Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.307
Filtrar
1.
Reprod Domest Anim ; 59(6): e14628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828525

RESUMEN

This study aimed to investigate the impact of the epidermal growth factor receptor ligands amphiregulin (AREG) and epiregulin (EREG) on the fundamental functions of feline ovarian granulosa cells. Granulosa cells isolated from feline ovaries were incubated with AREG and EREG (0, 0.1, 1 or 10 ng/mL). The effects of these growth factors on cell viability, proliferation (assessed through BrdU incorporation), nuclear apoptosis (evaluated through nuclear DNA fragmentation) and the release of progesterone and estradiol were determined using Cell Counting Kit-8 assays, BrdU analysis, TUNEL assays and ELISAs, respectively. Both AREG and EREG increased cell viability, proliferation and steroid hormone release and reduced apoptosis. The present findings suggest that these epidermal growth factor receptor ligands may serve as physiological stimulators of feline ovarian cell functions.


Asunto(s)
Anfirregulina , Apoptosis , Proliferación Celular , Supervivencia Celular , Epirregulina , Células de la Granulosa , Animales , Gatos , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Anfirregulina/metabolismo , Anfirregulina/genética , Epirregulina/metabolismo , Epirregulina/genética , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Progesterona/metabolismo , Progesterona/farmacología , Estradiol/metabolismo , Estradiol/farmacología , Células Cultivadas
2.
Am J Reprod Immunol ; 91(5): e13854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716832

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS: Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS: The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION: There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.


Asunto(s)
Andrógenos , Líquido Folicular , Células de la Granulosa , Hiperandrogenismo , Macrófagos , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/inmunología , Femenino , Células de la Granulosa/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Hiperandrogenismo/metabolismo , Adulto , Líquido Folicular/metabolismo , Andrógenos/metabolismo , Células Cultivadas , Activación de Macrófagos , Microambiente Celular , Técnicas de Cocultivo , Diferenciación Celular
3.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38742598

RESUMEN

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Asunto(s)
Pollos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Células de la Granulosa , Progesterona , beta Catenina , Animales , Femenino , Progesterona/biosíntesis , Progesterona/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Células de la Granulosa/metabolismo , Pollos/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Regulación de la Expresión Génica/fisiología
4.
J Ovarian Res ; 17(1): 100, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734641

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder with multiple metabolic abnormalities. Most PCOS patients have concomitant metabolic syndromes such as insulin resistance and obesity, which often lead to the development of type II diabetes and cardiovascular disease with serious consequences. Current treatment of PCOS with symptomatic treatments such as hormone replacement, which has many side effects. Research on its origin and pathogenesis is urgently needed. Although improving the metabolic status of the body can alleviate reproductive function in some patients, there is still a subset of patients with metabolically normal PCOS that lacks therapeutic tools to address ovarian etiology. METHODS: The effect of IL-22 on PCOS ovarian function was verified in a non-metabolic PCOS mouse model induced by dehydroepiandrosterone (DHEA) and rosiglitazone, as well as granulosa cell -specific STAT3 knockout (Fshrcre+Stat3f/f) mice (10 groups totally and n = 5 per group). Mice were maintained under controlled temperature and lighting conditions with free access to food and water in a specific pathogen-free (SPF) facility. Secondary follicles separated from Fshrcre+Stat3f/f mice were cultured in vitro with DHEA to mimic the hyperandrogenic environment in PCOS ovaries (4 groups and n = 7 per group) and then were treated with IL-22 to investigate the specific role of IL-22 on ovarian function. RESULTS: We developed a non-metabolic mice model with rosiglitazone superimposed on DHEA. This model has normal metabolic function as evidenced by normal glucose tolerance without insulin resistance and PCOS-like ovarian function as evidenced by irregular estrous cycle, polycystic ovarian morphology (PCOM), abnormalities in sex hormone level. Supplementation with IL-22 improved these ovarian functions in non-metabolic PCOS mice. Application of DHEA in an in vitro follicular culture system to simulate PCOS follicular developmental block and ovulation impairment. Follicles from Fshrcre+Stat3f/f did not show improvement in POCS follicle development with the addition of IL-22. In DHEA-induced PCOS mice, selective ablation of STAT3 in granulosa cells significantly reversed the ameliorative effect of IL-22 on ovarian function. CONCLUSION: IL-22 can improve non-metabolic PCOS mice ovarian function. Granulosa cells deficient in STAT3 reverses the role of IL-22 in alleviating ovary dysfunction in non-metabolic PCOS mice.


Asunto(s)
Modelos Animales de Enfermedad , Interleucina-22 , Interleucinas , Ovario , Síndrome del Ovario Poliquístico , Femenino , Animales , Síndrome del Ovario Poliquístico/metabolismo , Ratones , Interleucinas/metabolismo , Interleucinas/genética , Ovario/metabolismo , Ovario/patología , Deshidroepiandrosterona/farmacología , Factor de Transcripción STAT3/metabolismo , Rosiglitazona/farmacología , Rosiglitazona/uso terapéutico , Células de la Granulosa/metabolismo , Ratones Noqueados
5.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791193

RESUMEN

Adiponectin is an important adipokine involved in glucose and lipid metabolism, but its secretion and potential role in regulating glucose utilization during ovarian development remains unclear. This study aims to investigate the mechanism and effects of follicle-stimulating hormones (FSHs) on adiponectin secretion and its following impact on glucose transport in the granulosa cells of rat ovaries. A range of experimental techniques were utilized to test our research, including immunoblotting, immunohistochemistry, immunofluorescence, ELISA, histological staining, real-time quantitative PCR, and transcriptome analysis. The immunohistochemistry results indicated that adiponectin was primarily located in the granulosa cells of rat ovaries. In primary granulosa cells cultured in vitro, both Western blot and immunofluorescence assays demonstrated that FSH significantly induced adiponectin secretion within 2 h of incubation, primarily via the PKA signaling pathway rather than the PI3K/AKT pathway. Concurrently, the addition of the AdipoR1/AdipoR2 dual agonist AdipoRon to the culture medium significantly stimulated the protein expression of GLUT1 in rat granulosa cells, resulting in enhanced glucose absorption. Consistent with these in vitro findings, rats injected with eCG (which shares structural and functional similarities with FSH) exhibited significantly increased adiponectin levels in both the ovaries and blood. Moreover, there was a notable elevation in mRNA and protein levels of AdipoRs and GLUTs following eCG administration. Transcriptomic analysis further revealed a positive correlation between the expression of the intraovarian adiponectin system and glucose transporter. The present study represents a novel investigation, demonstrating that FSH stimulates adiponectin secretion in ovarian granulosa cells through the PKA signaling pathway. This mechanism potentially influences glucose transport (GLUT1) and utilization within the ovaries.


Asunto(s)
Adiponectina , Hormona Folículo Estimulante , Glucosa , Células de la Granulosa , Receptores de Adiponectina , Transducción de Señal , Animales , Femenino , Adiponectina/metabolismo , Adiponectina/genética , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Ratas , Hormona Folículo Estimulante/metabolismo , Glucosa/metabolismo , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Células Cultivadas , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Ratas Sprague-Dawley , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ovario/metabolismo , Piperidinas
6.
J Nanobiotechnology ; 22(1): 242, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735936

RESUMEN

BACKGROUND: Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of Ti3C2 nanosheets in the testes and placenta. However, it is currently unclear whether Ti3C2 nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions. RESULTS: We established a mouse model with different doses (1.25, 2.5, and 5 mg/kg bw/d) of Ti3C2 nanosheets injected intravenously for three days. We demonstrated that Ti3C2 nanosheets can enter the ovaries and were internalized by granulosa cells, leading to a decrease in the number of primary, secondary and antral follicles. Furthermore, the decrease in follicles is closely associated with higher levels of FSH and LH, as well as increased level of E2 and P4, and decreased level of T in mouse ovary. In further studies, we found that exposure toTi3C2 nanosheets increased the levels of Beclin1, ATG5, and the ratio of LC3II/Ι, leading to autophagy activation. Additionally, the level of P62 increased, resulting in autophagic flux blockade. Ti3C2 nanosheets can activate autophagy through the PI3K/AKT/mTOR signaling pathway, with oxidative stress playing an important role in this process. Therefore, we chose the ovarian granulosa cell line (KGN cells) for in vitro validation of the impact of autophagy on the hormone secretion capability. The inhibition of autophagy initiation by 3-Methyladenine (3-MA) promoted smooth autophagic flow, thereby partially reduced the secretion of estradiol and progesterone by KGN cells; Whereas blocking autophagic flux by Rapamycin (RAPA) further exacerbated the secretion of estradiol and progesterone in cells. CONCLUSION: Ti3C2 nanosheet-induced increased secretion of hormones in the ovary is mediated through the activation of autophagy and impairment of autophagic flux, which disrupts normal follicular development. These results imply that autophagy dysfunction may be one of the underlying mechanisms of Ti3C2-induced damage to ovarian granulosa cells. Our findings further reveal the mechanism of female reproductive toxicity induced by Ti3C2 nanosheets.


Asunto(s)
Autofagia , Células de la Granulosa , Nanoestructuras , Ovario , Titanio , Animales , Femenino , Autofagia/efectos de los fármacos , Titanio/toxicidad , Titanio/química , Titanio/farmacología , Ratones , Ovario/efectos de los fármacos , Ovario/metabolismo , Nanoestructuras/química , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Cell Biol Toxicol ; 40(1): 29, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700571

RESUMEN

Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H2O2 and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO3 levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO3 axis regulation, providing a possible therapeutic target for patients with POF.


Asunto(s)
Exosomas , Proteína Forkhead Box O3 , Células de la Granulosa , Células Madre Mesenquimatosas , MicroARNs , Insuficiencia Ovárica Primaria , ARN Largo no Codificante , Proteína 1 de Unión a la Caja Y , Animales , Femenino , Humanos , Ratas , Senescencia Celular , Exosomas/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Células de la Granulosa/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Ovario/metabolismo , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/genética , Ratas Sprague-Dawley , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética
8.
J Ethnopharmacol ; 331: 118279, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705425

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt (L. japonicus, Chinese motherwort), known as Yi Mu Cao which means "good for women", has long been widely used in China and other Asian countries to alleviate gynecological disorders, often characterized by estrogen dysregulation. It has been used for the treatment of polycystic ovary syndrome (PCOS), a common endocrine disorder in women but the underlying mechanism remains unknown. AIM OF THE STUDY: The present study was designed to investigate the effect and mechanism of flavonoid luteolin and its analog luteolin-7-methylether contained in L. japonicus on aromatase, a rate-limiting enzyme that catalyzes the conversion of androgens to estrogens and a drug target to induce ovulation in PCOS patients. MATERIALS AND METHODS: Estrogen biosynthesis in human ovarian granulosa cells was examined using ELISA. Western blots were used to explore the signaling pathways in the regulation of aromatase expression. Transcriptomic analysis was conducted to elucidate the potential mechanisms of action of compounds. Finally, animal models were used to assess the therapeutic potential of these compounds in PCOS. RESULTS: Luteolin potently inhibited estrogen biosynthesis in human ovarian granulosa cells stimulated by follicle-stimulating hormone. This effect was achieved by decreasing cAMP response element-binding protein (CREB)-mediated expression of aromatase. Mechanistically, luteolin and luteolin-7-methylether targeted tumor progression locus 2 (TPL2) to suppress mitogen-activated protein kinase 3/6 (MKK3/6)-p38 MAPK-CREB pathway signaling. Transcriptional analysis showed that these compounds regulated the expression of different genes, with the MAPK signaling pathway being the most significantly affected. Furthermore, luteolin and luteolin-7-methylether effectively alleviated the symptoms of PCOS in mice. CONCLUSIONS: This study demonstrates a previously unrecognized role of TPL2 in estrogen biosynthesis and suggests that luteolin and luteolin-7-methylether have potential as novel therapeutic agents for the treatment of PCOS. The results provide a foundation for further development of these compounds as effective and safe therapies for women with PCOS.


Asunto(s)
Aromatasa , Estrógenos , Células de la Granulosa , Leonurus , Luteolina , Síndrome del Ovario Poliquístico , Femenino , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Luteolina/farmacología , Luteolina/aislamiento & purificación , Animales , Humanos , Aromatasa/metabolismo , Aromatasa/genética , Leonurus/química , Estrógenos/farmacología , Estrógenos/biosíntesis , Ratones , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/aislamiento & purificación
9.
Sci Rep ; 14(1): 10248, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702372

RESUMEN

Ambient air temperature is a key factor affecting human health. Female reproductive disorders are representative health risk events under low temperature. However, the mechanism involving in cold-induced female reproductive disorders remains largely unknown. Female mice were intermittently exposed to cold conditions (4 °C) to address the health risk of low temperature on female reproductive system. Primary granulosa cells (GCs) were prepared and cultured under low temperature (35 °C) or exposed to ß3-adrenoreceptor agonist, isoproterenol, to mimic the condition of cold exposure. Western-blot, RT-PCR, co-IP, ELISA, pharmacological inhibition or siRNA-mediated knockdown of target gene were performed to investigate the possible role of hormones, gap conjunction proteins, and ER stress sensor protein in regulating female reproductive disorders under cold exposure. Cold exposure induced estrous cycle disorder and follicular dysplasia in female mice, accompanying with abnormal upregulation of progesterone and its synthetic rate-limiting enzyme, StAR, in the ovarian granulosa cells. Under the same conditions, an increase in connexin 43 (CX43) expressions in the GCs was also observed, which contributed to elevated progesterone levels in the ovary. Moreover, ER stress sensor protein, PERK, was activated in the ovarian GCs after cold exposure, leading to the upregulation of downstream NRF2-dependent CX43 transcription and aberrant increase in progesterone synthesis. Most importantly, blocking PERK expression in vivo significantly inhibited NRF2/CX43/StAR/progesterone pathway activation in the ovary and efficiently rescued the prolongation of estrous cycle and the increase in follicular atresia of the female mice induced by cold stress. We have elucidated the mechanism of ovarian PERK/NRF2/CX43/StAR/progesterone pathway activation in mediating female reproductive disorder under cold exposure. Targeting PERK might be helpful for maintaining female reproductive health under cold conditions.


Asunto(s)
Frío , Conexina 43 , Células de la Granulosa , Factor 2 Relacionado con NF-E2 , Progesterona , Transducción de Señal , eIF-2 Quinasa , Animales , Femenino , eIF-2 Quinasa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Progesterona/metabolismo , Células de la Granulosa/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Frío/efectos adversos , Ovario/metabolismo , Ciclo Estral
10.
Life Sci ; 349: 122693, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710277

RESUMEN

Ovarian dysfunction stands as a prevalent contributor to female infertility, with its etiology intertwined with genetic, autoimmune, and environmental factors. Within the ovarian follicles, granulosa cells (GCs) represent the predominant cell population. Alterations in GCs, notably oxidative stress (OS) and the consequential surge in reactive oxygen species (ROS), play pivotal roles in the orchestration of ovarian function. Nrf2aa, a newly identified upstream open reading frame (uORF), is situated within the 5' untranslated region (5'UTR) of sheep Nrf2 mRNA and is regulated by melatonin, a crucial intrafollicular antioxidant. In this study, we have noted that Nrf2aa has the capacity to encode a peptide and exerts a negative regulatory effect on the translation efficiency (TE) of the Nrf2 CDs region. Further in vitro experiments, we observed that interfering with Nrf2aa can enhance the cellular functionality of GCs under 3-np-induced oxidative stress, while overexpressing Nrf2aa has the opposite effect. Furthermore, overexpression of Nrf2aa counteracts the rescuing effect of melatonin on the cellular functions of GCs under oxidative stress conditions, including estrogen secretion, proliferation, apoptosis, and many more. Finally, we confirmed that Nrf2aa, by regulating the expression of key proteins in the Nrf2/KEAP1 signaling pathway, further modulates the antioxidant levels in GCs.


Asunto(s)
Antioxidantes , Células de la Granulosa , Proteína 1 Asociada A ECH Tipo Kelch , Melatonina , Factor 2 Relacionado con NF-E2 , Sistemas de Lectura Abierta , Estrés Oxidativo , Transducción de Señal , Animales , Melatonina/farmacología , Melatonina/metabolismo , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Femenino , Factor 2 Relacionado con NF-E2/metabolismo , Ovinos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas
11.
Reprod Biol ; 24(2): 100860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762967

RESUMEN

The current understanding of the role of circular RNAs (circRNAs) in regulating ovarian functions is inadequate. To assess the impact of ciR-00596 and ciR-00646 on the regulation of basic porcine ovarian granulosa cell functions, we conducted upregulation (utilizing overexpressing vectors) and downregulation (utilizing shRNA vectors) of these circRNAs. The relative expression of both circRNAs, cell viability and proliferation (accumulation of PCNA, cyclin B1, and XTT-positive cells), cytoplasmic (accumulation of bax and caspase-3) and nuclear (DNA fragmentation) apoptosis, and the release of progesterone, testosterone, estradiol, IGF-I, and oxytocin were evaluated. Transfection of cells with the ciR-00596 overexpression vector resulted in increases in cell viability and proliferation and the release of progesterone and IGF-I, while it decreased the cytoplasmic and nuclear apoptosis, testosterone, estradiol, and oxytocin output. CiR-00596 inhibition had the opposite effects. The overexpression of ciR-00646 decreased cell viability and proliferation, and the release of progesterone, IGF-I, and oxytocin, while increasing cytoplasmic and nuclear apoptosis and the output of testosterone and estradiol. Our findings are the first to show the stimulatory action of ciR-00596 and the inhibitory effect of ciR-00646 on ovarian cell functions, including the cell cycle, apoptosis, and secretory activity.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Células de la Granulosa , ARN Circular , Regulación hacia Arriba , Animales , Femenino , ARN Circular/metabolismo , ARN Circular/genética , Porcinos , Células de la Granulosa/metabolismo , Células de la Granulosa/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Ovario/metabolismo , Progesterona/metabolismo , Estradiol/metabolismo , Regulación de la Expresión Génica/fisiología
12.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38718206

RESUMEN

Paxillin is a ubiquitously expressed adaptor protein integral to focal adhesions, cell motility, and apoptosis. Paxillin has also recently been implicated as a mediator of nongenomic androgen receptor (AR) signaling in prostate cancer and other cells. We sought to investigate the relationship between paxillin and AR in granulosa cells (GCs), where androgen actions, apoptosis, and focal adhesions are of known importance, but where the role of paxillin is understudied. We recently showed that paxillin knockout in mouse GCs increases fertility in older mice. Here, we demonstrate that paxillin knockdown in human granulosa-derived KGN cells, as well as knockout in mouse primary GCs, results in reduced AR protein but not reduced mRNA expression. Further, we find that both AR protein and mRNA half-lives are reduced by approximately one-third in the absence of paxillin, but that cells adapt to chronic loss of paxillin by upregulating AR gene expression. Using co-immunofluorescence and proximity ligation assays, we show that paxillin and AR co-localize at the plasma membrane in GCs in a focal adhesion kinase-dependent way, and that disruption of focal adhesions leads to reduced AR protein level. Our findings suggest that paxillin recruits AR to the GC membrane, where it may be sequestered from proteasomal degradation and poised for nongenomic signaling, as reported in other tissues. To investigate the physiological significance of this in disorders of androgen excess, we tested the effect of GC-specific paxillin knockout in a mouse model of polycystic ovary syndrome (PCOS) induced by chronic postnatal dihydrotestosterone (DHT) exposure. While none of the control mice had estrous cycles, 33% of paxillin knockout mice were cycling, indicating that paxillin deletion may offer partial protection from the negative effects of androgen excess by reducing AR expression. Paxillin-knockout GCs from mice with DHT-induced PCOS also produced more estradiol than GCs from littermate controls. Thus, paxillin may be a novel target in the management of androgen-related disorders in women, such as PCOS.


Asunto(s)
Adhesiones Focales , Células de la Granulosa , Ratones Noqueados , Paxillin , Receptores Androgénicos , Animales , Femenino , Humanos , Ratones , Adhesiones Focales/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Paxillin/metabolismo , Paxillin/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Transducción de Señal
13.
Cell Mol Life Sci ; 81(1): 221, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763964

RESUMEN

In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.


Asunto(s)
Hormona Folículo Estimulante , Células de la Granulosa , Folículo Ovárico , Proteína Sequestosoma-1 , Ubiquitinación , Proteínas WT1 , Animales , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Femenino , Proteínas WT1/metabolismo , Proteínas WT1/genética , Ratones , Folículo Ovárico/metabolismo , Folículo Ovárico/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Ratones Endogámicos C57BL , Autofagia/efectos de los fármacos , Proteolisis/efectos de los fármacos , Humanos , Ratones Noqueados
14.
Discov Med ; 36(184): 946-958, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798254

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) commonly impacts fertile females with potentially severe effects on fertility and metabolism. Blood ghrelin levels are lower in PCOS patients, and exogenous supplements have been proposed for their potential to trigger anti-inflammatory effects at the cellular level. This study aimed to investigate whether pretreatment with ghrelin reduced inflammation, insulin resistance, and reproductive abnormalities in PCOS and the underlying mechanism of this disorder. METHODS: Ghrelin supplementation was first tested in an inflammation model using human ovarian granulosa cells (KGN cells) that were built by treated with Lipolyaccharide. KGN cells were pretreated with ghrelin and exposed to lipopolysaccharide (LPS). Inflammatory gene expression and cytokine production were analyzed by Enzyme-linked immunosorbent assay (ELISA). Based on these results, the PCOS mice model was built with Dehydroepiandrosterone (DHEA) and a high-fat diet. The mRNA and protein expressions of inflammatory factors including Toll-like receptor 4 (TLR4), nuclear factor kappa-B-p65 (NF-κB-p65), Phospho-NF-κB-p65 (p-NF-κB-p65) and myeloid differentiation factor 88 (MYD88) related to the TLR4/NF-κB signaling pathway were evaluated in KGN cells and mouse ovarian tissues using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) and western blot, respectively. Lipid metabolism was quantified via an automated biochemical analyzer. RESULTS: The mRNA and protein expressions of interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), and tumor necrosis factor alpha (TNF-α) in ghrelin pretreated KGN cells were lower than the LPS group (p < 0.05). Protein expression was reduced for TLR4, NF-κB-p65, and MYD88 within KGN cells of ghrelin groups compared to the LPS group (p < 0.05). Ghrelin treatment restored the estrous cycle and slowed weight gain and abdominal fat weight of PCOS mice (p < 0.05). Ghrelin treatment decreased the serum concentrations of testosterone, luteinizing hormone, insulin, IL-6, IL-1ß, and TNF-α compared to the PCOS group (p < 0.05). Estradiol concentrations of mice treated with ghrelin were higher than the PCOS group (p < 0.05). The concentrations of low and high-density lipoprotein, triglyceride, and cholesterol in mice treated with ghrelin were lower than in the PCOS mice (p < 0.05). Inflammatory gene expression for IL-6, IL-1ß, TNF-α, TLR4, NF-κB-p65, and MYD88 decreased in the ovarian tissues of ghrelin-treated mice compared to the PCOS group (p < 0.05), along with reduced protein expression of TLR4, p-NF-κB-p65, and MYD88 (p < 0.05). CONCLUSIONS: In the present study, ghrelin treatment effectively reduced inflammation in vitro, and attenuated insulin resistance and reproductive abnormalities in PCOS mice through the TLR4/NF-κB signaling pathway, highlighting potential therapeutic avenues for future PCOS treatments and research directions.


Asunto(s)
Ghrelina , Inflamación , Resistencia a la Insulina , FN-kappa B , Síndrome del Ovario Poliquístico , Transducción de Señal , Receptor Toll-Like 4 , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/patología , Femenino , Receptor Toll-Like 4/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Inflamación/metabolismo , Humanos , Modelos Animales de Enfermedad , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/patología
15.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38735763

RESUMEN

Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.


Asunto(s)
Hormona Folículo Estimulante , Folículo Ovárico , Transcriptoma , Animales , Femenino , Hormona Folículo Estimulante/farmacología , Ratones , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Transcriptoma/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oogénesis/efectos de los fármacos , Oogénesis/genética , Transducción de Señal/efectos de los fármacos , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , AMP Cíclico/metabolismo
16.
BMC Complement Med Ther ; 24(1): 189, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750475

RESUMEN

BACKGROUND: Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. METHODS: In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. RESULTS: The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. CONCLUSIONS: The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.


Asunto(s)
Apoptosis , Células de la Granulosa , Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Línea Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo
17.
Cell Commun Signal ; 22(1): 235, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643161

RESUMEN

BACKGROUND: Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS: Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS: Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS: GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.


Asunto(s)
Infertilidad Femenina , Ratones , Animales , Femenino , Humanos , Infertilidad Femenina/metabolismo , Folículo Ovárico/metabolismo , Oocitos/química , Oocitos/metabolismo , Células de la Granulosa/metabolismo , Estrógenos/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/análisis , Factor 9 de Diferenciación de Crecimiento/metabolismo
18.
J Ovarian Res ; 17(1): 72, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566229

RESUMEN

BACKGROUND: Polycystic ovarian syndrome (PCOS) is the most common endocrine disease in women of childbearing age which is often associated with abnormal proliferation or apoptosis of granulosa cells (GCs). Studies proved that long non-coding RNA SNHG12 (lncRNA SNHG12) is significantly increased in ovarian cancer and cervical cancer patients and cells. The inhibition of lncRNA SNHG12 restrains the proliferation, migration, and invasion in tumor cells. OBJECTIVE: This study explores the role of lncRNA SNHG12 in the apoptosis of GCs in PCOS and the underlying regulated mechanism. METHODS: In this study, the injection of dehydroepiandrosterone (DHEA) successfully induced the PCOS model in SD rats. The human granulosa-like tumor cell line KGN was incubated with insulin to assess the effects of lncRNA SNHG12 on GC proliferation and apoptosis. RESULTS: Overexpression of lncRNA SNHG12 influenced the body weight, ovary weight, gonadal hormone, and pathological changes, restrained the expressions of microRNA (miR)-129 and miR-125b, while downregulation of lncRNA SNHG12 exerted the opposite effects in PCOS rats. After silencing lncRNA SNHG12 in cells, the cell viability and proliferation were lessened whereas apoptosis of cells was increased. A loss-of-functions test was implemented by co-transfecting miR-129 and miR-125b inhibitors into lncRNA SNHG12-knocking down cells to analyze the effects on cell viability and apoptosis. Next, the existence of binding sites of SNHG12 and miR-129/miR-125b was proved based on the pull-down assay. CONCLUSION: lncRNA SNHG12 might be a potential regulatory factor for the development of PCOS by sponging miR-129 and miR-125b in GCs.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , ARN Largo no Codificante , Humanos , Femenino , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Síndrome del Ovario Poliquístico/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas Sprague-Dawley , Células de la Granulosa/metabolismo , Proliferación Celular , Apoptosis/genética
19.
Reprod Biol Endocrinol ; 22(1): 38, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575956

RESUMEN

The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.


Asunto(s)
Adipoquinas , Progesterona , Femenino , Animales , Conejos , Progesterona/metabolismo , Progranulinas/metabolismo , Progranulinas/farmacología , Adipoquinas/metabolismo , Adipoquinas/farmacología , Ovario/metabolismo , Células de la Granulosa/metabolismo , Estradiol/metabolismo , Apoptosis , Células Cultivadas , Proliferación Celular
20.
J Biochem Mol Toxicol ; 38(4): e23697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578078

RESUMEN

Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17ß-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17ß-estradiol in the cultured GCs.


Asunto(s)
Genisteína , Isoflavonas , Femenino , Ovinos , Animales , Genisteína/farmacología , Progesterona/metabolismo , Células de la Granulosa/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Isoflavonas/farmacología , Oveja Doméstica/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA