Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145028

RESUMEN

The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity-dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.


Asunto(s)
Terapia Genética , Actividad Motora/genética , Canales de Potasio Calcio-Activados/metabolismo , Proteína Quinasa C/metabolismo , Células de Purkinje/enzimología , Animales , Señalización del Calcio , Eliminación de Gen , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Canales de Potasio Calcio-Activados/genética , Proteína Quinasa C/genética , Potenciales Sinápticos
2.
J Cell Mol Med ; 25(20): 9685-9696, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514691

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Its high metastasis rate is significantly correlated with poor patient prognosis. Elucidating the molecular mechanism underlying HCC metastasis is essential for HCC treatment. Owing to their high conductance, large-conductance calcium-activated potassium channels (BK channels) play a critical role in the control of membrane potential and have repeatedly been proposed as potential targets for cancer therapy. Emerging evidence suggests that BK channels are involved in the progression of cancer malignancies. The present study investigated the role of BK channels in mediating the hypoxia-stimulated migration of HCC cells both in vitro and in vivo in the absence and presence of various BK channels modulators. We found that BK channels were functionally expressed on the membranes of the SMMC-7721 and Huh7 HCC cell lines. Furthermore, blockage or activation of BK channels on the surface of HCC cells correspondingly inhibited or promoted HCC cell proliferation, migration and invasion in hypoxia conditions, with altered expression and distribution of cell-cell adhesion molecule E-cadherin and typical marker of mesenchymal cells, Vimentin, but not N-cadherin. Hypoxia conditions did not alter BK channels expression but increased its open probability. Moreover, BK channels blocker IbTX significantly inhibited HCC cell remote colonization in HCC cell xenografted mice. In conclusion, the results of this study suggest that blocking BK channels offers an attractive strategy for treating HCC.


Asunto(s)
Movimiento Celular/genética , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Xenoinjertos , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Bloqueadores de los Canales de Potasio/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Dev Dyn ; 250(10): 1477-1493, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33728688

RESUMEN

BACKGROUND: Calcium-activated potassium channels (KCa) are a specific type of potassium channel activated by intracellular calcium concentration changes. This group of potassium channels plays fundamental roles ranging from regulating neuronal excitability to immune cell activation. Many human diseases such as schizophrenia, hypertension, epilepsy, and cancers have been linked to mutations in this group of potassium channels. Although the KCa channels have been extensively studied electrophysiologically and pharmacologically, their spatiotemporal gene expression during embryogenesis remains mostly unknown. RESULTS: Using zebrafish as a model, we identified and renamed 14 KCa genes. We further performed phylogenetic and syntenic analyses on vertebrate KCa genes. Our data revealed that the number of KCa genes in zebrafish was increased, most likely due to teleost-specific whole-genome duplication. Moreover, we examined zebrafish KCa gene expression during early embryogenesis. The duplicated ohnologous genes show distinct and overlapped gene expression. Furthermore, we found that zebrafish KCa genes are expressed in various tissues and organs (somites, fins, olfactory regions, eye, kidney, and so on) and neuronal tissues, suggesting that they may play important roles during zebrafish embryogenesis. CONCLUSIONS: Our phylogenetic and developmental analyses shed light on the potential functions of the KCa genes during embryogenesis related to congenital diseases and human channelopathies.


Asunto(s)
Desarrollo Embrionario/fisiología , Filogenia , Canales de Potasio Calcio-Activados/metabolismo , Pez Cebra/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Canales de Potasio Calcio-Activados/genética , Somitos/metabolismo , Pez Cebra/genética
4.
Cell Death Dis ; 10(10): 738, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31570694

RESUMEN

Impaired bone formation is one of the major causes of low bone mass and skeletal fragility that occurs in osteoporosis. However, the mechanisms underlying the defects in bone formation are not well understood. Here, we report that big conductance calcium-activated potassium channels (BKs) are required for bone formation and osteoblast function both in vivo and in vitro. By 15 weeks of age, BK knockout (BKO) mice exhibited a decline in bone mineral density and trabecular bone volume of the tibiae and lumbar vertebrae, which were associated with impaired bone formation and osteoblast activity. Mechanistically, BK ablation in bone and bone marrow mesenchymal stem cells (BMSCs) of BKO mice inhibited integrin signaling. Furthermore, the binding of α subunit of BK with integrin ß1 protein in osteoblasts was confirmed, and FAK-ERK1/2 signaling was proved to be involved by genetic modification of KCNMA1 (which encodes the α subunit of BK) in ROS17/2.8 osteoblast cells. These findings indicated that BK regulates bone formation by promoting osteoblast differentiation via integrin pathway, which provided novel insight into ion transporter crosstalk with the extracellular matrix in osteoblast regulation and revealed a new potential strategy for intervention in correcting bone formation defects.


Asunto(s)
Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Osteogénesis/genética , Osteoporosis/genética , Canales de Potasio Calcio-Activados/genética , Animales , Diferenciación Celular/genética , Quinasa 1 de Adhesión Focal/genética , Integrinas/genética , Vértebras Lumbares/crecimiento & desarrollo , Vértebras Lumbares/patología , Sistema de Señalización de MAP Quinasas/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones Noqueados , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoporosis/fisiopatología
5.
Int J Mol Med ; 44(6): 2103-2112, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31638180

RESUMEN

Recent studies have suggested that calcium­activated potassium channel (KCa) agonists increase the proportion of mouse embryonic stem cell­derived cardiomyocytes and promote the differentiation of pacemaker cells. In the present study, it was hypothesized that adipose­derived stem cells (ADSCs) can differentiate into pacemaker­like cells via overexpression of the SK4 gene. ADSCs were transduced with a recombinant adenovirus vector carrying the mouse SK4 gene, whereas the control group was transduced with GFP vector. ADSCs transduced with SK4 vector were implanted into the rat left ventricular free wall. Complete atrioventricular block (AVB) was established in isolated perfused rat hearts after 2 weeks. SK4 was successfully and stably expressed in ADSCs following transduction. The mRNA levels of the pluripotent markers Oct­4 and Sox­2 declined and that of the transcription factor Shox2 was upregulated following SK4 transduction. The expression of α­actinin and hyperpolarization­activated cyclic nucleotide­gated potassium channel 4 (HCN4) increased in the SK4 group. The hyperpolarizing activated pacemaker current If (8/20 cells) was detected in ADSCs transduced with SK4, but not in the GFP group. Furthermore, SK4 transduction induced the expression of p­ERK1/2 and p­p38 MAPK. In the ex vivo experiments, the heart rate of the SK4 group following AVB establishment was significantly higher compared with that in the GFP group. Immunofluorescence revealed that the transduced ADSCs were successfully implanted and expressed HCN4 in the SK4 group. In conclusion, SK4 induced ADSCs to differentiate into cardiomyocyte­like and pacemaker­like cells via activation of the extracellular signal­regulated kinase 1/2 and p38 mitogen­activated protein kinase pathways. Therefore, ADSCs transduced with SK4 may be used to generate biological pacemakers in ex vivo rat hearts.


Asunto(s)
Relojes Biológicos/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Miocardio/metabolismo , Canales de Potasio Calcio-Activados/genética , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Defectos de los Tabiques Cardíacos/genética , Proteínas de Homeodominio/genética , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Sistema de Señalización de MAP Quinasas/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/genética
6.
Am J Physiol Heart Circ Physiol ; 317(2): H357-H363, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199187

RESUMEN

Elevated plasma aldosterone (Aldo) levels are associated with greater risk of cardiac ischemic events and cardiovascular mortality. Adenosine-mediated coronary vasodilation is a critical cardioprotective mechanism during ischemia; however, whether this response is impaired by increased Aldo is unclear. We hypothesized that chronic Aldo impairs coronary adenosine-mediated vasodilation via downregulation of vascular K+ channels. Male C57BL/6J mice were treated with vehicle (Con) or subpressor Aldo for 4 wk. Coronary artery function, assessed by wire myography, revealed Aldo-induced reductions in vasodilation to adenosine and the endothelium-dependent vasodilator acetylcholine but not to the nitric oxide donor sodium nitroprusside. Coronary vasoconstriction to endothelin-1 and the thromboxane A2 mimetic U-46619 was unchanged by Aldo. Additional mechanistic studies revealed impaired adenosine A2A, not A2B, receptor-dependent vasodilation by Aldo with a tendency for Aldo-induced reduction of coronary A2A gene expression. Adenylate cyclase inhibition attenuated coronary adenosine dilation but did not eliminate group differences, and adenosine-stimulated vascular cAMP production was similar between Con and Aldo mice. Similarly, blockade of inward rectifier K+ channels reduced but did not eliminate group differences in adenosine dilation whereas group differences were eliminated by blockade of Ca2+-activated K+ (KCa) channels that blunted and abrogated adenosine and A2A-dependent dilation, respectively. Gene expression of several coronary KCa channels was reduced by Aldo. Together, these data demonstrate Aldo-induced impairment of adenosine-mediated coronary vasodilation involving blunted A2A-KCa-dependent vasodilation, independent of blood pressure, providing important insights into the link between plasma Aldo and cardiac mortality and rationale for aldosterone antagonist use to preserve coronary microvascular function.NEW & NOTEWORTHY Increased plasma aldosterone levels are associated with worsened cardiac outcomes in diverse patient groups by unclear mechanisms. We identified that, in male mice, elevated aldosterone impairs coronary adenosine-mediated vasodilation, an important cardioprotective mechanism. This aldosterone-induced impairment involves reduced adenosine A2A, not A2B, receptor-dependent vasodilation associated with downregulation of coronary KCa channels and does not involve altered adenylate cyclase/cAMP signaling. Importantly, this effect of aldosterone occurred independent of changes in coronary vasoconstrictor responsiveness and blood pressure.


Asunto(s)
Adenosina/farmacología , Aldosterona/farmacología , Vasos Coronarios/efectos de los fármacos , Canales de Potasio Calcio-Activados/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Vasos Coronarios/metabolismo , AMP Cíclico/metabolismo , Regulación hacia Abajo , Masculino , Ratones Endogámicos C57BL , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Transducción de Señal
8.
Exp Mol Med ; 50(4): 1-7, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29651007

RESUMEN

Life-threatening malignant arrhythmias in pathophysiological conditions can increase the mortality and morbidity of patients with cardiovascular diseases. Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli and the generation of action potentials in cardiomyocytes. Action potential formation results from the opening and closing of ion channels. Recent studies have indicated that small-conductance calcium-activated potassium (SK) channels play a critical role in cardiac repolarization in pathophysiological but not normal physiological conditions. The aim of this review is to describe the role of SK channels in healthy and diseased hearts, to suggest cardiovascular pathophysiologic targets for intervention, and to discuss studies of agents that target SK channels for the treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Miocardio/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Animales , Enfermedades Cardiovasculares/fisiopatología , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Humanos , Mutación , Canales de Potasio Calcio-Activados/química , Canales de Potasio Calcio-Activados/genética , Relación Estructura-Actividad
9.
J Cancer Res Ther ; 14(Supplement): S41-S45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29578148

RESUMEN

PURPOSE: To explore the influence of intermediate-conductance-Ca2+-activated K+ channels. (IKCal) on HeLa cell proliferation. MATERIALS AND METHODS: An IKCal blocking agent (clotrimazole (CLT)) and small hairpin ribonucleic acid interference (RNAi) was used to block IKCal in HeLa cells; subsequently, cell growth was observed. Furthermore, the messenger ribonucleic acid (mRNA) expression of IKCal was detected by reverse transcriptase polymerase chain reaction (RT-PCR) after IKCal-blocking. RESULTS: The obvious morphological changes in HeLa cells were observed 48 h after CLT-blocking. The PCR results indicated that CLT reduced the mRNA expression of IKCal in HeLa cells. HeLa cells were transfected with pGenesil via RNAi; the HeLa cells transfected with pGenesil-IK displayed obvious morphological changes 48 h after transfection. In addition, RT-PCR further demonstrated the reduced mRNA expression of IKCal in the pGenesil group. CONCLUSION: CLT and blocking of IKCal gene expression effectively inhibits HeLa cell proliferation; therefore, the use of a blocking agent and RNAi both effectively downregulated the mRNA expression of IKCal, which in turn mediated the proliferation of HeLa cells, producing an antitumor effect.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Microscopía Fluorescente , ARN Mensajero , Transfección
10.
Am J Physiol Cell Physiol ; 313(1): C118-C129, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490422

RESUMEN

Parathyroid hormone (PTH), a pleiotropic hormone that maintains mineral homeostasis, is also essential for controlling pH balance and ion transport across renal and intestinal epithelia. Optimization of luminal pH is important for absorption of trace elements, e.g., calcium and phosphorus. We have previously demonstrated that PTH rapidly stimulated electrogenic [Formula: see text] secretion in intestinal epithelial-like Caco-2 monolayers, but the underlying cellular mechanism, contributions of other ions, particularly Cl- and K+, and long-lasting responses are not completely understood. Herein, PTH and forskolin were confirmed to induce anion secretion, which peaked within 1-3 min (early phase), followed by an abrupt decay and plateau that lasted for 60 min (late phase). In both early and late phases, apical membrane capacitance was increased with a decrease in basolateral capacitance after PTH or forskolin exposure. PTH also induced a transient increase in apical conductance with a long-lasting decrease in basolateral conductance. Anion secretion in both phases was reduced under [Formula: see text]-free and/or Cl--free conditions or after exposure to carbonic anhydrase inhibitor (acetazolamide), CFTR inhibitor (CFTRinh-172), Na+/H+ exchanger (NHE)-3 inhibitor (tenapanor), or K+ channel inhibitors (BaCl2, clotrimazole, and TRAM-34; basolateral side), the latter of which suggested that PTH action was dependent on basolateral K+ recycling. Furthermore, early- and late-phase responses to PTH were diminished by inhibitors of PI3K (wortmannin and LY-294002) and PKA (PKI 14-22). In conclusion, PTH requires NHE3 and basolateral K+ channels to induce [Formula: see text] and Cl- secretion, thus explaining how PTH regulated luminal pH balance and pH-dependent absorption of trace minerals.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hormona Paratiroidea/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Acetazolamida/farmacología , Potenciales de Acción/efectos de los fármacos , Androstadienos/farmacología , Compuestos de Bario/farmacología , Bicarbonatos/metabolismo , Células CACO-2 , Calcio/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Cloruros/metabolismo , Cloruros/farmacología , Cromonas/farmacología , Clotrimazol/farmacología , Colforsina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Conductividad Eléctrica , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de los fármacos , Isoquinolinas/farmacología , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fósforo/metabolismo , Potasio/metabolismo , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/genética , Pirazoles/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , Sulfonamidas/farmacología , Wortmanina
11.
Biochim Biophys Acta ; 1857(8): 1247-1257, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26951942

RESUMEN

In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Mitocondrias/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Transporte Iónico , Mitocondrias/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos , Plantas/efectos de los fármacos , Plantas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/genética , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Trypanosomatina/efectos de los fármacos , Trypanosomatina/metabolismo
12.
J Steroid Biochem Mol Biol ; 150: 112-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25843210

RESUMEN

The effect of 3ß-hidroxihop-22(29)ene (3-BHO) on insulin and glucagon-like peptide 1 (GLP-1) secretion as well as the mechanism of action of the compound in pancreatic islet on glucose homeostasis was investigated. The data from in vivo treatment show that 3-BHO significantly reduces the hyperglycemia by increasing the insulin and GLP-1 secretion, as well as by accumulating hepatic glycogen in hyperglycemic rats. In rat pancreatic ß-cell, 3-BHO stimulates the glucose uptake, insulin vesicles translocation to the plasma membrane and thus the insulin secretion through the involvement of potassium channels (ATP- and Ca(2+)-dependent K(+) channels) and calcium channels (L-type voltage-dependent calcium channels (L-VDCC)). Furthermore, this study also provides evidence for a crosstalk between intracellular high calcium concentration, PKA and PKC in the signal transduction of 3-BHO to stimulate insulin secretion. In conclusion, 3-BHO diminishes glycaemia, stimulates GLP-1 secretion and potentiates insulin secretion and increase hepatic glycogen content. Moreover, this triterpene modulates calcium influx characterizing ATP-K(+), Ca(2+)-K(+) and L-VDCC channels-dependent pathways as well as PKA and PKC activity in pancreatic islets underlying the signaling of 3-BHO for the secretory activity and contribution on glucose homeostasis.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Péptido 1 Similar al Glucagón/sangre , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Canales KATP/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Triterpenos/farmacología , Animales , Transporte Biológico , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/genética , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Homeostasis/genética , Humanos , Insulina/sangre , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Canales KATP/genética , Masculino , Canales de Potasio Calcio-Activados/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Técnicas de Cultivo de Tejidos
13.
Biochim Biophys Acta ; 1848(10 Pt B): 2657-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25445673

RESUMEN

Neoadjuvant, adjuvant or definitive fractionated radiation therapy are implemented in first line anti-cancer treatment regimens of many tumor entities. Ionizing radiation kills the tumor cells mainly by causing double strand breaks of their DNA through formation of intermediate radicals. Survival of the tumor cells depends on both, their capacity of oxidative defense and their efficacy of DNA repair. By damaging the targeted cells, ionizing radiation triggers a plethora of stress responses. Among those is the modulation of ion channels such as Ca2+-activated K+ channels or Ca2+-permeable nonselective cation channels belonging to the super-family of transient receptor potential channels. Radiogenic activation of these channels may contribute to radiogenic cell death as well as to DNA repair, glucose fueling, radiogenic hypermigration or lowering of the oxidative stress burden. The present review article introduces these channels and summarizes our current knowledge on the mechanisms underlying radiogenic ion channel modulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Asunto(s)
ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Radiación Ionizante , Canales de Potencial de Receptor Transitorio/metabolismo , Muerte Celular/efectos de la radiación , Daño del ADN , Reparación del ADN , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Humanos , Terapia Neoadyuvante , Neoplasias/genética , Neoplasias/patología , Neoplasias/radioterapia , Canales de Potasio Calcio-Activados/genética , Tolerancia a Radiación , Radioterapia Adyuvante , Transducción de Señal , Canales de Potencial de Receptor Transitorio/genética , Resultado del Tratamiento
14.
Biochim Biophys Acta ; 1848(10 Pt B): 2477-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25517985

RESUMEN

Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Progresión de la Enfermedad , Humanos , Potenciales de la Membrana/efectos de los fármacos , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/prevención & control , Fenotipo , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/genética , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética
15.
Biochim Biophys Acta ; 1843(10): 2322-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24613282

RESUMEN

Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca(2+)-activated K(+) channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca(2+) channels are divided into two main families, voltage gated/voltage dependent Ca(2+) channels and non-voltage gated/voltage independent Ca(2+) channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca(2+) channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca(2+). Non-voltage gated Ca(2+) channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca(2+) channels while non-voltage gated Ca(2+) channels are activated by Ca(2+) depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca(2+) channel families also control constitutive Ca(2+) entries. For reducing the energy consumption and for the fine regulation of Ca(2+), KCa and Ca(2+) channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa-Ca(2+) channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Células Eucariotas/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Subunidades de Proteína/metabolismo , Animales , Canales de Calcio/clasificación , Canales de Calcio/genética , Señalización del Calcio , Movimiento Celular , Proliferación Celular , Retículo Endoplásmico/metabolismo , Células Eucariotas/citología , Regulación de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos , Canales de Potasio Calcio-Activados/clasificación , Canales de Potasio Calcio-Activados/genética , Subunidades de Proteína/clasificación , Subunidades de Proteína/genética
16.
Endocrinology ; 154(9): 3319-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836032

RESUMEN

Synthesis and release of FSH and LH are differentially regulated by GnRH, but the mechanisms by which this regulation is achieved are not well understood. Teleost fish are powerful models for studying this differential regulation because they have distinct pituitary cells producing either FSH or LH. By using pituitary cultures from Atlantic cod (Gadus morhua), we were able to investigate and compare the electrophysiological properties of fshb- and lhb-expressing cells, identified by single-cell quantitative PCR after recording. Both cell types fired action potentials spontaneously. The relative number of excitable cells was dependent on reproductive season but varied in opposing directions according to season in the 2 cell types. Excitable and quiescent gonadotropes displayed different ion channel repertoires. The dynamics of outward currents and GnRH-induced membrane responses differed between fshb- and lhb-expressing cells, whereas GnRH-induced cytosolic Ca²âº responses were similar. Expression of Ca²âº-activated K⁺ channels also differed with cell type and showed seasonal variation when measured in whole pituitary. The differential presence of these channels corresponds to the differences observed in membrane response to GnRH. We speculate that differences in ion channel expression levels may be involved in seasonal regulation of hormone secretion as well as the differential response to GnRH in LH- and FSH-producing gonadotropes, through differences in excitability and Ca²âº influx.


Asunto(s)
Proteínas de Peces/metabolismo , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Gadus morhua/fisiología , Regulación del Desarrollo de la Expresión Génica , Gonadotrofos/metabolismo , Hormona Luteinizante de Subunidad beta/metabolismo , Fenómenos Fisiológicos Reproductivos , Animales , Océano Atlántico , Señalización del Calcio , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Proteínas de Peces/genética , Hormona Folículo Estimulante de Subunidad beta/genética , Gadus morhua/crecimiento & desarrollo , Gonadotrofos/citología , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante de Subunidad beta/genética , Masculino , Noruega , Hipófisis/citología , Hipófisis/crecimiento & desarrollo , Hipófisis/metabolismo , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Estaciones del Año
17.
Am J Physiol Cell Physiol ; 304(7): C673-84, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23364268

RESUMEN

Purinergic agonists have been considered for the treatment of respiratory epithelia in cystic fibrosis (CF) patients. The pancreas, one of the most seriously affected organs in CF, expresses various purinergic receptors. Studies on the rodent pancreas show that purinergic signaling regulates pancreatic secretion. In the present study we aim to identify Cl(-) and K(+) channels in human pancreatic ducts and their regulation by purinergic receptors. Human pancreatic duct epithelia formed by Capan-1 or CFPAC-1 cells were studied in open-circuit Ussing chambers. In Capan-1 cells, ATP/UTP effects were dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3.1). The apical effects of ATP/UTP were greatly potentiated by the IK channel opener DC-EBIO. Determination of RNA and protein levels revealed that Capan-1 cells have high expression of TMEM16A (ANO1), a likely CaCC candidate. We conclude that in human pancreatic duct cells ATP/UTP regulates via purinergic receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct function should consider sidedness of purinergic signaling and the essential role of K(+) channels.


Asunto(s)
Canales de Cloruro/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Conductos Pancreáticos/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Adenosina Trifosfato/farmacología , Calcio/metabolismo , Línea Celular , Canales de Cloruro/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Conductos Pancreáticos/citología , Canales de Potasio Calcio-Activados/genética , Receptores Purinérgicos P2X , Receptores Purinérgicos P2Y , Uridina Trifosfato/farmacología
18.
Am J Respir Cell Mol Biol ; 46(3): 372-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22021335

RESUMEN

As powerful vasodilators, prostacyclin analogues are presently the mainstay in the treatment of severe pulmonary arterial hypertension. Although the hemodynamic effects of prostacyclin analogues are well known, the molecular mechanism of their acute effects on pulmonary vascular tone and systemic vascular tone remains poorly understood. Peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) was previously identified as a putative receptor responsible for the modulation of target gene expression in response to prostacyclin analogues. The present study investigated the signaling pathway of prostacyclin in human pulmonary arterial smooth muscle cells (PASMCs), and sought to define the role of PPARß/δ in the acute vasodilating effect. In human PASMCs, prostacyclin rapidly activated TWIK-related acid-sensitive K channel 1 (TASK-1) and calcium-dependent potassium channels (K(Ca)). This pathway was mediated via the prostanoid I receptor-protein kinase A pathway. The silencing of PPARß/δ demonstrated that the downstream K(Ca) activation was exclusively dependent on PPARß/δ signaling, whereas the activation of TASK-1 was not. In addition, the PPARß/δ-induced activation of K(Ca) was independent of NO. The acute prostacyclin-induced K(Ca) activation is critically dependent on PPARß/δ as a rapid signaling factor. This accounts in part for the vasodilating effect of prostacyclin in pulmonary arteries, and provides insights into a new molecular explanation for the effects of prostanoids.


Asunto(s)
Epoprostenol/análogos & derivados , Iloprost/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , PPAR delta/agonistas , PPAR gamma/agonistas , Canales de Potasio Calcio-Activados/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Epoprostenol/farmacología , Silenciador del Gen , Humanos , Masculino , Potenciales de la Membrana , Músculo Liso Vascular/metabolismo , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio de Dominio Poro en Tándem/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Ratas , Ratas Wistar , Receptores de Epoprostenol , Receptores de Prostaglandina/efectos de los fármacos , Receptores de Prostaglandina/metabolismo
19.
J Pharmacol Exp Ther ; 338(2): 528-36, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21602424

RESUMEN

Recently, a new experimental stromal hyperplasia animal model corresponding to clinical benign prostatic hyperplasia (BPH) was established. The main objective of this study was to elucidate the roles of the intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) in the implanted urogenital sinus (UGS) of stromal hyperplasia BPH model rats. Using DNA microarray, real-time polymerase chain reaction, Western blot, and/or immunohistochemical analyses, we identified the expression of K(Ca)3.1 and its transcriptional regulators in implanted UGS of BPH model rats and prostate needle-biopsy samples and surgical prostate specimens of BPH patients. We also examined the in vivo effects of a K(Ca)3.1 blocker, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), on the proliferation index of implanted UGS by measurement of UGS weights and proliferating cell nuclear antigen immunostaining. K(Ca)3.1 genes and proteins were highly expressed in implanted UGS rather than in the normal host prostate. In the implanted UGS, the gene expressions of two transcriptional regulators of K(Ca)3.1, repressor element 1-silencing transcription factor and c-Jun, were significantly down- and up-regulated, and the regulations were correlated negatively or positively with K(Ca)3.1 expression, respectively. Positive signals of K(Ca)3.1 proteins were detected exclusively in stromal cells, whereas they were scarcely immunolocalized to basal cells of the epithelium in implanted UGS. In vivo treatment with TRAM-34 significantly suppressed the increase in implanted UGS weights compared with the decrease in stromal cell components. Moreover, significant levels of K(Ca)3.1 expression were observed in human BPH samples. K(Ca)3.1 blockers may be a novel treatment option for patients suffering from BPH.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/biosíntesis , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Pirazoles/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Bloqueadores de los Canales de Potasio/administración & dosificación , Canales de Potasio Calcio-Activados/genética , Hiperplasia Prostática/patología , Ratas , Adulto Joven
20.
J Physiol ; 589(Pt 14): 3483-94, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21606112

RESUMEN

Human mammary epithelial (HME) cells express several P2Y receptor subtypes located in both apical and basolateral membranes. Apical UTP or ATP-γ-S stimulation of monolayers mounted in Ussing chambers evoked a rapid, but transient decrease in short circuit current (I(sc)), consistent with activation of an apical K+ conductance. In contrast, basolateral P2Y receptor stimulation activated basolateral K+ channels and increased transepithelial Na+ absorption. Chelating intracellular Ca2+ using the membrane-permeable compound BAPTA-AM, abolished the effects of purinoceptor activation on I(sc). Apical pretreatment with charybdotoxin also blocked the I(sc) decrease by >90% and similar magnitudes of inhibition were observed with clotrimazole and TRAM-34. In contrast, iberiotoxin and apamin did not block the effects of apical P2Y receptor stimulation. Silencing the expression of K(Ca)3.1 produced ∼70% inhibition of mRNA expression and a similar reduction in the effects of apical purinoceptor agonists on I(sc). In addition, silencing P2Y2 receptors reduced the level of P2Y2 mRNA by 75% and blocked the effects of ATP-γ-S by 65%. These results suggest that P2Y2 receptors mediate the effects of purinoceptor agonists on K+ secretion by regulating the activity of K(Ca)3.1 channels expressed in the apical membrane of HME cells. The results also indicate that release of ATP or UTP across the apical or basolateral membrane elicits qualitatively different effects on ion transport that may ultimately determine the [Na+]/[K+] composition of fluid within the mammary ductal network.


Asunto(s)
Canales de Potasio Calcio-Activados/metabolismo , Potasio/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Sodio/metabolismo , Absorción , Adenosina Trifosfato/farmacología , Apamina/farmacología , Calcio/metabolismo , Células Cultivadas , Caribdotoxina/farmacología , Clotrimazol/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Péptidos/farmacología , Canales de Potasio Calcio-Activados/genética , Agonistas Purinérgicos/metabolismo , Pirazoles/farmacología , Receptores Purinérgicos P2Y/genética , Transducción de Señal/efectos de los fármacos , Uridina Trifosfato/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA