Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Intervalo de año de publicación
1.
JCI Insight ; 6(16)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34237032

RESUMEN

Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.


Asunto(s)
Centriolos/genética , Inestabilidad Cromosómica , Microcefalia/genética , Células-Madre Neurales/patología , Animales , Encéfalo/citología , Encéfalo/patología , Sistemas CRISPR-Cas/genética , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Microcefalia/patología , Microscopía Electrónica de Transmisión , Imagen Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/ultraestructura , Cultivo Primario de Células , Imagen de Lapso de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
PLoS Biol ; 19(4): e3001166, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826607

RESUMEN

Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.


Asunto(s)
Vesículas Extracelulares/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/ultraestructura
3.
Int J Neurosci ; 130(11): 1101-1108, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32031459

RESUMEN

Introduction: The transdifferentiation potential of mesenchymal stem cells (MSCs) is not limited to mesodermal derivatives but also to other cell types such as neuronal cells under appropriate cell culture conditions.Materials and methods: The present study characterizes the differentiation of Wharton's jelly (WJ) derived MSCs using neuronal conditioned medium (NCM) collected from cultured foetal brain cells.Results: After induction with NCM to neuronal stem cells (NSC), the WJ MSCs showed profound morphological changes showing multiple neurites extending from the cell body containing reminiscent of Nissl substance and single long axon-like processes. In RT PCR and immunocytochemistry, the induced neuronal cells showed a strong positive expression of neuronal markers Nestin, ß III tubulin and GFAP indicated that, the cells were reactive to NCM for differentiation. A significant (p < 0.01) increase in the level of secretome BDNF was observed in NCM suggests that the BDNF could play a key role in the transdifferentiation of WJMSCs to NSCs.Conclusion: These results support the potential of ovine MSCs isolated from umbilical cord WJ of abattoir derived foetuses to differentiate into neuronal stem cells and also provide a valuable experimental data for NSC transplant research in veterinary medicine.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transdiferenciación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Células-Madre Neurales/fisiología , Gelatina de Wharton , Animales , Medios de Cultivo Condicionados , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/metabolismo , Nestina/metabolismo , Células-Madre Neurales/ultraestructura , Neuritas/ultraestructura , Ovinos , Tubulina (Proteína)/metabolismo , Cordón Umbilical , Gelatina de Wharton/citología
4.
Epilepsy Behav ; 101(Pt B): 106581, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31761686

RESUMEN

Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by deletions in the TSC1 or TSC2 genes that is associated with epilepsy in up to 90% of patients. Seizures are suggested to start in benign brain tumors, cortical tubers, or in the perituberal tissue making these tubers an interesting target for further research into mechanisms underlying epileptogenesis in TSC. Animal models of TSC insufficiently capture the neurodevelopmental biology of cortical tubers, and hence, human stem cell-based in vitro models of TSC are being increasingly explored in attempts to recapitulate tuber development and epileptogenesis in TSC. However, in vitro culture conditions for stem cell-derived neurons do not necessarily mimic physiological conditions. For example, very high glucose concentrations of up to 25 mM are common in culture media formulations. As TSC is potentially caused by a disruption of the mechanistic target of rapamycin (mTOR) pathway, a main integrator of metabolic information and intracellular signaling, we aimed to examine the impact of different glucose concentrations in the culture media on cellular phenotypes implicated in tuber characteristics. Here, we present preliminary data from a pilot study exploring cortical neuronal differentiation on human embryonic stem cells (hES) harboring a TSC2 knockout mutation (TSC2-/-) and an isogenic control line (TSC2+/+). We show that the commonly used high glucose media profoundly mask cellular phenotypes in TSC2-/- cultures during neuronal differentiation. These phenotypes only become apparent when differentiating TSC2+/+ and TSC2-/- cultures in more physiologically relevant conditions of 5 mM glucose suggesting that the careful consideration of culture conditions is vital to ensuring biological relevance and translatability of stem cell models for neurological disorders such as TSC. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Asunto(s)
Glucosa/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/ultraestructura , Esclerosis Tuberosa/patología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Células Madre Embrionarias/ultraestructura , Técnicas de Inactivación de Genes , Humanos , Modelos Neurológicos , Mutación/efectos de los fármacos , Neurogénesis , Fenotipo , Proyectos Piloto , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
5.
Cell Death Dis ; 10(3): 211, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824686

RESUMEN

Offspring of mothers with hyperglycemia during pregnancy have a higher incidence of long-term neuropsychiatric disorders than offspring from a normal pregnancy, indicating that neocortical neurogenesis might be affected by maternal hyperglycemia. A paucity of study evaluating the effects of hyperglycemia on neocortical neurogenetic differentiation of neural stem cells, and the mechanism remains unclear. We sought to investigate the the roles and possible molecular mechanism of maternal hyperglycemia on neocortical neurogenetic differentiation of neural stem cells. We established a mouse model of a hyperglycemic pregnancy to study effects of intrauterine exposure to maternal hyperglycemia on neocortical neurogenesis. We observed morphological changes in the neocortex and detected the neurogenetic differentiation of neural stem cells in offspring affected by high glucose levels. We investigated the regulatory network between epigenetic modification and transcription factors in differentiated neural stem cells under hyperglycemic conditions. Maternal hyperglycemia disturbs neocortical lamination in some non-malformed offspring. Our results suggested that hyperglycemia altered the early-born neuron fate and the distribution of newborn neurons in deep layers by promoting the earlier differentiation of neural stem cells. Altered histone acetylation and its regulation on the transcription of proneural genes might be correlated to the disrupted differentiation of neural stem cells and altered distribution of newborn projection neurons in the neocortex. Our data raised the possibility that maternal hyperglycemia in pregnancy disturbs the laminar distribution of neocortical projection neurons in some non-malformed offspring via epigenetic regulation on neural stem cell differentiation and the birthdate of neocortical neurons.


Asunto(s)
Epigénesis Genética , Hiperglucemia , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Complicaciones del Embarazo , Acetilación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histonas/química , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/ultraestructura , Defectos del Tubo Neural/patología , Neuronas/citología , Embarazo
6.
Neurotox Res ; 35(2): 387-400, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30276718

RESUMEN

The current paper presents a histological analysis of the cell death in the cerebellar external granular layer (EGL) following the treatment with a single dose (2 mg/g) of hydroxyurea (HU). The rats were examined at postnatal days (P) 5, 10, and 15, and sacrificed at appropriate times ranging from 6 to 48 h after treatment administration. Studies were done in each cortical lobe (anterior, central, posterior, and inferior). The quantification of several parameters, such as density of 5-bromo-2'-deoxyuridine, TUNEL, vimentin, and tomato lectin-stained cells, revealed that HU compromises the viability of EGL cells. Our results indicate that P10 is a time of high vulnerability to injury. We also show here that the anterior and central lobes are the cortical regions most susceptible to the action of the HU. Additionally, our data also indicate that from 6 to 24 h after HU-exposure is a time-window of high sensibility to this agent. On the other hand, our ultrastructural analysis confirmed that HU administration produces the activation of apoptotic cellular events in the EGL, resulting in a substantial number of dying cells. Different stages of apoptosis can be observed in all cortical lobes at all investigated postnatal ages and survival times. Moreover, we observed that dying neuroblasts were covered by laminar processes of Bergmann glia, and that these unipolar astrocytes presented cytological features of phagocytes engulfing apoptotic bodies and cell debris. The electron microscopy study also revealed the participation of ameboid microglial cells in the phagocytosis of apoptotic cells in the regions of the EGL with extensive cell death.


Asunto(s)
Cerebelo/efectos de los fármacos , Hidroxiurea/toxicidad , Microglía/efectos de los fármacos , Neocórtex/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuroglía/efectos de los fármacos , Animales , Animales Recién Nacidos , Antineoplásicos/toxicidad , Cerebelo/crecimiento & desarrollo , Cerebelo/ultraestructura , Femenino , Masculino , Microglía/ultraestructura , Neocórtex/crecimiento & desarrollo , Neocórtex/ultraestructura , Células-Madre Neurales/ultraestructura , Neuroglía/ultraestructura , Embarazo , Ratas , Ratas Sprague-Dawley
7.
Int J Nanomedicine ; 13: 6265-6277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349249

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a traumatic disease of the central nervous system, accompanied with high incidence and high disability rate. Tissue engineering scaffold can be used as therapeutic systems to provide effective repair for SCI. PURPOSE: In this study, a novel tissue engineering scaffold has been synthesized in order to explore the effect of nerve repair on SCI. PATIENTS AND METHODS: Polycaprolactone (PCL) scaffolds loaded with actived Schwann cells (ASCs) and induced pluripotent stem cells -derived neural stem cells (iPSC-NSCs), a combined cell transplantation strategy, were prepared and characterized. The cell-loaded PCL scaffolds were further utilized for the treatment of SCI in vivo. Histological observation, behavioral evaluation, Western-blot and qRT-PCR were used to investigate the nerve repair of Wistar rats after scaffold transplantation. RESULTS: The iPSCs displayed similar characteristics to embryonic stem cells and were efficiently differentiated into neural stem cells in vitro. The obtained PCL scaffolds werê0.5 mm in thickness with biocompatibility and biodegradability. SEM results indicated that the ASCs and (or) iPS-NSCs grew well on PCL scaffolds. Moreover, transplantation reduced the volume of lesion cavity and improved locomotor recovery of rats. In addition, the degree of spinal cord recovery and remodeling maybe closely related to nerve growth factor and glial cell-derived neurotrophic factor. In summary, our results demonstrated that tissue engineering scaffold treatment could increase tissue remodeling and could promote motor function recovery in a transection SCI model. CONCLUSION: This study provides preliminary evidence for using tissue engineering scaffold as a clinically viable treatment for SCI in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Poliésteres/química , Células de Schwann/citología , Traumatismos de la Médula Espinal/terapia , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Axones/patología , Conducta Animal , Separación Celular , Técnicas de Cocultivo , Sangre Fetal/citología , Células Madre Pluripotentes Inducidas/ultraestructura , Leucocitos Mononucleares/citología , Ratones , Factores de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/ultraestructura , Ratas Wistar , Células de Schwann/ultraestructura , Médula Espinal/patología
8.
Sci Transl Med ; 10(442)2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29794059

RESUMEN

Axon regeneration after spinal cord injury (SCI) is attenuated by growth inhibitory molecules associated with myelin. We report that rat myelin stimulated the growth of axons emerging from rat neural progenitor cells (NPCs) transplanted into sites of SCI in adult rat recipients. When plated on a myelin substrate, neurite outgrowth from rat NPCs and from human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) was enhanced threefold. In vivo, rat NPCs and human iPSC-derived NSCs extended greater numbers of axons through adult central nervous system white matter than through gray matter and preferentially associated with rat host myelin. Mechanistic investigations excluded Nogo receptor signaling as a mediator of stem cell-derived axon growth in response to myelin. Transcriptomic screens of rodent NPCs identified the cell adhesion molecule neuronal growth regulator 1 (Negr1) as one mediator of permissive axon-myelin interactions. The stimulatory effect of myelin-associated proteins on rodent NPCs was developmentally regulated and involved direct activation of the extracellular signal-regulated kinase (ERK). The stimulatory effects of myelin on NPC/NSC axon outgrowth should be investigated further and could potentially be exploited for neural repair after SCI.


Asunto(s)
Envejecimiento/metabolismo , Axones/metabolismo , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Proyección Neuronal , Animales , Axones/ultraestructura , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Sustancia Gris/citología , Humanos , Ratones Endogámicos C57BL , Vaina de Mielina/ultraestructura , Células-Madre Neurales/ultraestructura , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Endogámicas F344 , Ratas Desnudas , Médula Espinal/citología , Sustancia Blanca/citología
9.
Endocr J ; 65(1): 63-73, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29057768

RESUMEN

Ghrelin functions as a neuroprotective agent and saves neurons from various insults include ischemic injury. However, it remains to be elucidated whether ghrelin protects neuronal cells against ischemic injury-induced excessive autophagy. Autophagy is required for the maintenance of neural stem cell homeostasis. However, regarding autophagic cell death, it is commonly assumed that excessive autophagy leads to self-elimination of mammalian cells. The purpose of this study was to investigate the potential neuroprotection effects of ghrelin from excessive autophagy in adult rat hippocampal neural stem cells (NSCs). Oxygen-Glucose Deprivation (OGD) strongly induces autophagy in adult rat hippocampal NSCs. Ghrelin treatment inhibited OGD-induced cell death of adult rat hippocampal NSCs assessed by cell-counting-kit-8 assay. Ghrelin also suppressed OGD-induced excessive autophagy activity. The protective effect of ghrelin was accompanied by an increased expression levels of Bcl-2, p-62 and decreased expression level of LC3-II, Beclin-1 by Western blot. Furthermore, ghrelin reduced autophagosome formation and number of GFP-LC3 transfected puncta. In conclusion, our data suggest that ghrelin protects adult rat hippocampal NSCs from excessive autophagy in experimental stroke (oxygen-glucose deprivation) model. Regulating autophagic activity may be a potential optimizing target for promoting adult rat hippocampal NSCs based therapy for stroke.


Asunto(s)
Autofagia , Ghrelina/metabolismo , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neuroprotección , Proteínas Proto-Oncogénicas c-bcl-2/agonistas , Proteína Sequestosoma-1/agonistas , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Células Madre Adultas/patología , Células Madre Adultas/ultraestructura , Animales , Apoptosis , Beclina-1/antagonistas & inhibidores , Beclina-1/metabolismo , Biomarcadores/metabolismo , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Hipocampo/patología , Hipocampo/ultraestructura , Hipoglucemia/metabolismo , Hipoglucemia/patología , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/patología , Células-Madre Neurales/ultraestructura , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas Endogámicas F344 , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína Sequestosoma-1/metabolismo
10.
J Comp Neurol ; 526(2): 285-309, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28980312

RESUMEN

As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9, and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Células-Madre Neurales/fisiología , Regeneración/fisiología , Médula Espinal/citología , Cola (estructura animal)/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Proteínas ELAV/metabolismo , Epéndimo/citología , Lagartos , Microscopía Electrónica de Transmisión , Proteínas de Microtúbulos/metabolismo , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/ultraestructura , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/fisiología , Cola (estructura animal)/fisiología , Cola (estructura animal)/ultraestructura , Factores de Tiempo
11.
J Comp Neurol ; 526(3): 480-495, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29134656

RESUMEN

Transplanting embryonic precursors of GABAergic neurons from the medial ganglionic eminence (MGE) into adult mouse spinal cord ameliorates mechanical and thermal hypersensitivity in peripheral nerve injury models of neuropathic pain. Although Fos and transneuronal tracing studies strongly suggest that integration of MGE-derived neurons into host spinal cord circuits underlies recovery of function, the extent to which there is synaptic integration of the transplanted cells has not been established. Here, we used electron microscopic immunocytochemistry to assess directly integration of GFP-expressing MGE-derived neuronal precursors into dorsal horn circuitry in intact, adult mice with short- (5-6 weeks) or long-term (4-6 months) transplants. We detected GFP with pre-embedding avidin-biotin-peroxidase and GABA with post-embedding immunogold labeling. At short and long times post-transplant, we found host-derived synapses on GFP-immunoreactive MGE cells bodies and dendrites. The proportion of dendrites with synaptic input increased from 50% to 80% by 6 months. In all mice, MGE-derived terminals formed synapses with GFP-negative (host) cell bodies and dendrites and, unexpectedly, with some GFP-positive (i.e., MGE-derived) dendrites, possibly reflecting autoapses or cross talk among transplanted neurons. We also observed axoaxonic appositions between MGE and host terminals. Immunogold labeling for GABA confirmed that the transplanted cells were GABAergic and that some transplanted cells received an inhibitory GABAergic input. We conclude that transplanted MGE neurons retain their GABAergic phenotype and integrate dynamically into host-transplant synaptic circuits. Taken together with our previous electrophysiological analyses, we conclude that MGE cells are not GABA pumps, but alleviate pain and itch through synaptic release of GABA.


Asunto(s)
Neuronas GABAérgicas/fisiología , Eminencia Media/citología , Células-Madre Neurales/metabolismo , Médula Espinal/cirugía , Trasplante de Células Madre/métodos , Sinapsis/fisiología , Animales , Embrión de Mamíferos , Neuronas GABAérgicas/ultraestructura , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/ultraestructura , Eminencia Media/embriología , Ratones , Ratones Transgénicos , Microscopía Inmunoelectrónica , Células-Madre Neurales/ultraestructura , Médula Espinal/citología , Sinapsis/ultraestructura , Factores de Tiempo
12.
Exp Neurol ; 296: 69-73, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28698030

RESUMEN

Neural progenitor cells (NPCs) grafted to sites of spinal cord injury (SCI) extend numerous axons over long distances and form new synaptic connections with host neurons. In the present study we examined the myelination of axons emerging from NPC grafts. Rat embryonic day 14 (E14) multipotent NPCs constitutively expressing GFP were grafted into adult C5 spinal cord hemisection lesions; 3months later we examined graft-derived axonal diameter and myelination using transmission electron microscopy. 104 graft-derived axons were characterized. Axon diameter ranged from 0.15 to 1.70µm, and 24% of graft-derived axons were myelinated by host oligodendrocytes caudal to the lesion. The average diameter of myelinated axons (0.72±0.3µm) was significantly larger than that of non-myelinated axons (0.61±0.2µm, p<0.05). Notably, the G-ratio of myelinated graft-derived axons (0.77±0.01) was virtually identical to that of the normal, intact spinal cord described in published reports. These findings indicate that axons emerging from early stage neural grafts into the injured spinal cord recapitulate both the small/medium size range and myelin thickness of intact spinal cord axons.


Asunto(s)
Axones/patología , Vaina de Mielina/patología , Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/cirugía , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Axones/fisiología , Axones/ultraestructura , Células Cultivadas , Embrión de Mamíferos , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Microscopía Electrónica de Transmisión de Rastreo , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/ultraestructura , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas
13.
PLoS One ; 12(6): e0179375, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28599005

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a main constituent of cytoplasmic aggregates in neuronal and glial cells in cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We have previously demonstrated that adenovirus-transduced artificial TDP-43 cytoplasmic aggregates formation is enhanced by proteasome inhibition in vitro and in vivo. However, the relationship between cytoplasmic aggregate formation and cell death remains unclear. In the present study, rat neural stem cell lines stably transfected with EGFP- or Sirius-expression vectors under the control of tubulin beta III, glial fibrillary acidic protein, or 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter were differentiated into neurons, astrocytes, and oligodendrocytes, respectively, in the presence of retinoic acid. The differentiated cells were then transduced with adenoviruses expressing DsRed-tagged human wild type and C-terminal fragment TDP-43 under the condition of proteasome inhibition. Time-lapse imaging analyses revealed growing cytoplasmic aggregates in the transduced neuronal and glial cells, followed by collapse of the cell. The aggregates remained insoluble in culture media, consisted of sarkosyl-insoluble granular materials, and contained phosphorylated TDP-43. Moreover, the released aggregates were incorporated into neighboring neuronal cells, suggesting cell-to-cell spreading. The present study provides a novel tool for analyzing the detailed molecular mechanisms of TDP-43 proteinopathy in vitro.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Animales , Muerte Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Células-Madre Neurales/ultraestructura , Neuroglía/patología , Neuroglía/ultraestructura , Neuronas/patología , Neuronas/ultraestructura , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Ratas , Imagen de Lapso de Tiempo
14.
Cell Rep ; 16(10): 2576-2592, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568284

RESUMEN

The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.


Asunto(s)
Mitosis , Células-Madre Neurales/enzimología , Células-Madre Neurales/virología , Células Neuroepiteliales/virología , Neuroglía/virología , Proteínas Serina-Treonina Quinasas/metabolismo , Virus Zika/patogenicidad , Encéfalo/embriología , Encéfalo/patología , Encéfalo/virología , Muerte Celular/efectos de los fármacos , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Feto/virología , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Microcefalia/patología , Microcefalia/virología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitosis/efectos de los fármacos , Neocórtex/patología , Células-Madre Neurales/inmunología , Células-Madre Neurales/ultraestructura , Células Neuroepiteliales/efectos de los fármacos , Células Neuroepiteliales/inmunología , Células Neuroepiteliales/ultraestructura , Neuroglía/patología , Neuroglía/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/virología , Fármacos Neuroprotectores/farmacología , Nucleósidos/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Médula Espinal/patología , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Virus Zika/fisiología , Virus Zika/ultraestructura , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología , Tirosina Quinasa del Receptor Axl
15.
Exp Cell Res ; 347(2): 322-31, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27554603

RESUMEN

Alzheimer's disease (AD) is the general consequence of dementia and is diagnostic neuropathology by the cumulation of amyloid-beta (Aß) protein aggregates, which are thought to promote mitochondrial dysfunction processes leading to neurodegeneration. AMP-activated protein kinase (AMPK), a critical regulator of energy homeostasis and a major player in lipid and glucose metabolism, is potentially implied in the mitochondrial deficiency of AD. Metformin, one of the widespread used anti- metabolic disease drugs, use its actions in part by stimulation of AMPK. While the mechanisms of AD are well established, the neuronal roles for AMPK in AD are still not well understood. In the present study, human neural stem cells (hNSCs) exposed to Aß had significantly reduced cell viability, which correlated with decreased AMPK, neuroprotective genes (Bcl-2 and CREB) and mitochondria associated genes (PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3/9 activity and cytosolic cytochrome c. Co-treatment with metformin distinct abolished the Aß-caused actions in hNSCs. Metformin also significantly rescued hNSCs from Aß-mediated mitochondrial deficiency (lower D-loop level, mitochondrial mass, maximal respiratory function, COX activity, and mitochondrial membrane potential). Importantly, co-treatment with metformin significantly restored fragmented mitochondria to almost normal morphology in the hNSCs with Aß. These findings extend our understanding of the central role of AMPK in Aß-related neuronal impairment. Thus, a better understanding of AMPK might assist in both the recognition of its critical effects and the implementation of new therapeutic strategies in the treatment of AD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides/farmacología , Metformina/metabolismo , Metformina/farmacología , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/ultraestructura , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(17): 4836-41, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27044087

RESUMEN

Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment.


Asunto(s)
Daño Encefálico Crónico/terapia , Micropartículas Derivadas de Células/trasplante , Trastornos del Conocimiento/terapia , Irradiación Craneana/efectos adversos , Hipocampo/fisiología , Células-Madre Neurales/ultraestructura , Traumatismos Experimentales por Radiación/terapia , Amígdala del Cerebelo/ultraestructura , Animales , Daño Encefálico Crónico/etiología , Células Cultivadas , Trastornos del Conocimiento/etiología , Genes Reporteros , Habituación Psicofisiológica/fisiología , Xenoinjertos , Hipocampo/ultraestructura , Humanos , Masculino , Microglía/fisiología , Neocórtex/ultraestructura , Ratas , Ratas Desnudas
17.
Brain Res ; 1642: 197-208, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27038753

RESUMEN

Cultivation of neural stem/progenitor cells (NS/PCs) in PuraMatrix (PM) hydrogel is an option for stem cell transplantation. The efficacy of a novel method for placing adult rat NS/PCs in PM (injection method) was compared to encapsulation and surface plating approaches. In addition, the efficacy of injection method for transplantation of autologous NS/PCs was studied in a rat model of brain injury. NS/PCs were obtained from the subventricular zone (SVZ) and cultivated without (control) or with scaffold (three-dimensional cultures; 3D). The effect of different approaches on survival, proliferation, and differentiation of NS/PCs were investigated. In in vivo study, brain injury was induced 45 days after NS/PCs were harvested from the SVZ and phosphate buffered saline, PM, NS/PCs, or PM+NS/PCs were injected into the brain lesion. There was an increase in cell viability and proliferation after injection and surface plating of NS/PCs compared to encapsulation and neural differentiation markers were expressed seven days after culturing the cells. Using injection method, transplantation of NS/PCs cultured in PM resulted in significant reduction of lesion volume, improvement of neurological deficits, and enhancement of surviving cells. In addition, the transplanted cells could differentiate in to neurons, astrocytes, or oligodendrocytes. Our results indicate that the injection and surface plating methods enhanced cell survival and proliferation of NS/PCs and suggest the injection method as a promising approach for transplantation of NS/PCs in brain injury.


Asunto(s)
Lesiones Encefálicas/terapia , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Cultivo Primario de Células/métodos , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Hidrogel de Polietilenoglicol-Dimetacrilato , Ventrículos Laterales/citología , Masculino , Corteza Motora/lesiones , Células-Madre Neurales/ultraestructura , Ratas , Ratas Wistar
18.
Sci Rep ; 6: 21793, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26898165

RESUMEN

Traumatic brain injury (TBI) promotes neural stem/progenitor cell (NSC) proliferation in an attempt to initiate innate repair mechanisms. However, all immature neurons in the CNS are required to migrate from their birthplace to their final destination to develop into functional neurons. Here we assessed the destination of adult-born neurons following TBI. We found that a large percentage of immature neurons migrated past their normal stopping site at the inner granular cell layer (GCL), and became misplaced in the outer GCL of the hippocampal dentate gyrus. The aberrant migration of adult-born neurons in the hippocampus occurred 48 hours after TBI, and lasted for 8 weeks, resulting in a great number of newly generated neurons misplaced in the outer GCL in the hippocampus. Those misplaced neurons were able to become mature and differentiate into granular neurons, but located ectopically in the outer GCL with reduced dendritic complexity after TBI. The adult-born neurons at the misplaced position may make wrong connections with inappropriate nearby targets in the pre-existing neural network. These results suggest that although stimulation of endogenous NSCs following TBI might offer new avenues for cell-based therapy, additional intervention is required to further enhance successful neurogenesis for repairing the damaged brain.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Dendritas/ultraestructura , Giro Dentado/ultraestructura , Red Nerviosa/ultraestructura , Células-Madre Neurales/ultraestructura , Animales , Bromodesoxiuridina , Movimiento Celular , Proliferación Celular , Rastreo Celular/métodos , Corteza Cerebral/lesiones , Corteza Cerebral/patología , Corteza Cerebral/ultraestructura , Dendritas/patología , Giro Dentado/lesiones , Giro Dentado/patología , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/lesiones , Red Nerviosa/patología , Células-Madre Neurales/patología , Neurogénesis , Neuroimagen , Retroviridae/genética , Retroviridae/metabolismo , Coloración y Etiquetado/métodos
19.
Sci Rep ; 6: 21206, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879757

RESUMEN

Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.


Asunto(s)
Aparato de Golgi/metabolismo , Células-Madre Neurales/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Expresión Génica , Genes Reporteros , Aparato de Golgi/ultraestructura , Ratones , Ratones Transgénicos , Mitosis , Células-Madre Neurales/ultraestructura , Polisacáridos/metabolismo , Transporte de Proteínas
20.
PLoS One ; 11(2): e0148680, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26863614

RESUMEN

Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Adulto , Edad de Inicio , Alelos , Antígenos Nucleares/análisis , Proteínas de Ciclo Celular , Células Cultivadas , Complejo Dinactina , Dineínas/análisis , Genes Dominantes , Células Madre Embrionarias Humanas/citología , Humanos , Proteína Huntingtina , Proteínas Asociadas a Microtúbulos/análisis , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/ultraestructura , Proteínas Asociadas a Matriz Nuclear/análisis , Péptidos/análisis , Células Madre Pluripotentes/citología , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , Huso Acromático/ultraestructura , Fracciones Subcelulares/química , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA