-renewal and differentiation. Hematopoietic myeloid progenitors replenish more than 25 billion terminally differentiated neutrophils every day under homeostatic conditions and can increase this output in response to stress or infection. At what point along the spectrum of maturation do progenitors lose capacity for self-renewal and become irreversibly committed to differentiation? Using a system of conditional myeloid development that can be toggled between self-renewal and differentiation, we interrogate determinants of this "point of no return" in differentiation commitment. Irreversible commitment is due primarily to loss of open regulatory site access and disruption of a positive feedback transcription factor activation loop. Restoration of the transcription factor feedback loop extends the window of cell plasticity and alters the point of no return. These findings demonstrate how the chromatin state enforces and perpetuates cell fate and identify potential avenues for manipulating cell identity.


Asunto(s)
Médula Ósea/fisiología , Linaje de la Célula , Cromatina/genética , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Mieloides/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica , Ratones , Factores de Transcripción/genética
8.
Nature ; 598(7880): 327-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588693

RESUMEN

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea , Síndrome de Down/sangre , Síndrome de Down/inmunología , Feto/citología , Hematopoyesis , Sistema Inmunológico/citología , Linfocitos B/citología , Células Dendríticas/citología , Síndrome de Down/metabolismo , Síndrome de Down/patología , Células Endoteliales/patología , Eosinófilos/citología , Células Eritroides/citología , Granulocitos/citología , Humanos , Inmunidad , Células Mieloides/citología , Células del Estroma/citología
9.
Cell Rep ; 36(6): 109524, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380039

RESUMEN

The immune system of skin develops in stages in mice. However, the developmental dynamics of immune cells in human skin remains elusive. Here, we perform transcriptome profiling of CD45+ hematopoietic cells in human fetal skin at an estimated gestational age of 10-17 weeks by single-cell RNA sequencing. A total of 13 immune cell types are identified. Skin macrophages show dynamic heterogeneity over the course of skin development. A major shift in lymphoid cell developmental states occurs from the first to the second trimester that implies an in situ differentiation process. Gene expression analysis reveals a typical developmental program in immune cells in accordance with their functional maturation, possibly involving metabolic reprogramming. Finally, we identify transcription factors (TFs) that potentially regulate cellular transitions by comparing TFs and TF target gene networks. These findings provide detailed insight into how the immune system of the human skin is established during development.


Asunto(s)
Feto/citología , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Piel/embriología , Piel/inmunología , Diferenciación Celular , Linaje de la Célula/genética , Femenino , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Embarazo , Segundo Trimestre del Embarazo/genética , Piel/citología , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma
10.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359839

RESUMEN

Neuroinflammation has been put forward as a mechanism triggering axonal regrowth in the mammalian central nervous system (CNS), yet little is known about the underlying cellular and molecular players connecting these two processes. In this study, we provide evidence that MMP2 is an essential factor linking inflammation to axonal regeneration by using an in vivo mouse model of inflammation-induced axonal regeneration in the optic nerve. We show that infiltrating myeloid cells abundantly express MMP2 and that MMP2 deficiency results in reduced long-distance axonal regeneration. However, this phenotype can be rescued by restoring MMP2 expression in myeloid cells via a heterologous bone marrow transplantation. Furthermore, while MMP2 deficiency does not affect the number of infiltrating myeloid cells, it does determine the coordinated expression of pro- and anti-inflammatory molecules. Altogether, in addition to its role in axonal regeneration via resolution of the glial scar, here, we reveal a new mechanism via which MMP2 facilitates axonal regeneration, namely orchestrating the expression of pro- and anti-inflammatory molecules by infiltrating innate immune cells.


Asunto(s)
Axones/inmunología , Trasplante de Médula Ósea , Metaloproteinasa 2 de la Matriz/genética , Regeneración Nerviosa/inmunología , Traumatismos del Nervio Óptico/inmunología , Nervio Óptico/inmunología , Animales , Antígenos Ly/genética , Antígenos Ly/inmunología , Axones/ultraestructura , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/inmunología , Movimiento Celular , Proteína GAP-43/genética , Proteína GAP-43/inmunología , Regulación de la Expresión Génica , Inmunidad Innata , Inflamación , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Metaloproteinasa 2 de la Matriz/deficiencia , Metaloproteinasa 2 de la Matriz/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Células Mieloides/inmunología , Regeneración Nerviosa/genética , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/patología , Retina/inmunología , Retina/lesiones , Retina/metabolismo , Trasplante Heterólogo , Irradiación Corporal Total
11.
Cells ; 10(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34440787

RESUMEN

Adoptive cell therapy (ACT) using tumor-reactive T cells is a promising form of immunotherapy to specifically target cancer. However, the survival and functional maintenance of adoptively transferred T cells remains a challenge, ultimately limiting their efficacy. Here, we evaluated the use of recombinant IL7-Fc in ACT. In a lymphopenic murine melanoma model, IL7-Fc treatment led to the enhanced inhibition of tumor growth with an increased number of adoptively transferred CD8+ T cells in tumor tissue and tumor-draining lymph nodes. Additionally, IL7-Fc further enhanced anti-tumor responses that were induced by recombinant human IL2 in the same mouse model. In contrast, in an immunocompetent murine melanoma model, IL7-Fc dampened the anti-tumor immunity. Further, IL7-Fc decreased the proliferation of adoptively transferred and immune-activated tumor-reactive CD8+ T cells in immunocompetent mice by inducing the massive expansion of endogenous T cells, thereby limiting the space for adoptively transferred T cells. Our data suggest that IL7-Fc is principally beneficial for enhancing the efficacy of tumor-reactive T-cells in lymphopenic conditions for the ACT.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoterapia Adoptiva/métodos , Interleucina-7/inmunología , Linfopenia/inmunología , Melanoma Experimental/terapia , Proteínas Recombinantes de Fusión/administración & dosificación , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Recuento de Leucocitos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Linfopenia/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo
12.
Ann Rheum Dis ; 80(12): 1559-1567, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34226188

RESUMEN

OBJECTIVES: A number of immune populations have been implicated in psoriatic arthritis (PsA) pathogenesis. This study used mass cytometry (CyTOF) combined with transcriptomic analysis to generate a high-dimensional dataset of matched PsA synovial fluid (SF) and blood leucocytes, with the aim of identifying cytokine production ex vivo in unstimulated lymphoid and myeloid cells. METHODS: Fresh SF and paired blood were either fixed or incubated with protein transport inhibitors for 6 hours. Samples were stained with two CyTOF panels: a phenotyping panel and an intracellular panel, including antibodies to both T cell and myeloid cell secreted proteins. Transcriptomic analysis by gene array of key expanded cell populations, single-cell RNA-seq, ELISA and LEGENDplex analysis of PsA SF were also performed. RESULTS: We observed marked changes in the myeloid compartment of PsA SF relative to blood, with expansion of intermediate monocytes, macrophages and dendritic cell populations. Classical monocytes, intermediate monocytes and macrophages spontaneously produced significant levels of the proinflammatory mediators osteopontin and CCL2 in the absence of any in vitro stimulation. By contrast minimal spontaneous cytokine production by T cells was detected. Gene expression analysis showed the genes for osteopontin and CCL2 to be among those most highly upregulated by PsA monocytes/macrophages in SF; and both proteins were elevated in PsA SF. CONCLUSIONS: Using multiomic analyses, we have generated a comprehensive cellular map of PsA SF and blood to reveal key expanded myeloid proinflammatory modules in PsA of potential pathogenic and therapeutic importance.


Asunto(s)
Artritis Psoriásica/inmunología , Células Dendríticas/citología , Macrófagos/citología , Monocitos/citología , Líquido Sinovial/citología , Linfocitos T/citología , Adulto , Artritis Psoriásica/genética , Artritis Psoriásica/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/metabolismo , Células Mieloides/citología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Osteopontina/genética , Osteopontina/inmunología , Osteopontina/metabolismo , RNA-Seq , Análisis de la Célula Individual , Líquido Sinovial/inmunología , Líquido Sinovial/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
Cell Mol Life Sci ; 78(17-18): 6087-6104, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34296319

RESUMEN

Different types of multinucleated giant cells (MGCs) of myeloid origin have been described; osteoclasts are the most extensively studied because of their importance in bone homeostasis. MGCs are formed by cell-to-cell fusion, and most types have been observed in pathological conditions, especially in infectious and non-infectious chronic inflammatory contexts. The precise role of the different MGCs and the mechanisms that govern their formation remain poorly understood, likely due to their heterogeneity. First, we will introduce the main populations of MGCs derived from the monocyte/macrophage lineage. We will then discuss the known molecular actors mediating the early stages of fusion, focusing on cell-surface receptors involved in the cell-to-cell adhesion steps that ultimately lead to multinucleation. Given that cell-to-cell fusion is a complex and well-coordinated process, we will also describe what is currently known about the evolution of F-actin-based structures involved in macrophage fusion, i.e., podosomes, zipper-like structures, and tunneling nanotubes (TNT). Finally, the localization and potential role of the key fusion mediators related to the formation of these F-actin structures will be discussed. This review intends to present the current status of knowledge of the molecular and cellular mechanisms supporting multinucleation of myeloid cells, highlighting the gaps still existing, and contributing to the proposition of potential disease-specific MGC markers and/or therapeutic targets.


Asunto(s)
Adhesión Celular , Células Gigantes/metabolismo , Células Mieloides/metabolismo , Podosomas/metabolismo , Células Gigantes/citología , Humanos , Integrinas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Células Mieloides/citología , Células Mieloides/ultraestructura , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis , Receptores Inmunológicos/metabolismo
14.
Blood ; 138(18): 1691-1704, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34324630

RESUMEN

Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of ß-globinopathies (sickle cell disease and ß-thalassemia), because it is a component of γ-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 bacterial artificial chromosome transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of granulocyte-monocyte progenitor-like cells, converting hematopoietic differentiation potential from an erythroid fate to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells, coincident with the induction of myeloid transcription factors (eg, PU.1 and CEBPα). Finally, blocking the activity of the transcription factor PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors and that inhibition of the myeloid-differentiation pathway reverses the lineage switch induced by LSD1 inactivation.


Asunto(s)
Células Eritroides/citología , Eritropoyesis , Histona Demetilasas/metabolismo , Células Mieloides/citología , Animales , Línea Celular , Células Cultivadas , Células Eritroides/metabolismo , Eliminación de Gen , Histona Demetilasas/genética , Humanos , Ratones , Células Mieloides/metabolismo
15.
Immunity ; 54(7): 1433-1446.e5, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34062116

RESUMEN

The extra-embryonic yolk sac contains the first definitive multipotent hematopoietic cells, denominated erythromyeloid progenitors. They originate in situ prior to the emergence of hematopoietic stem cells and give rise to erythroid, monocytes, granulocytes, mast cells and macrophages, the latter in a Myb transcription factor-independent manner. We uncovered here the heterogeneity of yolk sac erythromyeloid progenitors, at the single cell level, and discriminated multipotent from committed progenitors, prior to fetal liver colonization. We identified two temporally distinct megakaryocyte differentiation pathways. The first occurs in the yolk sac, bypasses intermediate bipotent megakaryocyte-erythroid progenitors and, similar to the differentiation of macrophages, is Myb-independent. By contrast, the second originates later, from Myb-dependent bipotent progenitors expressing Csf2rb and colonize the fetal liver, where they give rise to megakaryocytes and to large numbers of erythrocytes. Understanding megakaryocyte development is crucial as they play key functions during vascular development, in particular in separating blood and lymphatic networks.


Asunto(s)
Diferenciación Celular/fisiología , Eritrocitos/citología , Megacariocitos/citología , Células Mieloides/citología , Células Madre/citología , Saco Vitelino/citología , Animales , Linaje de la Célula/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Femenino , Granulocitos/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Células Madre Multipotentes/citología , Embarazo
16.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34129837

RESUMEN

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Asunto(s)
Inmunidad Mucosa , Mucosa Bucal/citología , Mucosa Bucal/inmunología , Neutrófilos/citología , Adulto , Células Epiteliales/citología , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Encía/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Microbiota , Células Mieloides/citología , Periodontitis/genética , Periodontitis/inmunología , Periodontitis/patología , Análisis de la Célula Individual , Células del Estroma/citología , Linfocitos T/citología
17.
Genes (Basel) ; 12(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922442

RESUMEN

Hematopoietic differentiation is a well-orchestrated process by many regulators such as transcription factor and long non-coding RNAs (lncRNAs). However, due to the large number of lncRNAs and the difficulty in determining their roles, the study of lncRNAs is a considerable challenge in hematopoietic differentiation. Here, through gene co-expression network analysis over RNA-seq data generated from representative types of mouse myeloid cells, we obtained a catalog of potential key lncRNAs in the context of mouse myeloid differentiation. Then, employing a widely used in vitro cell model, we screened a novel lncRNA, named Gdal1 (Granulocytic differentiation associated lncRNA 1), from this list and demonstrated that Gdal1 was required for granulocytic differentiation. Furthermore, knockdown of Cebpe, a principal transcription factor of granulocytic differentiation regulation, led to down-regulation of Gdal1, but not vice versa. In addition, expression of genes involved in myeloid differentiation and its regulation, such as Cebpa, were influenced in Gdal1 knockdown cells with differentiation blockage. We thus systematically identified myeloid differentiation associated lncRNAs and substantiated the identification by investigation of one of these lncRNAs on cellular phenotype and gene regulation levels. This study promotes our understanding of the regulation of myeloid differentiation and the characterization of roles of lncRNAs in hematopoietic system.


Asunto(s)
Hematopoyesis , Células Mieloides/metabolismo , ARN Largo no Codificante/genética , Transcriptoma , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular , Ratones , Células Mieloides/citología , ARN Largo no Codificante/metabolismo
18.
Cells ; 10(5)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919157

RESUMEN

Our understanding of the relationship between the immune system and cancers has undergone significant discovery recently. Immunotherapy with T cell therapies and checkpoint blockade has meaningfully changed the oncology landscape. While remarkable clinical advances in adaptive immunity are occurring, modulation of innate immunity has proven more difficult. The myeloid compartment, including macrophages, neutrophils, and dendritic cells, has a significant impact on the persistence or elimination of tumors. Myeloid cells, specifically in the tumor microenvironment, have direct contact with tumor tissue and coordinate with tumor-reactive T cells to either stimulate or antagonize cancer immunity. However, the myeloid compartment comprises a broad array of cells in various stages of development. In addition, hematopoietic stem and progenitor cells at various stages of myelopoiesis in distant sites undergo significant modulation by tumors. Understanding how tumors exert their influence on myeloid progenitors is critical to making clinically meaningful improvements in these pathways. Therefore, this review will cover recent developments in our understanding of how solid tumors modulate myelopoiesis to promote the formation of pro-tumor immature myeloid cells. Then, it will cover some of the potential avenues for capitalizing on these mechanisms to generate antitumor immunity.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Inmunoterapia/métodos , Células Mieloides/inmunología , Mielopoyesis/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Animales , Células Madre Hematopoyéticas/citología , Humanos , Factores Inmunológicos , Células Mieloides/citología
19.
Cell ; 184(8): 2033-2052.e21, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765443

RESUMEN

Metastasis is the leading cause of cancer-related deaths, and greater knowledge of the metastatic microenvironment is necessary to effectively target this process. Microenvironmental changes occur at distant sites prior to clinically detectable metastatic disease; however, the key niche regulatory signals during metastatic progression remain poorly characterized. Here, we identify a core immune suppression gene signature in pre-metastatic niche formation that is expressed predominantly by myeloid cells. We target this immune suppression program by utilizing genetically engineered myeloid cells (GEMys) to deliver IL-12 to modulate the metastatic microenvironment. Our data demonstrate that IL12-GEMy treatment reverses immune suppression in the pre-metastatic niche by activating antigen presentation and T cell activation, resulting in reduced metastatic and primary tumor burden and improved survival of tumor-bearing mice. We demonstrate that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer.


Asunto(s)
Terapia de Inmunosupresión , Células Mieloides/metabolismo , Inmunidad Adaptativa , Animales , Línea Celular Tumoral , Ingeniería Genética , Humanos , Interleucina-12/genética , Interleucina-12/metabolismo , Pulmón/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/citología , Células Mieloides/inmunología , Metástasis de la Neoplasia , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Tasa de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral
20.
Cell Rep ; 34(12): 108891, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761354

RESUMEN

Myeloid lineage cells use TLRs to recognize and respond to diverse microbial ligands. Although unique transcription factors dictate the outcome of specific TLR signaling, whether lineage-specific differences exist to further modulate the quality of TLR-induced inflammation remains unclear. Comprehensive analysis of global gene transcription in human monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells stimulated with various TLR ligands identifies multiple lineage-specific, TLR-responsive gene programs. Monocytes are hyperresponsive to TLR7/8 stimulation that correlates with the higher expression of the receptors. While macrophages and monocytes express similar levels of TLR4, macrophages, but not monocytes, upregulate interferon-stimulated genes (ISGs) in response to TLR4 stimulation. We find that TLR4 signaling in macrophages uniquely engages transcription factor IRF1, which facilitates the opening of ISG loci for transcription. This study provides a critical mechanistic basis for lineage-specific TLR responses and uncovers IRF1 as a master regulator for the ISG transcriptional program in human macrophages.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Factor 1 Regulador del Interferón/metabolismo , Interferones/farmacología , Macrófagos/metabolismo , Monocitos/metabolismo , Secuencia de Bases , Linaje de la Célula/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunidad , Factor 1 Regulador del Interferón/deficiencia , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Células Mieloides/citología , Motivos de Nucleótidos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal , Células THP-1 , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA