Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Nature ; 628(8009): 818-825, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658687

RESUMEN

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Asunto(s)
Trastorno Autístico , Síndrome de QT Prolongado , Oligonucleótidos Antisentido , Sindactilia , Animales , Femenino , Humanos , Masculino , Ratones , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Movimiento Celular/efectos de los fármacos , Dendritas/metabolismo , Exones/genética , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Organoides/efectos de los fármacos , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citología , Sindactilia/tratamiento farmacológico , Sindactilia/genética , Interneuronas/citología , Interneuronas/efectos de los fármacos
2.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664444

RESUMEN

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Envejecimiento , Miocardio , Proteínas del Tejido Nervioso , Canal Liberador de Calcio Receptor de Rianodina , Proteínas Supresoras de Tumor , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Masculino , Envejecimiento/metabolismo , Ratones , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Miocardio/metabolismo , Miocardio/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Técnicas de Silenciamiento del Gen , Endosomas/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Corazón/fisiopatología , Ratones Endogámicos C57BL , Humanos , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Sístole
3.
BMC Pediatr ; 23(1): 500, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784084

RESUMEN

BACKGROUND: The CACNA1S gene encodes the alpha 1 S-subunit of the voltage-gated calcium channel, which is primarily expressed in the skeletal muscle cells. Pathogenic variants of CACNA1S can cause hypokalemic periodic paralysis (HypoPP), malignant hyperthermia susceptibility, and congenital myopathy. We aimed to study the clinical and molecular features of a male child with a CACNA1S variant and depict the molecular sub-regional characteristics of different phenotypes associated with CACNA1S variants. CASE PRESENTATION: We presented a case of HypoPP with recurrent muscle weakness and hypokalemia. Genetic analyses of the family members revealed that the proband had a novel c.497 C > A (p.Ala166Asp) variant of CACNA1S, which was inherited from his father. The diagnosis of HypoPP was established in the proband as he met the consensus diagnostic criteria. The patient and his parents were informed to avoid the classical triggers of HypoPP. The attacks of the patient are prevented by lifestyle changes and nutritional counseling. We also showed the molecular sub-regional location of the variants of CACNA1S which was associated with different phenotypes. CONCLUSIONS: Our results identified a new variant of CACNA1S and expanded the spectrum of variants associated with HypoPP. Early genetic diagnosis can help avoid diagnostic delays, perform genetic counseling, provide proper treatment, and reduce morbidity and mortality.


Asunto(s)
Parálisis Periódica Hipopotasémica , Humanos , Masculino , Niño , Parálisis Periódica Hipopotasémica/diagnóstico , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/complicaciones , Mutación , Fenotipo , Debilidad Muscular , Familia , Canales de Calcio Tipo L/genética
4.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903257

RESUMEN

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Tuberosa , Animales , Ratones , Enfermedad de Alzheimer/genética , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Dendritas/metabolismo , Mamíferos/metabolismo , Esclerosis Tuberosa/genética
5.
Hypertension ; 80(12): 2665-2673, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37846579

RESUMEN

BACKGROUND: Disease-causing mutations in CACNA1D gene occur in aldosterone-producing adenomas and familial hyperaldosteronism. We determined whether single nucleotide polymorphisms in CACNA1D gene associate with higher aldosterone resulting in salt sensitivity of blood pressure (BP) and increased BP in men and women. METHODS: Data were obtained from the HyperPATH (International Hypertension Pathotypes) cohort, where participants completed a cross-over intervention of liberal and restricted sodium diets. Multi-Ethnic Genotyping Array identified 104 CACNA1D single nucleotide polymorphisms that met quality control. Single nucleotide polymorphism is rs7612148 strongly associated with systolic BP and was selected for study in 521 White participants in 3 scenarios ([1] hypertensives; [2] normotensives; [3] total population=hypertensives+normotensives) using multivariate regression analysis. RESULTS: In the total population and hypertensives, but not normotensives, risk allele carriers (CC, GC), as compared with nonrisk allele homozygotes (GG), exhibited higher salt sensitivity of BP and, on liberal sodium diet, higher systolic BP, lower baseline and angiotensin II-stimulated aldosterone, and lower plasma renin activity. On restricted sodium diet, BP was similar across genotypes, suggesting sodium restriction corrected/neutralized the genotype effect on BP. Because increased aldosterone did not seem to drive the increased salt sensitivity of BP and increased BP on liberal sodium diet, we assessed renal plasma flow. Renal plasma flow increase from restricted to liberal sodium diets was blunted in risk allele homozygotes in the total population and in hypertensives. A replication study in another cohort HyperPATH B (International Hypertension Pathotypes Cohort B) confirmed BP-genotype associations. CONCLUSIONS: CACNA1D rs7612148 risk allele associated with increased BP and salt sensitivity of BP, likely due to an impaired ability to increase renal plasma flow in response to a liberal sodium diet and not to excess aldosterone.


Asunto(s)
Aldosterona , Hipertensión , Femenino , Humanos , Masculino , Presión Sanguínea/genética , Canales de Calcio Tipo L/genética , Dieta Hiposódica , Polimorfismo de Nucleótido Simple , Renina , Cloruro de Sodio Dietético/efectos adversos , Población Blanca/genética
6.
Neurology ; 101(18): e1779-e1786, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37679049

RESUMEN

BACKGROUND AND OBJECTIVES: This study aimed to characterize the phenotype of a novel myalgic myopathy encountered in a Finnish family. METHODS: Four symptomatic and 3 asymptomatic individuals from 2 generations underwent clinical, neurophysiologic, imaging, and muscle biopsy examinations. Targeted sequencing of all known myopathy genes was performed. RESULTS: A very rare CACNA1S gene variant c.2893G>C (p.E965Q) was identified in the family. The symptomatic patients presented with exercise-induced myalgia, cramping, muscle stiffness, and fatigue and eventually developed muscle weakness. Examinations revealed mild ptosis and unusual muscle hypertrophy in the upper limbs. In the most advanced disease stage, muscle weakness and muscle atrophy of the limbs were evident. In some patients, muscle biopsy showed mild myopathic findings and creatine kinase levels were slightly elevated. DISCUSSION: Myalgia is a very common symptom affecting quality of life. Widespread myalgia may be confused with other myalgic syndromes such as fibromyalgia. In this study, we show that variants in CACNA1S gene may be one cause of severe exercise-induced myalgia.


Asunto(s)
Enfermedades Musculares , Mialgia , Humanos , Mialgia/genética , Calidad de Vida , Enfermedades Musculares/genética , Enfermedades Musculares/diagnóstico , Debilidad Muscular/genética , Fenotipo , Canales de Calcio Tipo L/genética
7.
Immunotherapy ; 15(15): 1275-1291, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37584225

RESUMEN

Aims: There is an urgent need for appropriate biomarkers that can precisely and reliably predict immunotherapy efficacy, as immunotherapy responses can differ in skin cutaneous melanoma (SKCM) patients. Methods: In this study, univariate regression models and survival analysis were used to examine the link between calcium voltage-gated channel subunit alpha 1C (CACNA1C) mutation status and immunotherapy outcome in SKCM patients receiving immunotherapy. Mutational landscape, immunogenicity, tumor microenvironment and pathway-enrichment analyses were also performed. Results: The CACNA1C mutation group had a better prognosis, higher immunogenicity, lower endothelial cell infiltration, significant enrichment of antitumor immune response pathways and significant downregulation of protumor pathways. Conclusion: CACNA1C mutation status is anticipated to be a biomarker for predicting melanoma immunotherapy effectiveness.


Aims: The treatment to make the immune system work better is also used to treat a skin cancer called skin cutaneous melanoma (SKCM). We need new ways to predict if the treatment will work. Methods: We looked at two groups of people getting the treatment to make the immune system work better. One group had a special change in their bodies, and the other group did not. We looked at how this change affected the patients. We also looked at how to make their immune system stronger. Results: We found that people with mutations tend to have better chances of getting better from their sickness. Conclusion: We think that this might be a good way to tell if immunotherapy will work well for this type of SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Canales de Calcio Tipo L/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/genética , Melanoma/terapia , Mutación/genética , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Microambiente Tumoral , Melanoma Cutáneo Maligno
8.
Mol Neurobiol ; 60(12): 6826-6839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493923

RESUMEN

Genetic perturbations in dopamine neurotransmission and calcium signaling pathways are implicated in the etiology of schizophrenia. We aimed to test the association of a functional splice variant each in Dopamine ß-Hydroxylase (DBH; rs1108580) and Calcium voltage-gated channel subunit alpha1 C (CACNA1C; rs1006737) genes in these pathways with schizophrenia (506 cases, 443 controls); Abnormal Involuntary Movement Scale (AIMS) scores in subjects assessed for tardive dyskinesia (76 TD-positive, 95 TD-negative) and Penn Computerized Neurocognitive Battery (PennCNB) scores (334 cases, 234 controls). The effect of smoking status and SNP genotypes on AIMS scores were assessed using ANOVA; health status and SNP genotypes on three performance functions of PennCNB cognitive domains were assessed by ANCOVA with age and sex as covariates. Association with Positive and Negative Syndrome Scale (PANSS) scores in the TD cohort and cognitive scores in healthy controls of the cognition cohort were tested by linear regression. None of the markers were associated with schizophrenia. Smoking status [F(2, 139) = 10.6; p = 5 × 10-5], rs1006737 [F(2, 139) = 7.1; p = 0.001], TD status*smoking [F(2, 139) = 8.0; p = 5.0 × 10-4] and smoking status*rs1006737 [F(4, 139) = 2.7; p = 0.03] had an effect on AIMS score. Furthermore, rs1006737 was associated with orofacial [F(2, 139) = 4.6; p = 0.01] and limb-truncal TD [(F(2, 139) = 3.8; p = 0.02]. Main effect of rs1108580 on working memoryprocessing speed [F(2, 544) = 3.8; p = 0.03] and rs1006737 on spatial abilityefficiency [F(1, 550) = 9.4; p = 0.02] was identified. Health status*rs1006737 interaction had an effect on spatial memoryprocessing speed [F(1, 550) = 6.9; p = 0.01]. Allelic/genotypic association (p = 0.01/0.03) of rs1006737 with disorganized/concrete factor and allelic association of rs1108580 (p = 0.04) with a depressive factor of PANSS was observed in the TD-negative subcohort. Allelic association of rs1006737 with sensorimotor dexterityaccuracy (p = 0.03), attentionefficiency (p = 0.05), and spatial abilityefficiency (p = 0.02); allelic association of rs1108580 with face memoryaccuracy (p = 0.05) and emotionefficiency (p = 0.05); and allelic/genotypic association with emotionaccuracy (p = 0.003/0.009) were observed in healthy controls of the cognition cohort. These association findings may have direct implications for personalized medicine and cognitive remediation.


Asunto(s)
Esquizofrenia , Discinesia Tardía , Humanos , Discinesia Tardía/genética , Esquizofrenia/genética , Fumar , Cognición , Velocidad de Procesamiento , Canales de Calcio Tipo L/genética
9.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220286, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122210

RESUMEN

J wave syndrome (JWS) is an inherited cardiac channelopathy associated with malignant ventricular arrhythmias and sudden cardiac death (SCD), which comprises early repolarization syndrome and Brugada syndrome. Here, we explore the association between variants in the L-type calcium channel gene subunits, α1C (CACNA1C) and ß2b (CACNB2b), and the JWS phenotype. Using next-generation genetic sequencing of 402 JWS probands and their family members, we identified a CACNA1C-G37R (p.Gly37Arg) mutation in five individuals in four families, two of which had a family history of SCD as well as a CACNB2b-S143F (p.Ser143Phe) mutation in seven individuals in three families, two of which had a family history of SCD. The variants were located in exon 2 in CACNA1C and exon 5 in CACNB2b; both were in highly conserved amino acid residues. Whole-cell patch-clamp results showed that compared with the wild-type group, calcium current density of CACNB2b-S143F and CACNA1C-G37R were significantly lower displaying a dominant-negative effect. Our findings provide further support for the hypothesis that variants in CACNA1C and CACNB2b are associated with JWS. The results suggest that mutations in these two genes lead to loss-of-function of the cardiac calcium channel current warranting their inclusion in genetic screening protocols. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Síndrome de Brugada , Muerte Súbita Cardíaca , Humanos , Mutación , Síndrome de Brugada/genética , Canales de Calcio Tipo L/genética , Secuencia de Bases
10.
Sci Rep ; 13(1): 4683, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949059

RESUMEN

Prostate cancer is often treated by perturbing androgen receptor signalling. CACNA1D, encoding CaV1.3 ion channels is upregulated in prostate cancer. Here we show how hormone therapy affects CACNA1D expression and CaV1.3 function. Human prostate cells (LNCaP, VCaP, C4-2B, normal RWPE-1) and a tissue microarray were used. Cells were treated with anti-androgen drug, Enzalutamide (ENZ) or androgen-removal from media, mimicking androgen-deprivation therapy (ADT). Proliferation assays, qPCR, Western blot, immunofluorescence, Ca2+-imaging and patch-clamp electrophysiology were performed. Nifedipine, Bay K 8644 (CaV1.3 inhibitor, activator), mibefradil, Ni2+ (CaV3.2 inhibitors) and high K+ depolarising solution were employed. CACNA1D and CaV1.3 protein are overexpressed in prostate tumours and CACNA1D was overexpressed in androgen-sensitive prostate cancer cells. In LNCaP, ADT or ENZ increased CACNA1D time-dependently whereas total protein showed little change. Untreated LNCaP were unresponsive to depolarising high K+/Bay K (to activate CaV1.3); moreover, currents were rarely detected. ADT or ENZ-treated LNCaP exhibited nifedipine-sensitive Ca2+-transients; ADT-treated LNCaP exhibited mibefradil-sensitive or, occasionally, nifedipine-sensitive inward currents. CACNA1D knockdown reduced the subpopulation of treated-LNCaP with CaV1.3 activity. VCaP displayed nifedipine-sensitive high K+/Bay K transients (responding subpopulation was increased by ENZ), and Ni2+-sensitive currents. Hormone therapy enables depolarization/Bay K-evoked Ca2+-transients and detection of CaV1.3 and CaV3.2 currents. Physiological and genomic CACNA1D/CaV1.3 mechanisms are likely active during hormone therapy-their modulation may offer therapeutic advantage.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Andrógenos , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Nifedipino/farmacología , Mibefradil/farmacología , Línea Celular Tumoral , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Canales de Calcio Tipo L/genética
11.
Handb Exp Pharmacol ; 279: 3-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592225

RESUMEN

In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVß1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.


Asunto(s)
Canalopatías , Enfermedades Musculares , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canalopatías/genética , Proteínas Adaptadoras Transductoras de Señales , Acoplamiento Excitación-Contracción/fisiología , Músculo Esquelético/fisiología , Enfermedades Musculares/genética , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Señalización del Calcio
12.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897673

RESUMEN

The voltage-dependent L-type calcium channel isoform CaV1.2 is critically involved in many physiological processes, e.g., in cardiac action potential formation, electromechanical coupling and regulation of insulin secretion by beta cells. Gain-of-function mutations in the calcium voltage-gated channel subunit alpha 1 C (CACNA1C) gene, encoding the CaV1.2 α1-subunit, cause Timothy syndrome (TS), a multisystemic disorder that includes autism spectrum disorders and long QT (LQT) syndrome. Strikingly, TS patients frequently suffer from hypoglycemia of yet unproven origin. Using next-generation sequencing, we identified a novel heterozygous CACNA1C mutation in a patient with congenital hyperinsulinism (CHI) and associated hypoglycemic episodes. We characterized the electrophysiological phenotype of the mutated channel using voltage-clamp recordings and in silico action potential modeling experiments. The identified CaV1.2L566P mutation causes a mixed electrophysiological phenotype of gain- and loss-of-function effects. In silico action potential modeling supports that this mixed electrophysiological phenotype leads to a tissue-specific impact on beta cells compared to cardiomyocytes. Thus, CACNA1C variants may be associated with non-syndromic hyperinsulinemic hypoglycemia without long-QT syndrome, explained by very specific electrophysiological properties of the mutated channel. We discuss different biochemical characteristics and clinical impacts of hypoglycemia in the context of CACNA1C variants and show that these may be associated with significant morbidity for Timothy Syndrome patients. Our findings underline that the potential of hypoglycemia warrants careful attention in patients with CACNA1C variants, and such variants should be included in the differential diagnosis of non-syndromic congenital hyperinsulinism.


Asunto(s)
Hiperinsulinismo Congénito , Síndrome de QT Prolongado , Sindactilia , Trastorno Autístico , Canales de Calcio Tipo L/genética , Hiperinsulinismo Congénito/genética , Humanos , Mutación , Sindactilia/diagnóstico , Sindactilia/genética
13.
Cell Prolif ; 55(11): e13305, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35794842

RESUMEN

OBJECTIVES: Ameloblastoma (AM) has been known as a benign but locally invasive tumour with high recurrence rates. Invasive behaviour of the AM results in destruction of the adjacent jawbone and the non-detectable remnants during surgery, interrupting the complete elimination of cancer cells. METHODS: To explore novel targets for the tumour cell invasion, a transcriptomic analysis between AM and odontogenic keratocyst were performed through next-generation sequencing in detail. RESULTS: Enrichment of CACNA1C gene (encoding Cav1.2) in AM, a subunit of the L-type voltage-gated calcium channel (VGCC) was observed for the first time. The expression and channel activity of Cav1.2 was confirmed by immunostaining and calcium imaging in the patient samples or primary cells. Verapamil, L-type VGCC blocker revealed suppression of the Ca2+ -induced cell aggregation and collective invasion of AM cells in vitro. Furthermore, the effect of verapamil in suppressing AM invasion into the adjacent bone was confirmed through orthotopic xenograft model specifically. CONCLUSION: Taken together, Cav1.2 maybe considered to be a therapeutic candidate to decrease the collective migration and invasion of AM.


Asunto(s)
Ameloblastoma , Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo L , Humanos , Ameloblastoma/tratamiento farmacológico , Ameloblastoma/genética , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/fisiología , Verapamilo/farmacología , Animales
14.
Protein Sci ; 31(5): e4311, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481653

RESUMEN

Excitation-contraction coupling (ECC) is the physiological process in which an electrical signal originating from the central nervous system is converted into muscle contraction. In skeletal muscle tissue, the key step in the molecular mechanism of ECC initiated by the muscle action potential is the cooperation between two Ca2+ channels, dihydropyridine receptor (DHPR; voltage-dependent L-type calcium channel) and ryanodine receptor 1 (RyR1). These two channels were originally postulated to communicate with each other via direct mechanical interactions; however, the molecular details of this cooperation have remained ambiguous. Recently, it has been proposed that one or more supporting proteins are in fact required for communication of DHPR with RyR1 during the ECC process. One such protein that is increasingly believed to play a role in this interaction is the SH3 and cysteine-rich domain-containing protein 3 (STAC3), which has been proposed to bind a cytosolic portion of the DHPR α1S subunit known as the II-III loop. In this work, we present direct evidence for an interaction between a small peptide sequence of the II-III loop and several residues within the SH3 domains of STAC3 as well as the neuronal isoform STAC2. Differences in this interaction between STAC3 and STAC2 suggest that STAC3 possesses distinct biophysical features that are potentially important for its physiological interactions with the II-III loop. Therefore, this work demonstrates an isoform-specific interaction between STAC3 and the II-III loop of DHPR and provides novel insights into a putative molecular mechanism behind this association in the skeletal muscle ECC process.


Asunto(s)
Canales de Calcio Tipo L , Canal Liberador de Calcio Receptor de Rianodina , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Músculo Esquelético/fisiología , Isoformas de Proteínas/metabolismo
15.
Shock ; 57(6): 318-325, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35271535

RESUMEN

AIM: Sepsis-induced cardiomyopathy is commonplace and carries an increased risk of death. Melusin, a cardiac muscle-specific chaperone, exerts cardioprotective function under varied stressful conditions through activation of the AKT pathway. The objective of this study was to determine the role of melusin in the pathogenesis of lipopolysaccharide (LPS)-induced cardiac dysfunction and to explore its signaling pathway for the identification of putative therapeutic targets. METHODS AND RESULTS: Prospective, randomized, controlled experimental study in a research laboratory. Melusin overexpressing (MelOV) and wild-type (MelWT) mice were used. MelOV and MelWT mice were injected intraperitoneally with LPS. Cardiac function was assessed using trans-thoracic echocardiography. Myocardial expression of L-type calcium channel (LTCC), phospho-Akt and phospho-Gsk3-b were also measured. In separate experiments, wild-type mice were treated post-LPS challenge with the allosteric Akt inhibitor Arq092 and a mimetic peptide (R7W-MP) targeting the LTCC. The impact of these therapies on protein-protein interactions, cardiac function, and survival was assessed. MelOV mice had limited derangement in cardiac function after LPS challenge. Protection was associated with higher Akt and Gsk3-b phosphorylation and restored LTCC density. Pharmacological inhibition of Akt activity reversed melusin-dependent cardiac protection. Treatment with R7W-MP preserved cardiac function in wild-type mice after LPS challenge and significantly improved survival. CONCLUSIONS: This study identifies AKT / Melusin as a key pathway for preserving cardiac function following LPS challenge. The cell-permeable mimetic peptide (R7W-MP) represents a putative therapeutic for sepsis-induced cardiomyopathy.


Asunto(s)
Canales de Calcio Tipo L , Cardiomiopatías , Proteínas del Citoesqueleto , Ventrículos Cardíacos , Proteínas Musculares , Contracción Miocárdica , Sepsis , Animales , Ratones , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sepsis/genética , Sepsis/metabolismo
16.
Nihon Yakurigaku Zasshi ; 157(1): 4-8, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-34980811

RESUMEN

Striated muscle L-type calcium channels (LTCC) are localized specifically to the junctional membrane (JM) where the sarcolemma is closely apposed to the sarcoplasmic reticulum. Although this allocation of LTCC is critical for efficient excitation-contraction coupling in striated muscles, its underlying molecular mechanism has not been clarified. Junctophilins (JPs) stabilize the structure of JM by bridging the sarcolemmal and SR membranes. In addition, immunoprecipitation and pull-down assay revealed that the proximal C-terminus of CaV1.1 subunits directly binds to both JP1 and JP2, indicating that JPs might also directly recruit and hold LTCC in JM. Indeed, expression of a JP1 mutant lacking its C-terminus including the transmembrane domain in mouse skeletal muscles exerted a dominant-negative effect on endogenous JPs by impairing LTCC-RyR coupling at triads and reducing contractile force. To investigate a role of cardiac JP2 in a similar strategy, we injected adeno-associated virus vector expressing a C-terminus lacking JP2 mutant (JP2Δ427) driven by a cardiac troponin T promoter into C57BL/6 mice. Echocardiography recorded 4 weeks after the viral injection showed that the fractional shortening in JP2Δ427 group was significantly decreased compared to that of the control group. Calcium transient of isolated ventricular myocytes was significantly decreased by JP2Δ427 expression. Immunocytochemistry showed that JP2Δ427 recruited LTCC to the surface sarcolemma from T-tubules. Taken together, expression of C-terminus lacking JP mutants down-regulated contractile force by impairing ECC of skeletal and cardiac myocytes. Thus, the physical binding between LTCC and JP is essential for contraction of striated muscles.


Asunto(s)
Canales de Calcio Tipo L , Proteínas de la Membrana , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos
17.
J Matern Fetal Neonatal Med ; 35(25): 5227-5235, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33491517

RESUMEN

OBJECTIVE: Preeclampsia (PE) is a disorder that occurs during the pregnancy and could affect the maternal and perinatal mortality as well as morbidity. The aim of our study is to investigate the associations between the hypertension susceptibility genes ITGA9, MOV10 and CACNB2 with PE in Chinese Han population. METHODS: A case-control study including 178 PE patients and 202 healthy controls was conducted to assess the associations between three loci (ITGA9 rs155524, MOV10 rs2932538 and CACNB2 rs4373814) and PE. The TaqMan probe assay was applied for genotyping in our study. Quantitative real-time PCR was performed to detect the mRNA expression levels of ITGA9, MOV10 and CACNB2. ELISA was carried out to detect the concentration of serum sFlt-1 or PLGF. RESULTS: Our study detected no significant differences in allelic frequencies of three SNPs between PE patients and healthy controls. In the genetic model, the results showed that the patients with ITGA9 rs155524 GA or AA genotypes had a higher risk of PE development compared to those with GG genotype in codominant model. And PE patients had a higher frequency of GA + AA genotypes based on the dominant model. Subgroup analysis showed ITGA9 rs155524 was associated with early-onset PE but not with late-onset PE. No association was observed between MOV10 and CACNB2 with PE in any genetic model and subgroup analysis. Quantitative real-time PCR results showed that ITGA9 mRNA expression level was apparently increased in the placental tissues of PE patients. In addition, ITGA9 expression levels of GA + AA subjects were apparently higher than that in the genotype GG of placental tissues. sFlt-1/PLGF ratio was higher in GA + AA subjects than that in GG subjects. Regression analysis revealed that ratio of sFlt-1/PLGF was positively correlated with ITGA9 mRNA expression level. CONCLUSION: This study has identified ITGA9 is a promising candidate susceptibility gene for early-onset PE. Our findings demonstrated that the high expression of ITGA9 might be associated with an increased risk of PE.


Asunto(s)
Canales de Calcio Tipo L , Hipertensión , Integrinas , Preeclampsia , ARN Helicasas , Femenino , Humanos , Embarazo , Biomarcadores , Canales de Calcio Tipo L/genética , Estudios de Casos y Controles , China/epidemiología , Placenta/metabolismo , Factor de Crecimiento Placentario , ARN Helicasas/genética , ARN Mensajero/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Integrinas/genética
18.
J Nutr Biochem ; 99: 108864, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606907

RESUMEN

Vitamin D3 is associated with improvements in insulin resistance and glycemia. In this study, we investigated the short-term effect of 1α,25(OH)2 Vitamin D3 (1,25-D3) and cholecalciferol (vitamin D3) on the glycemia and insulin sensitivity of control and dexamethasone-induced insulin-resistance rats. 45Ca2+ influx responses to 1,25-D3 and its role in insulin secretion were investigated in isolated pancreatic islets from control rats. In vivo, 5 d treatment with 1,25-D3 (i.p.) prevented insulin resistance in dexamethasone-treated rats. Treatment with 1,25-D3 improved the activities of hepatic enzymes, serum lipids and calcium concentrations in insulin-resistant rats. 25-D3 (o.g.) does not affect insulin resistance. In pancreatic islets, 1,25-D3 increased insulin secretion and stimulated rapid response 45Ca2+ influx. The stimulatory effect of 1,25-D3 on 45Ca2+ influx was decreased by diazoxide, apamine, thapsigargin, dantrolene, 2-APB, nifedipine, TEA, PKA, PKC, and cytoskeleton inhibitor, while it was increased by glibenclamide and N-ethylmaleimide. The stimulatory effect of 1,25-D3 on 45Ca2+ influx involves the activation of L-type VDCC, K+-ATP, K+-Ca2+, and Kv channels, which augment cytosolic calcium. These ionic changes mobilize calcium from stores and downstream activation of PKC, PKA tethering vesicle traffic and fusion at the plasma membrane for insulin secretion. This is the first study highlighting the unprecedented role of 1,25-D3 (short-term effect) in the regulation of glucose homeostasis and on prevention of insulin resistance. Furthermore, this study shows the intracellular ß-cell signal transduction of 1,25-D3 through the modulation of pivotal ionic channels and proteins exhibiting a coordinated exocytosis of vesicles for insulin secretion.


Asunto(s)
Colecalciferol/análogos & derivados , Exocitosis/efectos de los fármacos , Resistencia a la Insulina , Secreción de Insulina/efectos de los fármacos , Insulina/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Colecalciferol/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratas , Ratas Wistar
19.
Clin Epigenetics ; 13(1): 179, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563241

RESUMEN

BACKGROUND: Nasal intestinal-type adenocarcinomas (ITAC) are strongly related to chronic wood dust exposure: The intestinal phenotype relies on CDX2 overexpression but underlying molecular mechanisms remain unknown. Our objectives were to investigate transcriptomic and methylation differences between healthy non-exposed and tumor olfactory cleft mucosae and to compare transcriptomic profiles between non-exposed, wood dust-exposed and ITAC mucosa cells. METHODS: We conducted a prospective monocentric study (NCT0281823) including 16 woodworkers with ITAC, 16 healthy exposed woodworkers and 13 healthy, non-exposed, controls. We compared tumor samples with healthy non-exposed samples, both in transcriptome and in methylome analyses. We also investigated wood dust-induced transcriptome modifications of exposed (without tumor) male woodworkers' samples and of contralateral sides of woodworkers with tumors. We conducted in parallel transcriptome and methylome analysis, and then, the transcriptome analysis was focused on the genes highlighted in methylome analysis. We replicated our results on dataset GSE17433. RESULTS: Several clusters of genes enabled the distinction between healthy and ITAC samples. Transcriptomic and IHC analysis confirmed a constant overexpression of CDX2 in ITAC samples, without any specific DNA methylation profile regarding the CDX2 locus. ITAC woodworkers also exhibited a specific transcriptomic profile in their contralateral (non-tumor) olfactory cleft, different from that of other exposed woodworkers, suggesting that they had a different exposure or a different susceptibility. Two top-loci (CACNA1C/CACNA1C-AS1 and SLC26A10) were identified with a hemimethylated profile, but only CACNA1C appeared to be overexpressed both in transcriptomic analysis and in immunohistochemistry. CONCLUSIONS: Several clusters of genes enable the distinction between healthy mucosa and ITAC samples even in contralateral nasal fossa thus paving the way for a simple diagnostic tool for ITAC in male woodworkers. CACNA1C might be considered as a master gene of ITAC and should be further investigated. TRIAL REGISTRATION: NIH ClinicalTrials, NCT0281823, registered May 23d 2016, https://www.clinicaltrials.gov/NCT0281823 .


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Genómica/métodos , Neoplasias Intestinales/genética , Neoplasias Nasales/genética , Adenocarcinoma/epidemiología , Adenocarcinoma/genética , Anciano , Canales de Calcio Tipo L/genética , Metilación de ADN/efectos de los fármacos , Femenino , Genómica/instrumentación , Genómica/estadística & datos numéricos , Humanos , Neoplasias Intestinales/epidemiología , Masculino , Persona de Mediana Edad , Neoplasias Nasales/epidemiología , Exposición Profesional/análisis , Madera
20.
Eur J Hum Genet ; 29(12): 1819-1824, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34462577

RESUMEN

Malignant hyperthermia (MH) susceptibility is a rare life-threatening disorder that occurs upon exposure to a triggering agent. MH is commonly due to protein-altering variants in RYR1 and CACNA1S. The American College of Medical Genetics and Genomics recommends that when pathogenic and likely pathogenic variants in RYR1 and CACNA1S are incidentally found, they should be reported to the carriers. The detection of actionable variants allows the avoidance of exposure to triggering agents during anesthesia. First, we report a 10-year-old Icelandic proband with a suspected MH event, harboring a heterozygous missense variant NM_000540.2:c.6710G>A r.(6710g>a) p.(Cys2237Tyr) in the RYR1 gene that is likely pathogenic. The variant is private to four individuals within a three-generation family and absent from 62,240 whole-genome sequenced (WGS) Icelanders. Haplotype sharing and WGS revealed that the variant occurred as a somatic mosaicism also present in germline of the proband's paternal grandmother. Second, using a set of 62,240 Icelanders with WGS, we assessed the carrier frequency of actionable pathogenic and likely pathogenic variants in RYR1 and CACNA1S. We observed 13 actionable variants in RYR1, based on ClinVar classifications, carried by 43 Icelanders, and no actionable variant in CACNA1S. One in 1450 Icelanders carries an actionable variant for MH. Extensive sequencing allows for better classification and precise dating of variants, and WGS of a large fraction of the population has led to incidental findings of actionable MH genotypes.


Asunto(s)
Frecuencia de los Genes , Hipertermia Maligna/genética , Mutación Missense , Población/genética , Adulto , Canales de Calcio Tipo L/genética , Niño , Femenino , Haplotipos , Heterocigoto , Humanos , Islandia , Masculino , Hipertermia Maligna/patología , Linaje , Canal Liberador de Calcio Receptor de Rianodina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA