Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.704
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 217-229, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003041

RESUMEN

Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.


Asunto(s)
Carbono , Carbón Orgánico , Hierro , Oxidación-Reducción , Hierro/química , Carbón Orgánico/química , Carbono/química , Contaminantes Químicos del Agua/química
2.
Luminescence ; 39(8): e4848, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092486

RESUMEN

Herein, luminous blue carbon quantum dots (CDs) employing Anisomeles indica (Catmint) were reported with imaging, self-targeting, and therapeutic effects on triple-negative breast cancer (TNBC, MDA-MB-231) cells. The salient features of CDs generated from catmint are as follows: i) optical studies confirm CDs with excitation-dependent emission; ii) high-throughput characterization authenticates the formation of CDs with near-spherical shape with diameter ranging between 5 and 15 nm; iii) CDs induce cytotoxicity (3.22 ± 0.64 µg/ml) in triple-negative breast cancer (TNBC, MDA-MB-231) cells; iv) fluorescence microscopy demonstrates that CDs promote apoptosis by increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential; v) CDs significantly up-regulate pro-apoptotic gene expression levels such as caspases-8/9/3. Finally, our work demonstrates that catmint-derived CDs are prospective nanotheranostics that augment cancer targeting and imaging.


Asunto(s)
Apoptosis , Carbono , Puntos Cuánticos , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Puntos Cuánticos/química , Humanos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Carbono/química , Carbono/farmacología , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Lamiaceae/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Environ Sci Technol ; 58(28): 12430-12440, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38968084

RESUMEN

Soil organic carbon (SOC) is pivotal for both agricultural activities and climate change mitigation, and biochar stands as a promising tool for bolstering SOC and curtailing soil carbon dioxide (CO2) emissions. However, the involvement of biochar in SOC dynamics and the underlying interactions among biochar, soil microbes, iron minerals, and fresh organic matter (FOM, such as plant debris) remain largely unknown, especially in agricultural soils after long-term biochar amendment. We therefore introduced FOM to soils with and without a decade-long history of biochar amendment, performed soil microcosm incubations, and evaluated carbon and iron dynamics as well as microbial properties. Biochar amendment resulted in 2-fold SOC accrual over a decade and attenuated FOM-induced CO2 emissions by approximately 11% during a 56-day incubation through diverse pathways. Notably, biochar facilitated microbially driven iron reduction and subsequent Fenton-like reactions, potentially having enhanced microbial extracellular electron transfer and the carbon use efficiency in the long run. Throughout iron cycling processes, physical protection by minerals could contribute to both microbial carbon accumulation and plant debris preservation, alongside direct adsorption and occlusion of SOC by biochar particles. Furthermore, soil slurry experiments, with sterilization and ferrous iron stimulation controls, confirmed the role of microbes in hydroxyl radical generation and biotic carbon sequestration in biochar-amended soils. Overall, our study sheds light on the intricate biotic and abiotic mechanisms governing carbon dynamics in long-term biochar-amended upland soils.


Asunto(s)
Carbono , Hierro , Microbiología del Suelo , Suelo , Suelo/química , Hierro/química , Hierro/metabolismo , Carbón Orgánico/química , Dióxido de Carbono/metabolismo
4.
Glob Chang Biol ; 30(7): e17413, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982678

RESUMEN

Tasmanian eucalypt forests are among the most carbon-dense in the world, but projected climate change could destabilize this critical carbon sink. While the impact of abiotic factors on forest ecosystem carbon dynamics have received considerable attention, biotic factors such as the input of animal scat are less understood. Tasmanian devils (Sarcophilus harrisii)-an osteophageous scavenger that can ingest and solubilize nutrients locked in bone material-may subsidize plant and microbial productivity by concentrating bioavailable nutrients (e.g., nitrogen and phosphorus) in scat latrines. However, dramatic declines in devil population densities, driven by the spread of a transmissible cancer, may have underappreciated consequences for soil organic carbon (SOC) storage and forest productivity by altering nutrient cycling. Here, we fuse experimental data and modeling to quantify and predict future changes to forest productivity and SOC under various climate and scat-quality futures. We find that devil scat significantly increases concentrations of nitrogen, ammonium, phosphorus, and phosphate in the soil and shifts soil microbial communities toward those dominated by r-selected (e.g., fast-growing) phyla. Further, under expected increases in temperature and changes in precipitation, devil scat inputs are projected to increase above- and below-ground net primary productivity and microbial biomass carbon through 2100. In contrast, when devil scat is replaced by lower-quality scat (e.g., from non-osteophageous scavengers and herbivores), forest carbon pools are likely to increase more slowly, or in some cases, decline. Together, our results suggest often overlooked biotic factors will interact with climate change to drive current and future carbon pool dynamics in Tasmanian forests.


Asunto(s)
Cambio Climático , Bosques , Marsupiales , Suelo , Animales , Carbono/metabolismo , Carbono/análisis , Marsupiales/fisiología , Nitrógeno/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Fósforo/metabolismo , Dinámica Poblacional , Suelo/química , Microbiología del Suelo , Tasmania
5.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990962

RESUMEN

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Asunto(s)
Biodiversidad , Carbono , Gases de Efecto Invernadero , Plantas , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Carbono/metabolismo , Carbono/análisis , Plantas/metabolismo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Ecosistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Metano/metabolismo , Efecto Invernadero
6.
J Nanobiotechnology ; 22(1): 412, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997713

RESUMEN

The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.


Asunto(s)
Carbono , Glutatión , Degeneración del Disco Intervertebral , Núcleo Pulposo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/patología , Animales , Estrés Oxidativo/efectos de los fármacos , Carbono/química , Carbono/farmacología , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Puntos Cuánticos/química , Antioxidantes/farmacología , Masculino , Senescencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Catalasa/metabolismo , Catalasa/farmacología , Superóxido Dismutasa/metabolismo
7.
Sci Adv ; 10(27): eadn7896, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968361

RESUMEN

Recent years have witnessed a surge of interest in tuning the optical properties of organic semiconductors for diverse applications. However, achieving control over the optical bandgap in the second near-infrared (NIR-II) window has remained a major challenge. To address this, here we report a polaron engineering strategy that introduces diverse defects into carbon quantum dots (CQDs). These defects induce lattice distortions resulting in the formation of polarons, which can absorb the near-field scattered light. Furthermore, the formed polarons in N-related vacancies can generate thermal energy through the coupling of lattice vibrations, while the portion associated with O-related defects can return to the ground state in the form of NIR-II fluorescence. On the basis of this optical absorption model, these CQDs have been successfully applied to NIR-II fluorescence imaging and photothermal therapy. This discovery could open a promising route for the polarons of organic semiconductor materials as NIR-II absorbers in nanomedical applications.


Asunto(s)
Carbono , Rayos Infrarrojos , Neoplasias , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Animales , Imagen Óptica/métodos , Ratones , Línea Celular Tumoral
8.
Sci Rep ; 14(1): 15114, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956155

RESUMEN

Wheat straw returning is a common agronomic measure in the farmland. Understanding organic carbon transformation is of great significance for carbon budget under the premise of widespread distribution of cadmium (Cd) contaminated soils. An incubation experiment was conducted to assess the influence of Cd contamination on the decomposition and accumulation of total organic carbon (TOC) as well as the composition and abundance of bacterial communities in eight soil types with wheat straw addition. The results showed that inhibition of Cd contamination on microbially mediated organic carbon decomposition was affected by soil types. The lower cumulative C mineralization and higher TOC content could be observed in the acidic soils relative to that in the alkaline soils. The content of Cd in soil exhibits different effects on the inhibition in decomposition of TOC. The high dosage level of Cd had stronger inhibitory impact due to its high toxicity. The decomposition of TOC was restricted by a reduction in soil bacterial abundance and weakening of bacterial activities. Redundancy analysis (RDA) indicated that Proteobacteria and Gemmatimonadetes were abundant in alkaline Cd-contaminated soils with wheat straw addition, while Bacteroidetes dominated cumulative C mineralization in acidic Cd-contamination soils. Moreover, the abundance of predicted functional bacteria indicated that high-dose Cd-contamination and acid environment all inhibited the decomposition of TOC. The present study suggested that pH played an important role on carbon dynamics in the Cd-contaminated soils with wheat straw addition.


Asunto(s)
Cadmio , Carbono , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Triticum , Cadmio/metabolismo , Cadmio/análisis , Triticum/metabolismo , Triticum/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Carbono/metabolismo , Carbono/análisis , Suelo/química , Bacterias/metabolismo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno
9.
Luminescence ; 39(7): e4841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051438

RESUMEN

Liquid silicon-based carbon dots (CDs) with a photoluminescence quantum yield (PLQY) of 50% were prepared using N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO), citric acid, and n-butylamine as raw materials. Firstly, the optimized characters have been determined, namely, the optimal DAMO, citric acid, and n-butylamine addition amounts of 1 mL, 0.9 g, and 1 mL, a reaction time of 3 h, and a reaction temperature of 160°C. Further research has confirmed that the increase in fluorescence intensity of CDs is mainly due to the introduction of DAMO, in which the two amino groups in DAMO play a major role. In addition, the Si-O-Si group generated by the hydrolysis of siloxane groups is connected to the surface of the CDs and forms a core-shell structure, which modifies the defects on the surface and enhances the fluorescence intensity of the CDs. Finally, luminescent solar concentrators (LSCs) based on liquid silicon-based CDs were assembled by spin coating. The obtained device has a transparency of up to 80% and an optical efficiency of 2.4%.


Asunto(s)
Carbono , Luminiscencia , Puntos Cuánticos , Silicio , Silicio/química , Carbono/química , Puntos Cuánticos/química , Energía Solar , Mediciones Luminiscentes
10.
Appl Microbiol Biotechnol ; 108(1): 422, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031211

RESUMEN

Identifying the nutritional requirements and growth conditions of microorganisms is crucial for determining their applicability in industry and understanding their role in clinical ecology. Predatory bacteria such as Bdellovibrio bacteriovorus have emerged as promising tools for combating infections by human bacterial pathogens due to their natural killing features. Bdellovibrio's lifecycle occurs inside prey cells, using the cytoplasm as a source of nutrients and energy. However, this lifecycle supposes a challenge when determining the specific uptake of metabolites from the prey to complete the growth inside cells, a process that has not been completely elucidated. Here, following a model-based approach, we illuminate the ability of B. bacteriovorus to replicate DNA, increase biomass, and generate adenosine triphosphate (ATP) in an amino acid-based rich media in the absence of prey, keeping intact its predatory capacity. In this culture, we determined the main carbon sources used and their preference, being glutamate, serine, aspartate, isoleucine, and threonine. This study offers new insights into the role of predatory bacteria in natural environments and establishes the basis for developing new Bdellovibrio applications using appropriate metabolic and physiological methodologies. KEY POINTS: • Amino acids support axenic lifestyle of Bdellovibrio bacteriovorus. • B. bacteriovorus preserves its predatory ability when growing in the absence of prey.


Asunto(s)
Adenosina Trifosfato , Aminoácidos , Bdellovibrio bacteriovorus , Carbono , Aminoácidos/metabolismo , Carbono/metabolismo , Bdellovibrio bacteriovorus/metabolismo , Bdellovibrio bacteriovorus/fisiología , Adenosina Trifosfato/metabolismo , Medios de Cultivo/química , Biomasa
11.
ACS Appl Mater Interfaces ; 16(29): 37456-37467, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007694

RESUMEN

High levels of glutathione (GSH) are an important characteristic of malignant tumors and a significant cause of ineffective treatment and multidrug resistance. Although reactive oxygen species (ROS) therapy has been shown to induce tumor cell death, the strong clearance effect of GSH on ROS significantly reduces its therapeutic efficacy. Therefore, there is a need to develop new strategies for targeting GSH. In this study, novel carbon quantum dots derived from gentamycin (GM-CQDs) were designed and synthesized. On the basis of the results obtained, GM-CQDs contain sp2 and sp3 carbon atoms as well as nitrogen oxygen groups, which decrease the intracellular levels of GSH by downregulating SLC7A11, thereby disrupting redox balance, mediating lipid peroxidation, and inducing ferroptosis. Transcriptome analysis demonstrated that GM-CQDs downregulated the expression of molecules related to GSH metabolism while significantly increasing the expression of molecules related to ferroptosis. The in vivo results showed that the GM-CQDs exhibited excellent antitumor activity and immune activation ability. Furthermore, because of their ideal biological safety, GM-CQDs are highly promising for application as drugs targeting GSH in the treatment of malignant tumors.


Asunto(s)
Carbono , Ferroptosis , Glutatión , Puntos Cuánticos , Ferroptosis/efectos de los fármacos , Puntos Cuánticos/química , Humanos , Carbono/química , Carbono/farmacología , Animales , Ratones , Glutatión/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Catálisis , Ratones Desnudos
12.
Sci Rep ; 14(1): 16941, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043763

RESUMEN

The nonspecific nature of cancer drug delivery often results in substantial toxic side effects during treatments for breast cancer. To mitigate these negative outcomes, our approach involves loading methotrexate (MTX) within carbon quantum dots (CQDs) synthesized from folic acid, which are then enveloped in exosomal membranes obtained from breast cancer cells (Ex@MTX-CQDs). Analysis utilizing nanoparticle tracking techniques has demonstrated that these Ex@MTX-CQDs maintain the physical and biochemical properties of their exosomal precursors. The release profile of MTX indicated a restricted release percentage (less than 10%) under normal physiological conditions, which is contrasted by a more consistent release rate (approximately 65%) when emulating the conditions found within tumor tissues. The toxicological assessments have confirmed that the presence of exosomes combined with leftover folic acid significantly improves the delivery efficacy of MTX directly to the cancerous cells through the binding to folate and heparan sulfate proteoglycan receptors. This process results in increased disruption of the mitochondrial membrane potential and subsequently triggers apoptosis, ultimately leading to the destruction of cancerous cells. Our research could potentially contribute to the further innovation and application of nanocarriers derived from biological sources for the targeted treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Carbono , Exosomas , Ácido Fólico , Metotrexato , Puntos Cuánticos , Humanos , Ácido Fólico/química , Puntos Cuánticos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Exosomas/metabolismo , Femenino , Metotrexato/farmacología , Metotrexato/administración & dosificación , Metotrexato/química , Carbono/química , Portadores de Fármacos/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Ondas Ultrasónicas , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos
13.
Anal Methods ; 16(29): 4951-4959, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38973573

RESUMEN

Glutathione (GSH) is commonly used as a diagnostic biomarker for many diseases. In this study, based on carbon quantum dots prepared from dragon fruit peel (D-CQDs) and the T-Hg(II)-T mismatch, a dual-mode biosensor was developed for the detection of GSH. This system consists of two single-stranded DNA (ssDNA). DNA1 was the T-rich sequence; DNA2 was attached to streptavidin-coated magnetic beads and consisted of T-rich and G-rich fragments. Due to the presence of Hg(II), the T-Hg(II)-T mismatch was formed between T-rich fragments of two ssDNA. In the presence of GSH, Hg(II) detached from dsDNA and bound with GSH to form a new complex. The G-rich fragment assembled with the hemin shed from D-CQDs to form the G-quadruplex/hemin complex. At this time, in fluorescence mode, the fluorescence of D-CQDs quenched by hemin could be restored. In colorimetric mode, after the magnetic beads separate, a visual signal could be produced by catalyzing the oxidation of ABTS using the peroxide-like activity of the G-quadruplex/hemin complex. This biosensor in both fluorescence mode and colorimetric mode had excellent selectivity and sensitivity, and the limit of detection was 0.089 µM and 0.26 µM for GSH, respectively. Moreover, the proposed dual-mode biosensor had good application prospects for detection of GSH.


Asunto(s)
Técnicas Biosensibles , Carbono , Frutas , Glutatión , Puntos Cuánticos , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Glutatión/química , Glutatión/análisis , Carbono/química , Frutas/química , ADN de Cadena Simple/química , Mercurio/análisis , Mercurio/química , Límite de Detección , Disparidad de Par Base , Humanos , G-Cuádruplex , Cactaceae
14.
Environ Sci Pollut Res Int ; 31(33): 45875-45886, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981966

RESUMEN

The corrosion behavior of carbon steel under the coexistence of carbon dioxide and SRB was studied by means of corrosion weight loss, SEM, EDS, in situ pH test, and other methods. The results showed that Chloride ions, temperature, pH, and oxygen coexist with iron bacteria will affect the corrosion under the coexistence of CO2 and SRB, and SRB tends to grow in a favorable environment for itself, and the corrosion rate of X52N at 42 days is slightly higher than that at 21 days. However, the pitting depth increased sharply from 21.20 µm in 21 days to 39.79 µm in 42 days. So that the corrosion can be divided into two stages. First, SRB catalyze the dissolution of FeCO3, leading to local uniform corrosion. Second, SRB directly obtain electrons from the metal surface, resulting in local pitting. In addition, the environment under the stable mineralized biofilm was found to be slightly alkaline.


Asunto(s)
Dióxido de Carbono , Acero , Corrosión , Acero/química , Dióxido de Carbono/química , Biopelículas , Carbono/química
15.
Bioresour Technol ; 406: 131059, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950832

RESUMEN

Bio-oil derived from biomass fast pyrolysis can be upgraded to gasoline and diesel alternatives by catalytic hydrodeoxygenation (HDO). Here, the novel nitrogen-doped carbon-alumina hybrid supported cobalt (Co/NCAn, n = 1, 2.5, 5) catalyst is established by a coagulation bath technique. The optimized Co/NCA2.5 catalyst presented 100 % conversion of guaiacol, high selectivity to cyclohexane (93.6 %), and extremely high deoxygenation degree (97.3 %), respectively. Therein, the formation of cyclohexanol was facilitated by stronger binding energy and greater charge transfer between Co and NC which was unraveled by density functional theory calculations. In addition, the appropriate amount of Lewis acid sites enhanced the cleavage of the C-O bond in cyclohexanol, finally resulting in a remarkable selectivity for cyclohexane. Finally, the Co/NCA2.5 catalyst also exhibited excellent selectivity (93.1 %) for high heating value hydrocarbon fuel in crude bio-oil HDO. This work provides a theoretical basis on N dopants collaborating alumina hybrid catalysts for efficient HDO reaction.


Asunto(s)
Óxido de Aluminio , Biocombustibles , Carbono , Cobalto , Nitrógeno , Cobalto/química , Catálisis , Óxido de Aluminio/química , Nitrógeno/química , Carbono/química , Ciclohexanos/química , Aceites de Plantas , Polifenoles
16.
Radiat Oncol ; 19(1): 85, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956684

RESUMEN

BACKGROUND: Radiotherapy is essential in the treatment of prostate cancer. An alternative to conventional photon radiotherapy is the application of carbon ions, which provide a superior intratumoral dose distribution and less induced damage to adjacent healthy tissue. A common characteristic of prostate cancer cells is their dependence on androgens which is exploited therapeutically by androgen deprivation therapy in the advanced prostate cancer stage. Here, we aimed to analyze the transcriptomic response of prostate cancer cells to irradiation by photons in comparison to carbon ions, focusing on DNA damage, DNA repair and androgen receptor signaling. METHODS: Prostate cancer cell lines LNCaP (functional TP53 and androgen receptor signaling) and DU145 (dysfunctional TP53 and androgen receptor signaling) were irradiated by photons or carbon ions and the subsequent DNA damage was assessed by immuno-cytofluorescence. Furthermore, the cells were treated with an androgen-receptor agonist. The effects of irradiation and androgen treatment on the gene regulation and the transcriptome were investigated by RT-qPCR and RNA sequencing, followed by bioinformatic analysis. RESULTS: Following photon or carbon ion irradiation, both LNCaP and DU145 cells showed a dose-dependent amount of visible DNA damage that decreased over time, indicating occurring DNA repair. In terms of gene regulation, mRNAs involved in the TP53-dependent DNA damage response were significantly upregulated by photons and carbon ions in LNCaP but not in DU145 cells, which generally showed low levels of gene regulation after irradiation. Both LNCaP and DU145 cells responded to photons and carbon ions by downregulation of genes involved in DNA repair and cell cycle, partially resembling the transcriptome response to the applied androgen receptor agonist. Neither photons nor carbon ions significantly affected canonical androgen receptor-dependent gene regulation. Furthermore, certain genes that were specifically regulated by either photon or carbon ion irradiation were identified. CONCLUSION: Photon and carbon ion irradiation showed a significant congruence in terms of induced signaling pathways and transcriptomic responses. These responses were strongly impacted by the TP53 status. Nevertheless, irradiation mode-dependent distinct gene regulations with undefined implication for radiotherapy outcome were revealed. Androgen receptor signaling and irradiations shared regulation of certain genes with respect to DNA-repair and cell-cycle.


Asunto(s)
Fotones , Neoplasias de la Próstata , Receptores Androgénicos , Transducción de Señal , Transcriptoma , Proteína p53 Supresora de Tumor , Humanos , Masculino , Carbono , Línea Celular Tumoral , Daño del ADN/efectos de la radiación , Reparación del ADN , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Radioterapia de Iones Pesados , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Transducción de Señal/efectos de la radiación , Transcriptoma/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo
17.
Anal Chim Acta ; 1317: 342915, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029997

RESUMEN

Acteoside (ACT) was the main bioactive components in phenylethanoid glycosides of Cistanche tubulosa. Currently, the development of an efficient method for selectively separating ACT was crucial. Consequently, yolk-shell magnetic mesoporous carbon (YSMMC) was synthesized as a nanofiller to prepare molecularly imprinted membranes (ACT-MIMs) with instant noodles-like structure for selectively separating ACT. The numerous YSMMC were moved to the upper surface of ACT-MIMs by magnetic guidance and constructed the instant noodles-like structure in ACT-MIMs. The instant noodle-like structure increased the surface roughness of ACT-MIMs, which was conducive to improving the effective imprinted interface, increasing the selectivity of ACT-MIMs. In addition, the instant noodle-like structure had dendritic interleaved pathways in ACT-MIMs. The dendritic interleaved pathways can intercept ACT through ACT-MIMs, enhancing the permselectivity of ACT-MIMs. The prepared YSMMC possessed the dendritic shell and interlayer cavity structure can provide a great accommodation space, improving the rebinding capacities of ACT-MIMs. The high permselectivity (14.49), remarkable selectivity (7.52), and excellent rebinding capacity (120.48 mg/g) were achieved for the prepared ACT-MIMs. Thus, the design of ACT-MIMs with the instant noodles-like structure were valuable for selectively separating of bioactive components.


Asunto(s)
Glucósidos , Fenoles , Fenoles/química , Fenoles/análisis , Glucósidos/química , Glucósidos/análisis , Membranas Artificiales , Impresión Molecular , Porosidad , Propiedades de Superficie , Carbono/química , Polifenoles
18.
Environ Sci Technol ; 58(28): 12563-12574, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38950186

RESUMEN

Urban air pollution can vary sharply in space and time. However, few monitoring strategies can concurrently resolve spatial and temporal variation at fine scales. Here, we present a new measurement-driven spatiotemporal modeling approach that transcends the individual limitations of two complementary sampling paradigms: mobile monitoring and fixed-site sensor networks. We develop, validate, and apply this model to predict black carbon (BC) using data from an intensive, 100-day field study in West Oakland, CA. Our spatiotemporal model exploits coherent spatial patterns derived from a multipollutant mobile monitoring campaign to fill spatial gaps in time-complete BC data from a low-cost sensor network. Our model performs well in reconstructing patterns at fine spatial and temporal resolution (30 m, 15 min), demonstrating strong out-of-sample correlations for both mobile (Pearson's R ∼ 0.77) and fixed-site measurements (R ∼ 0.95) while revealing features that are not effectively captured by a single monitoring approach in isolation. The model reveals sharp concentration gradients near major emission sources while capturing their temporal variability, offering valuable insights into pollution sources and dynamics.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Carbono , Hollín , Ciudades
19.
Environ Sci Technol ; 58(28): 12575-12584, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38952258

RESUMEN

There is a notable lack of continuous monitoring of air pollutants in the Global South, especially for measuring chemical composition, due to the high cost of regulatory monitors. Using our previously developed low-cost method to quantify black carbon (BC) in fine particulate matter (PM2.5) by analyzing reflected red light from ambient particle deposits on glass fiber filters, we estimated hourly ambient BC concentrations with filter tapes from beta attenuation monitors (BAMs). BC measurements obtained through this method were validated against a reference aethalometer between August 2 and 23, 2023 in Addis Ababa, Ethiopia, demonstrating a very strong agreement (R2 = 0.95 and slope = 0.97). We present hourly BC for three cities in sub-Saharan Africa (SSA) and one in North America: Abidjan (Côte d'Ivoire), Accra (Ghana), Addis Ababa (Ethiopia), and Pittsburgh (USA). The average BC concentrations for the measurement period at the Abidjan, Accra, Addis Ababa Central summer, Addis Ababa Central winter, Addis Ababa Jacros winter, and Pittsburgh sites were 3.85 µg/m3, 5.33 µg/m3, 5.63 µg/m3, 3.89 µg/m3, 9.14 µg/m3, and 0.52 µg/m3, respectively. BC made up 14-20% of PM2.5 mass in the SSA cities compared to only 5.6% in Pittsburgh. The hourly BC data at all sites (SSA and North America) show a pronounced diurnal pattern with prominent peaks during the morning and evening rush hours on workdays. A comparison between our measurements and the Goddard Earth Observing System Composition Forecast (GEOS-CF) estimates shows that the model performs well in predicting PM2.5 for most sites but struggles to predict BC at an hourly resolution. Adding more ground measurements could help evaluate and improve the performance of chemical transport models. Our method can potentially use existing BAM networks, such as BAMs at U.S. Embassies around the globe, to measure hourly BC concentrations. The PM2.5 composition data, thus acquired, can be crucial in identifying emission sources and help in effective policymaking in SSA.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Monitoreo del Ambiente , Material Particulado , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , África , Carbono/análisis , Hollín/análisis
20.
Sci Rep ; 14(1): 17306, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068200

RESUMEN

Dimethyl 2-[2-(1-phenyl-4,5-dihydro-1H-imidazol-2-yl)hydrazinylidene]butanedioate (DIHB) and 8-(3-chlorophenyl)-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-dione (HDIT) are promising candidates for anticancer agents, the first analytical procedures of which are presented in this paper. The commercially available unmodified glassy carbon electrode (GCE) was used as a sensor for the individual and simultaneous differential pulse voltammetric (DPV) determination of these possible anticancer drugs. The findings concerning the electrochemical behaviour indicated that DIHB and HDIT display at GCE, as a sensor, the oxidation peaks at 1.18 and 0.98 V, respectively (vs. Ag/AgCl, 3.0 mol L-1 KCl) in the 0.125 mol L-1 acetate buffer of pH = 4.5, which were employed for their quantification. Various experimental parameters were carefully investigated, to achieve high sensitivity in voltammetric measurements. Finally, under the optimised conditions (t of 60 s, ΔEA of 75 mV, ν of 225 mV s-1, and tm of 2 ms), the proposed DPV procedure with the GCE demonstrated broad linear sensing ranges (1-200 nmol L-1-DIHB and 5-200 nmol L-1-HDIT), boasting the detection limits of 0.18 nmol L-1 for DIHB and 1.1 nmol L-1 for HDIT. Moreover, the developed procedure was distinguished by good selectivity, repeatability of DIHB and HDIT signals and sensor reproducibility. The practical application of this method was demonstrated by analysing the urine reference material without any prior treatment. The results showed that this environmentally friendly approach, with a modification-free sensor, is suitable for the sensitive, selective and rapid quantification of DIHB and HDIT.


Asunto(s)
Antineoplásicos , Carbono , Técnicas Electroquímicas , Electrodos , Antineoplásicos/análisis , Carbono/química , Humanos , Técnicas Electroquímicas/métodos , Límite de Detección , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA