Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nutrients ; 12(8)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824513

RESUMEN

Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.


Asunto(s)
Antioxidantes , Región CA1 Hipocampal/citología , Suplementos Dietéticos , Flavonoides/administración & dosificación , Flavonoides/farmacología , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Animales , Catalasa/metabolismo , Modelos Animales de Enfermedad , Gerbillinae , Peroxidación de Lípido/efectos de los fármacos , Masculino , Células Piramidales/enzimología , Superóxido Dismutasa/metabolismo
2.
Neuropharmacology ; 117: 338-351, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28232062

RESUMEN

Sodium-potassium ATPase (NaKA) is a plasma membrane enzyme responsible for influencing membrane physiology by direct electrogenic activity. It determines cellular excitability and synaptic neurotransmission, thus affecting learning and memory processes. A principle catalytic α subunit of NaKA has development-specific expression pattern. There are two α isoforms, α1 and α3, in adult brain neurons. Although NaKA is a housekeeping enzyme, the physiological differences between these two α isoforms in different brain regions have not been well explored. Endogenous cardiotonic steroids, including Marinobufagenin and Ouabain, control the cell homeostasis and cell functions via inhibiting NaKA. Here we employed selective inhibition of α1 and α3 NaKA isoforms by Marinobufagenin and Ouabain respectively, to measure the contribution of α subunits in cellular physiology of three distinct mouse brain regions. The results of the whole cell recording demonstrated that α1 isoform predominated in layer-5 pyramidal cells at rostral motor cortex, while α3 isoform governed the pyramidal neurons at hippocampal CA1 region and to a lesser extent the layer-5 pyramidal neurons of parietal cortex. Furthermore, selective α isoform inhibition induced differential effects on distinct physiological properties even within the same brain region. In addition, our results supported the existence of synergism between two NaKA α isoforms. To conclude, this systematic study of NaKA α isoforms demonstrated their broader roles in neuronal functioning in a region-specific manner.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Bufanólidos/farmacología , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ouabaína/farmacología , Técnicas de Placa-Clamp , Técnicas de Cultivo de Tejidos
3.
Physiol Behav ; 170: 115-123, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28017679

RESUMEN

Although Metformin, a first-line antidiabetic drug, can ameliorate ischemia/reperfusion (I/R) induced brain damage, but how metformin benefits injured hippocampus and the mechanisms are still largely unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of metformin against ischemic brain damage induced by cerebral I/R and to explore whether the Akt-mediated down-regulation of the phosphorylation of JNK3 signaling pathway contributed to the protection provided by metformin. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of metformin on anxiety-like behavioral and cognitive impairment after I/R. Cresyl Violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of Akt1, JNK3, c-Jun and the expression of cleaved caspase-3. Through ischemia/reperfusion (I/R) rat model, we found that metformin could attenuate the deficits of hippocampal related behaviors and inhibit cell apoptosis. The western blot data showed that metformin could promote the activation of Akt1 and reduce the phosphorylation of JNK3 and c-Jun as well as elevation of cleaved caspase-3 in I/R brains. PI3K inhibitor reversed all the protective effects, further indicating that metformin protect hippocampus from ischemic damage through PI3K/Akt1/JNK3/c-Jun signaling pathway.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/enzimología , Metformina/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/enzimología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/enzimología , Ansiedad/etiología , Ansiedad/patología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/enzimología , Región CA1 Hipocampal/patología , Caspasa 3/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología , Células Piramidales/patología , Ratas Sprague-Dawley , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos
4.
Neuropathology ; 34(3): 284-90, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24444253

RESUMEN

We found that mRNA of MET, the receptor of hepatocyte growth factor (HGF), is significantly decreased in the hippocampus of Alzheimer's disease (AD) patients. Therefore, we tried to determine the cellular component-dependent changes of MET expressions. In this study, we examined cellular distribution of MET in the cerebral neocortices and hippocampi of 12 AD and 11 normal controls without brain diseases. In normal brains, MET immunoreactivity was observed in the neuronal perikarya and a subpopulation of astrocytes mainly in the subpial layer and white matter. In AD brains, we found marked decline of MET in hippocampal pyramidal neurons and granule cells of dentate gyrus. The decline was more obvious in the pyramidal neurons of the hippocampi than that in the neocortical neurons. In addition, we found strong MET immunostaining in reactive astrocytes, including those near senile plaques. Given the neurotrophic effects of the HGF/MET pathway, this decline may adversely affect neuronal survival in AD cases. Because it has been reported that HGF is also up-regulated around senile plaques, ß-amyloid deposition might be associated with astrocytosis through the HGF signaling pathway.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Regulación hacia Abajo/fisiología , Hipocampo/enzimología , Neuronas/enzimología , Proteínas Proto-Oncogénicas c-met/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Femenino , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Neuronas/patología , Células Piramidales/enzimología , Células Piramidales/patología
5.
Zhen Ci Yan Jiu ; 38(1): 20-5, 2013 Feb.
Artículo en Chino | MEDLINE | ID: mdl-23650795

RESUMEN

OBJECTIVE: To observe the protective effect of acupuncture stimulation on pyramidal cells in hippocampal CA 1 and CA 3 regions and to analyze the involvement of phosphatidy linositol-3-kinase (PI 3 K)/protein kinase B(PKB or Akt) signaling pathway in the acupuncture effect in epilepsy rats. METHODS: A total of 120 SD rats were randomly divided into normal control group, model group, LY 294002 (a specific antagonist for PI 3 K/Akt signaling) group, acupuncture+ LY 294002 group and acupuncture group (n = 24 in each group, 12 for H. E. staining, and 12 for electron microscope observation). Epilepsy model was established by intraperitoneal injection of pentylenetetrazol (PTZ, 5 microL). Manual acupuncture stimulation was applied to "Baihui" (GV 20) and "Dazhui" (GV 14) once daily for 5 days. Dimethyl Sulfoxide (DMSO, 5 microL, a control solvent) was given to rats of the normal, model and acupuncture groups, and LY294002 (5 microL, dissolved in DMSO) given to rats of the LY 294002 and acupuncture+ LY 294002 groups by lateral ventricular injection. Four hours and 24 h after modeling, the hippocampus tissues were sampled for observing pathological changes of CA 1 and CA 3 regions after H. E. staining under light microscope and for checkin ultrastructural changes of the pyramidal cells under transmission electron microscope. RESULTS: In comparison with the normal control group, the numbers of pyramidal cells of hippocampal CA 3 region in the model group were decreased significantly 4 h and 24 h after epileptic seizure (P < 0.01). While compared to the model group, the pyramidal cells of hippocampal CA 3 region in the acupuncture group were increased considerably in the number at both 4 h and 24 h after seizure (P < 0.01). No significant differences were found between the LY 294002 and model groups, and between the acupuncture+ LY 294002 and model groups in the numbers of pyramidal cells at 4 h and 24 h after seizure (P > 0.05). Findings of the light microscope and electron microscope showed that the injury severity of pyramidal cells of hippocampal CA 1 and CA 3 regions was moderate 4 h after epileptic seizure and even worse 24 h after seizure in the model group, LY 294002 group and acupuncture+ LY 294002 group, but relatively lighter in the acupuncture group. These results suggested an elimination of the acupuncture effect after blocking the PI 3 K/Akt signaling pathway by lateral ventricular injection of LY 294002 in epilepsy rats. CONCLUSION: Acupuncture intervention has a protective effect on pyramidal cells of hippocampal CA 1 and CA 3 regions in epilepsy rats, which is associated with the normal function of intracellular PI 3 K/Akt signaling pathway.


Asunto(s)
Terapia por Acupuntura , Hipocampo/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/lesiones , Convulsiones/terapia , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Hipocampo/enzimología , Hipocampo/lesiones , Hipocampo/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Células Piramidales/enzimología , Células Piramidales/metabolismo , Ratas , Convulsiones/enzimología , Convulsiones/metabolismo , Convulsiones/prevención & control
6.
Neuroscience ; 226: 145-55, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23000621

RESUMEN

The phosphodiesterases (PDEs) are a superfamily of enzymes that regulate spatio-temporal signaling by the intracellular second messengers cAMP and cGMP. PDE2A is expressed at high levels in the mammalian brain. To advance our understanding of the role of this enzyme in regulation of neuronal signaling, we here describe the distribution of PDE2A in the rat brain. PDE2A mRNA was prominently expressed in glutamatergic pyramidal cells in cortex, and in pyramidal and dentate granule cells in the hippocampus. Protein concentrated in the axons and nerve terminals of these neurons; staining was markedly weaker in the cell bodies and proximal dendrites. In addition, in both hippocampus and cortex, small populations of non-pyramidal cells, presumed to be interneurons, were strongly immunoreactive. PDE2A mRNA was expressed in medium spiny neurons in neostriatum. Little immunoreactivity was observed in cell bodies, whereas dense immunoreactivity was found in the axon tracts of these neurons and their terminal regions in globus pallidus and substantia nigra pars reticulata. Immunostaining was dense in the medial habenula, but weak in other diencephalic regions. In midbrain and hindbrain, immunostaining was restricted to discrete regions of the neuropil or clusters of cell bodies. These results suggest that PDE2A may modulate cortical, hippocampal and striatal networks at several levels. Preferential distribution of PDE2A into axons and terminals of the principal neurons suggests roles in regulation of axonal excitability or transmitter release. The enzyme is also in forebrain interneurons, and in mid- and hindbrain neurons that may modulate forebrain networks and circuits.


Asunto(s)
Encéfalo/enzimología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Animales , Elementos sin Sentido (Genética) , Autorradiografía , Vasos Sanguíneos/enzimología , Encéfalo/anatomía & histología , Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Corteza Cerebral/enzimología , Dendritas/enzimología , Técnica del Anticuerpo Fluorescente , Hipocampo/anatomía & histología , Hipocampo/enzimología , Técnicas para Inmunoenzimas , Inmunohistoquímica , Hibridación in Situ , Neostriado/anatomía & histología , Neostriado/enzimología , Neuronas/enzimología , Células Piramidales/enzimología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Médula Espinal/enzimología
7.
Fundam Clin Pharmacol ; 26(4): 503-12, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21521363

RESUMEN

Na(+)/K(+)-ATPase and N-methyl-D-aspartate (NMDA) receptor in hippocampus play very important roles in the regulation of learning and memory. Here, we showed that dihydroouabain (DHO, 10(-5)-10(-3) M), a Na(+)/K(+)-ATPase inhibitor, significantly potentiated NMDA current in rat hippocampal CA1 pyramidal neurons, which was blocked by PP2 (the selective Src tyrosine kinase inhibitor) and PD-98059 [the selective inhibitor of the mitogen-activated protein kinases (MAPK) cascade]. These findings reported here uncover that Src mediates the cross-talk between Na(+)/K(+)-ATPase and NMDA receptor to transduce the signals from Na(+)/K(+)-ATPase to the MAPK cascade and provide new insights into therapeutic target for deeper understanding of the nature of cognitive disorder.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , N-Metilaspartato/metabolismo , Neuronas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/enzimología , Región CA1 Hipocampal/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Neuronas/enzimología , Neuronas/metabolismo , Ouabaína/análogos & derivados , Ouabaína/farmacología , Proteína Quinasa C/metabolismo , Células Piramidales/enzimología , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores
8.
Neuroreport ; 21(6): 469-73, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20848734

RESUMEN

It is known that the Na+/K+ ATPase may control the frequency of slow action potential bursts that can be found in motor patterns generating neurons. Thus, Na+/K+ ATPase can participate in the formation of firing patterns in neurons and it is likely that the ATPase activity is coordinated with the expression of ionic channels. However, so far, there is no such evidence. Here it is shown that, in pyramidal neurons of the rat prefrontal cortex, the density of electrogenic sodium-potassium ATPase current was correlated with the density of the persistent sodium current (R2=0.62, P<0.002). It is speculated that such coordination may improve the control of the firing patterns in prefrontal cortex pyramidal neurons.


Asunto(s)
Corteza Prefrontal/enzimología , Células Piramidales/enzimología , Canales de Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Potenciales de Acción/fisiología , Adenosina Trifosfato/metabolismo , Animales , Membrana Celular/enzimología , Potenciales de la Membrana/fisiología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp/métodos , Corteza Prefrontal/citología , Ratas , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología
9.
Neuroscience ; 169(3): 987-93, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20678993

RESUMEN

Most excitatory input in the hippocampus impinges on dendritic spines. Entry of Ca(2+) into spines through NMDA receptors can trigger a sequence of biochemical reactions leading to sustained changes in synaptic efficacy. To provide specificity, dendritic spines restrict the diffusion of Ca(2+) signaling and downstream molecules. The postsynaptic density (PSD) (the most prominent subdomain within the spine) is the site of Ca(2+) entry through NMDA receptors. We here demonstrate that Ca(2+) can also be removed via pumps embedded in the PSD. Using light- and electron-microscopic immunohistochemistry, we find that PMCA2w, a member of the plasma membrane Ca(2+)-ATPase (PMCA) family, concentrates at the PSD of most hippocampal spines. We propose that PMCA2w may be recruited into supramolecular complexes at the postsynaptic density, thus helping to regulate Ca(2+) nanodomains at subsynaptic sites. Taken together, these results suggest a novel function for PMCAs as modulators of Ca(2+) signaling at the synapse.


Asunto(s)
ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Espinas Dendríticas/enzimología , Hipocampo/enzimología , Hipocampo/ultraestructura , Inmunohistoquímica , Isoenzimas/metabolismo , Masculino , Células Piramidales/enzimología , Células Piramidales/ultraestructura , Ratas , Ratas Sprague-Dawley
10.
J Neurosci ; 30(17): 6143-51, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20427672

RESUMEN

We investigated the role of phosphodiesterases (PDEs) in the integration of cAMP signals and protein kinase A (PKA) activity following beta-adrenergic stimulation, by carrying out real-time imaging of male mouse pyramidal cortical neurons expressing biosensors to monitor cAMP levels (Epac1-camps and Epac2-camps300) or PKA activity (AKAR2). In the soma, isoproterenol (ISO) increased the PKA signal to approximately half the maximal response obtained with forskolin, with a characteristic beta(1) pharmacology and an EC(50) of 4.5 nm. This response was related to free cAMP levels in the submicromolar range. The specific type 4 PDE (PDE4) inhibitor rolipram had a very small effect alone, but strongly potentiated the PKA response to ISO. Blockers of other PDEs had no effect. PDE4 thus acts as a brake in the propagation of the beta(1)-adrenergic signal from the membrane to the bulk somatic cytosol. The results for a submembrane domain were markedly different, whether recorded with a PKA-sensitive potassium current related to the slow AHP or by two-photon imaging of small distal dendrites. The responses to ISO were stronger than in the bulk cytosol. This is consistent with the cAMP/PKA signal being strong at the membrane, as shown by electrophysiology, and favored in cellular domains with a high surface area to volume ratio, in which this signal was detected by imaging. Rolipram alone also produced a strong cAMP/PKA signal, revealing tonic cAMP production. PDE4 thus appears as a crucial integrator with different physiological implications in different subcellular domains.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Lóbulo Parietal/enzimología , Células Piramidales/enzimología , Adenilil Ciclasas/metabolismo , Agonistas de Receptores Adrenérgicos beta 1 , Agonistas Adrenérgicos beta/farmacología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Colforsina/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dendritas/efectos de los fármacos , Dendritas/enzimología , Dendritas/metabolismo , Técnicas In Vitro , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Lóbulo Parietal/efectos de los fármacos , Lóbulo Parietal/metabolismo , Inhibidores de Fosfodiesterasa 4 , Inhibidores de Fosfodiesterasa/farmacología , Potasio/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Rolipram/farmacología
11.
Brain Res ; 1335: 1-13, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20385109

RESUMEN

N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetiltransferasas/biosíntesis , Ácido Aspártico/análogos & derivados , Metanfetamina/farmacología , Neuronas/enzimología , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Ácido Aspártico/biosíntesis , Línea Celular , Línea Celular Tumoral , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/enzimología , Ratas , Ratas Sprague-Dawley , Especificidad por Sustrato/genética
12.
Hippocampus ; 20(1): 78-96, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19294646

RESUMEN

Early cognitive deficit characteristic of early Alzheimer's disease seems to be produced by the soluble forms of beta-amyloid protein. Such cognitive deficit correlates with neuronal network dysfunction that is reflected as alterations in the electroencephalogram of both Alzheimer patients and transgenic murine models of such disease. Correspondingly, recent studies have demonstrated that chronic exposure to betaAP affects hippocampal oscillatory properties. However, it is still unclear if such neuronal network dysfunction results from a direct action of betaAP on the hippocampal circuit or it is secondary to the chronic presence of the protein in the brain. Therefore, we aimed to explore the effect of acute exposure to betaAP(25-35) on hippocampal network activity both in vitro and in vivo, as well as on intrinsic and synaptic properties of hippocampal neurons. We found that betaAP(25-35), reversibly, affects spontaneous hippocampal population activity in vitro. Such effect is not produced by the inverse sequence betaAP(35-25) and is reproduced by the full-length peptide betaAP(1-42). Correspondingly betaAP(25-35), but not the inverse sequence betaAP(35-25), reduces theta-like activity recorded from the hippocampus in vivo. The betaAP(25-35)-induced disruption in hippocampal network activity correlates with a reduction in spontaneous neuronal activity and synaptic transmission, as well as with an inhibition in the subthreshold oscillations produced by pyramidal neurons in vitro. Finally, we studied the involvement of Fyn-kinase on the betaAP(25-35)-induced disruption in hippocampal network activity in vitro. Interestingly, we found that such phenomenon is not observed in slices obtained from Fyn-knockout mice. In conclusion, our data suggest that betaAP acutely affects proper hippocampal function through a Fyn-dependent mechanism. We propose that such alteration might be related to the cognitive impairment observed, at least, during the early phases of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Hipocampo/fisiología , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/enzimología , Región CA1 Hipocampal/fisiología , Potenciales Evocados/fisiología , Hipocampo/enzimología , Técnicas In Vitro , Ratones , Ratones Noqueados , Vías Nerviosas/enzimología , Vías Nerviosas/fisiología , Neuroglía/enzimología , Neuroglía/fisiología , Neuronas/enzimología , Neuronas/fisiología , Periodicidad , Proteínas Proto-Oncogénicas c-fyn/genética , Células Piramidales/enzimología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
13.
J Neurosci ; 29(39): 12255-64, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19793984

RESUMEN

NRG1 and ERBB4 have emerged as some of the most reproducible schizophrenia risk genes. Moreover, the Neuregulin (NRG)/ErbB4 signaling pathway has been implicated in dendritic spine morphogenesis, glutamatergic synaptic plasticity, and neural network control. However, despite much attention this pathway and its effects on pyramidal cells have received recently, the presence of ErbB4 in these cells is still controversial. As knowledge of the precise locus of receptor expression is crucial to delineating the mechanisms by which NRG signaling elicits its diverse physiological effects, we have undertaken a thorough analysis of ErbB4 distribution in the CA1 area of the rodent hippocampus using newly generated rabbit monoclonal antibodies and ErbB4-mutant mice as negative controls. We detected ErbB4 immunoreactivity in GABAergic interneurons but not in pyramidal neurons, a finding that was further corroborated by the lack of ErbB4 mRNA in electrophysiologically identified pyramidal neurons as determined by single-cell reverse transcription-PCR. Contrary to some previous reports, we also did not detect processed ErbB4 fragments or nuclear ErbB4 immunoreactivity. Ultrastructural analysis in CA1 interneurons using immunoelectron microscopy revealed abundant ErbB4 expression in the somatodendritic compartment in which it accumulates at, and adjacent to, glutamatergic postsynaptic sites. In contrast, we found no evidence for presynaptic expression in cultured GAD67-positive hippocampal interneurons and in CA1 basket cell terminals. Our findings identify ErbB4-expressing interneurons, but not pyramidal neurons, as a primary target of NRG signaling in the hippocampus and, furthermore, implicate ErbB4 as a selective marker for glutamatergic synapses on inhibitory interneurons.


Asunto(s)
Receptores ErbB/biosíntesis , Regulación Enzimológica de la Expresión Génica , Hipocampo/enzimología , Interneuronas/enzimología , Células Piramidales/enzimología , Animales , Células Cultivadas , Receptores ErbB/deficiencia , Receptores ErbB/genética , Hipocampo/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Células Piramidales/ultraestructura , Conejos , Ratas , Ratas Sprague-Dawley , Receptor ErbB-4 , Especificidad de la Especie , Ácido gamma-Aminobutírico/fisiología
14.
Neuron ; 62(3): 363-74, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19447092

RESUMEN

Protein kinase A (PKA) plays multiple roles in neurons. The localization and specificity of PKA are largely controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA in neurons and the roles of specific AKAPs are poorly understood. We imaged the distribution of type II PKA in hippocampal and cortical layer 2/3 pyramidal neurons in vitro and in vivo. PKA was concentrated in dendritic shafts compared to the soma, axons, and dendritic spines. This spatial distribution was imposed by the microtubule-binding protein MAP2, indicating that MAP2 is the dominant AKAP in neurons. Following cAMP elevation, catalytic subunits dissociated from the MAP2-tethered regulatory subunits and rapidly became enriched in nearby spines. The spatial gradient of type II PKA between dendritic shafts and spines was critical for the regulation of synaptic strength and long-term potentiation. Therefore, the localization and activity-dependent translocation of type II PKA are important determinants of PKA function.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Corteza Cerebral/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/enzimología , Células Piramidales/enzimología , Proteínas de Anclaje a la Quinasa A/clasificación , Animales , Corteza Cerebral/citología , Espinas Dendríticas/enzimología , Hipocampo/citología , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas , Fracciones Subcelulares/enzimología , Distribución Tisular
15.
Neuroscience ; 162(2): 339-48, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19362129

RESUMEN

Na(+),K(+)-ATPase contributes to the asymmetrical distribution of sodium and potassium ions across the plasma membrane and to maintenance of the membrane potential in many types of cells. Alterations in this protein may play a significant role in many human neurological disorders, including epilepsy. We studied expression of the alpha3 isoform of Na(+),K(+)-ATPase in the freeze lesion (FL) microgyrus model of developmental epileptogenesis to test the hypothesis that it is downregulated following neonatal cortical injury. FL and sham-operated rat brains were examined at postnatal day (P)7, P10, P14, P21-28 and P50-60 after placement of a transcranial freeze lesion at P0 or P1. Immunohistochemistry and in situ hybridization were used to assess the expression of the alpha3 isoform of Na(+),K(+)-ATPase (termed alpha3, or alpha3 subunit below) in neuropil and the perisomatic areas of pyramidal cells and parvalbumin-containing interneurons. There was a significant decrease (P<0.05) in alpha3 subunit immunoreactivity (IR) in the neuropil of FL cortical layer V of the P14 and P21-28 groups that extended up to 360 mum from the border of the microgyrus, an area that typically exhibits evoked epileptiform activity. Alpha-3 was decreased in the perisomatic area of pyramidal but not parvalbumin-containing cells in P21-28 FL animals. A reduction in alpha3 mRNA was observed in the neuropil of FL cortical layer V up to 1610 mum from the microgyral edge. The developmental time course for expression of the alpha3 subunit between P7 and P60 was examined in naive rat cortices and results showed that there was a significant increase in alpha3 IR between P7 and P10. The significant decreases in Na(+),K(+)-ATPase in the paramicrogyral cortex may contribute to epileptogenesis.


Asunto(s)
Encéfalo/enzimología , Epilepsia/enzimología , Malformaciones del Desarrollo Cortical/enzimología , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Corteza Cerebral/enzimología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Epilepsia/patología , Congelación , Interneuronas/enzimología , Isoenzimas/biosíntesis , Malformaciones del Desarrollo Cortical/patología , Células Piramidales/enzimología , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley
16.
Proc Natl Acad Sci U S A ; 106(16): 6766-71, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19342486

RESUMEN

Mutations in doublecortin (DCX) are associated with intractable epilepsy in humans, due to a severe disorganization of the neocortex and hippocampus known as classical lissencephaly. However, the basis of the epilepsy in lissencephaly remains unclear. To address potential functional redundancy with murin Dcx, we targeted one of the closest homologues, doublecortin-like kinase 2 (Dclk2). Here, we report that Dcx; Dclk2-null mice display frequent spontaneous seizures that originate in the hippocampus, with most animals dying in the first few months of life. Elevated hippocampal expression of c-fos and loss of somatostatin-positive interneurons were identified, both known to correlate with epilepsy. Dcx and Dclk2 are coexpressed in developing hippocampus, and, in their absence, there is dosage-dependent disrupted hippocampal lamination associated with a cell-autonomous simplification of pyramidal dendritic arborizations leading to reduced inhibitory synaptic tone. These data suggest that hippocampal dysmaturation and insufficient receptive field for inhibitory input may underlie the epilepsy in lissencephaly, and suggest potential therapeutic strategies for controlling epilepsy in these patients.


Asunto(s)
Diferenciación Celular , Hipocampo/enzimología , Hipocampo/patología , Proteínas Asociadas a Microtúbulos/deficiencia , Neuronas/enzimología , Neuropéptidos/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia , Convulsiones/enzimología , Animales , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/patología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Hipocampo/embriología , Interneuronas/efectos de los fármacos , Interneuronas/enzimología , Interneuronas/patología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuropéptidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología , Células Piramidales/patología , Convulsiones/patología , Somatostatina/metabolismo , Análisis de Supervivencia , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Destete , Ácido gamma-Aminobutírico/farmacología
17.
Brain Res ; 1209: 115-27, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18402929

RESUMEN

Numerous studies have shown that neuronal plasticity in the hippocampus and neocortex is regulated by estrogen and that aromatase, the key enzyme for estrogen biosynthesis, is present in cerebral cortex. Although the expression pattern of aromatase mRNA has been described in the monkey brain, its precise cellular distribution has not been determined. In addition, the degree to which neuronal aromatase is affected by gonadal estrogen has not been investigated. In this study, we examined the immunohistochemical distribution of aromatase in young ovariectomized female rhesus monkeys with or without long-term cyclic estradiol treatment. Both experimental groups showed that aromatase is localized in a large population of CA1-3 pyramidal cells, in granule cells of the dentate gyrus and in some interneurons in which it was co-expressed with the calcium-binding proteins calbindin, calretinin, and parvalbumin. Moreover, numerous pyramidal cells were immunoreactive for aromatase in the neocortex, whereas only small subpopulations of neocortical interneurons were immunoreactive for aromatase. The widespread expression of the protein in a large neuronal population suggests that local intraneuroral estrogen synthesis may contribute to estrogen-induced synaptic plasticity in monkey hippocampus and neocortex of female rhesus monkeys. In addition, the apparent absence of obvious differences in aromatase distribution between the two experimental groups suggests that these localization patterns are not dependent on plasma estradiol levels.


Asunto(s)
Aromatasa/metabolismo , Hipocampo/enzimología , Macaca mulatta , Neocórtex/enzimología , Lóbulo Temporal/enzimología , Animales , Proteínas de Unión al Calcio/metabolismo , Giro Dentado/citología , Giro Dentado/enzimología , Estradiol/metabolismo , Estradiol/farmacología , Estrógenos/biosíntesis , Femenino , Hipocampo/citología , Interneuronas/citología , Interneuronas/enzimología , Neocórtex/citología , Plasticidad Neuronal , Células Piramidales/citología , Células Piramidales/enzimología , Especificidad de la Especie , Lóbulo Temporal/citología
18.
Neuron Glia Biol ; 4(2): 91-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-19674507

RESUMEN

The astrocytic enzyme adenosine kinase (ADK) is a key negative regulator of the brain's endogenous anticonvulsant adenosine. Astrogliosis with concomitant upregulation of ADK is part of the epileptogenic cascade and contributes to seizure generation. To molecularly dissect the respective roles of astrogliosis and ADK-expression for seizure generation, we used a transgenic approach to uncouple ADK-expression from astrogliosis: in Adk-tg mice the endogenous Adk-gene was deleted and replaced by a ubiquitously expressed Adk-transgene with novel ectopic expression in pyramidal neurons, resulting in spontaneous seizures. Here, we followed a unique approach to selectively injure the CA3 of these Adk-tg mice. Using this strategy, we had the opportunity to study astrogliosis and epileptogenesis in the absence of the endogenous astrocytic Adk-gene. After triggering epileptogenesis we demonstrate astrogliosis without upregulation of ADK, but lack of seizures, whereas matching wild-type animals developed astrogliosis with upregulation of ADK and spontaneous recurrent seizures. By uncoupling ADK-expression from astrogliosis, we demonstrate that global expression levels of ADK rather than astrogliosis per se contribute to seizure generation.


Asunto(s)
Adenosina Quinasa/metabolismo , Astrocitos , Epilepsia/etiología , Gliosis/complicaciones , Adenosina Quinasa/deficiencia , Adenosina Quinasa/genética , Animales , Astrocitos/enzimología , Encéfalo/enzimología , Muerte Celular , Enfermedad Crónica , Epilepsia/enzimología , Gliosis/enzimología , Ácido Kaínico , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Piramidales/enzimología , Recurrencia , Convulsiones/inducido químicamente , Convulsiones/etiología , Convulsiones/fisiopatología , Convulsiones/prevención & control , Índice de Severidad de la Enfermedad , Estado Epiléptico/complicaciones , Estado Epiléptico/fisiopatología , Factores de Tiempo , Distribución Tisular , Transgenes , Regulación hacia Arriba
19.
J Neurochem ; 103(4): 1666-81, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17868305

RESUMEN

The protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in stroke models is poorly understood. We studied patterns of PACAP, vasoactive intestinal peptide, and the PACAP-selective receptor PAC1 after middle cerebral artery occlusion and neuroprotection by PACAP in cortical cultures exposed to oxygen/glucose deprivation (OGD). Within hours, focal ischemia caused a massive, NMDA receptor (NMDAR)-dependent up-regulation of PACAP in cortical pyramidal cells. PACAP expression dropped below the control level after 2 days and was normalized after 4 days. Vasoactive intestinal peptide expression was regulated oppositely to that of PACAP. PAC1 mRNA showed ubiquitous expression in neurons and astrocytes with minor changes after ischemia. In cultured cortical neurons PACAP27 strongly activated Erk1/2 at low and p38 MAP kinase at higher nanomolar concentrations via PAC1. In astrocyte cultures, effects of PACAP27 on Erk1/2 and p38 were weak. During OGD, neurons showed severely reduced Erk1/2 activity and dephosphorylation of Erk1/2-regulated Ser112 of pro-apoptotic Bad. PACAP27 stimulation counteracted Erk1/2 inactivation and Bad dephosphorylation during short-term OGD but was ineffective after expanded OGD. Consistently, PACAP27 caused MEK-dependent neuroprotection during mild but not severe hypoxic/ischemic stress. While PACAP27 protected neurons at 1-5 nmol/L, full PAC1 activation by 100 nmol/L PACAP exaggerated hypoxic/ischemic damage. PACAP27 stimulation of astrocytes increased the production of Akt-activating factors and conferred ischemic tolerance to neurons. Thus, ischemia-induced PACAP may act via neuronal and astroglial PAC1. PACAP confers protection to ischemic neurons by maintaining Erk1/2 signaling via neuronal PAC1 and by increasing neuroprotective factor production via astroglial PAC1.


Asunto(s)
Corteza Cerebral/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Ataque Isquémico Transitorio/metabolismo , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/biosíntesis , Células Piramidales/metabolismo , Regulación hacia Arriba/fisiología , Animales , Astrocitos/enzimología , Astrocitos/metabolismo , Astrocitos/patología , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/prevención & control , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Células Piramidales/enzimología , Células Piramidales/patología , Ratas , Ratas Long-Evans
20.
Neuron ; 53(1): 79-89, 2007 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-17196532

RESUMEN

The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation has not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are coactivated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca(2+)-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory.


Asunto(s)
Adenilil Ciclasas/metabolismo , Condicionamiento Psicológico/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/enzimología , Memoria/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Calcio/metabolismo , Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Condicionamiento Psicológico/efectos de los fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Miedo/efectos de los fármacos , Miedo/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA