Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750502

RESUMEN

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Asunto(s)
Cardiomiopatías Diabéticas , Macrófagos , Estrés Oxidativo , Transducción de Señal , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Cardiomiopatías Diabéticas/inmunología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Animales , Estrés Oxidativo/efectos de los fármacos , Fibrosis , Antiinflamatorios/uso terapéutico , Miocardio/patología , Miocardio/metabolismo , Miocardio/inmunología , Resistencia a la Insulina , Mediadores de Inflamación/metabolismo , Terapia Molecular Dirigida
2.
Int J Med Sci ; 21(7): 1194-1203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818468

RESUMEN

This study aims to elucidate the roles of Phosphoglycerate Mutase Family Member 5 (Pgam5) and Prohibitin 2 (Phb2) in the context of hyperglycemia-induced myocardial dysfunction, a critical aspect of diabetic cardiomyopathy. The research employed primary cardiomyocytes, which were then subjected to hyperglycemia treatment to mimic diabetic conditions. We used siRNA transfection to knock down Pgam5 and overexpressed Phb2 using adenovirus transfection to assess their individual and combined effects on cardiomyocyte health. Mitochondrial function was evaluated through measurements of mitochondrial membrane potential using the JC-1 probe, and levels of mitochondrial reactive oxygen species (ROS) were assessed. Additionally, the study involved qPCR analysis to quantify the transcriptional changes in genes related to mitochondrial fission and mitophagy. Our findings indicate that hyperglycemia significantly reduces cardiomyocyte viability and impairs mitochondrial function, as evidenced by decreased mitochondrial membrane potential and increased ROS levels. Pgam5 knockdown was observed to mitigate these adverse effects, preserving mitochondrial function and cardiomyocyte viability. On the molecular level, Pgam5 was found to regulate genes associated with mitochondrial fission (such as Drp1, Mff, and Fis1) and mitophagy (including Parkin, Bnip3, and Fundc1). Furthermore, overexpression of Phb2 countered the hyperglycemia-induced mitochondrial dysfunction and normalized the levels of key mitochondrial antioxidant enzymes. The combined data suggest a protective role for both Pgam5 knockdown and Phb2 overexpression against hyperglycemia-induced cellular and mitochondrial damage. The study elucidates the critical roles of Pgam5 and Phb2 in regulating mitochondrial dynamics in the setting of hyperglycemia-induced myocardial dysfunction. By modulating mitochondrial fission and mitophagy, Pgam5 and Phb2 emerge as key players in preserving mitochondrial integrity and cardiomyocyte health under diabetic conditions. These findings contribute significantly to our understanding of the molecular mechanisms underlying diabetic cardiomyopathy and suggest potential therapeutic targets for mitigating myocardial dysfunction in diabetes.


Asunto(s)
Cardiomiopatías Diabéticas , Hiperglucemia , Potencial de la Membrana Mitocondrial , Dinámicas Mitocondriales , Miocitos Cardíacos , Prohibitinas , Especies Reactivas de Oxígeno , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Dinámicas Mitocondriales/genética , Hiperglucemia/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/genética , Humanos , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Mitofagia/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ratas
3.
Biomed Pharmacother ; 175: 116790, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776677

RESUMEN

Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.


Asunto(s)
Autofagia , Cardiomiopatías Diabéticas , Transducción de Señal , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Humanos , Autofagia/efectos de los fármacos , Animales , Transducción de Señal/efectos de los fármacos
4.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715043

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Factores de Diferenciación de Crecimiento , Inflamasomas , Ratones Endogámicos C57BL , Miocitos Cardíacos , Piroptosis , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Línea Celular , Inflamasomas/metabolismo , Masculino , Factores de Diferenciación de Crecimiento/metabolismo , Ratas , Glucemia/metabolismo , Ratones , Glucosa/metabolismo , Glucosa/toxicidad , Proteínas Morfogenéticas Óseas , PPAR alfa
5.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659015

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , Miocardio , Cordón Umbilical , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/terapia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Fibrosis/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Cordón Umbilical/citología , Cordón Umbilical/metabolismo
6.
J Diabetes Complications ; 38(5): 108744, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38613990

RESUMEN

INTRODUCTION: The prevalence of diabetes mellitus is increasing year by year globally, and diabetic cardiomyopathy (DCM), as the most common complication of type 2 diabetes mellitus, seriously affects the prognosis of patients. Trimetazidine (TMZ), as a drug affecting myocardial energy metabolism, mainly reduces the oxidation rate of ß-oxidation by inhibiting 3-ketoacyl-CoA thiolase (3-KAT), a key enzyme in ß-oxidation of free fatty acid (FFA), so that the energy metabolism substrate of cardiomyocytes preferentially selects glucose rather than fatty acids, increases the content of intracellular adenosine triphosphate (ATP), enhances the contractile function of cardiomyocytes, and improves the state of cellular ischemia and hypoxia. Previous studies have shown that TMZ is closely related to the activation and induction of apoptosis of the MAPK pathway and AMPK pathway, and plays a role in the treatment of diabetic cardiomyopathy, but the specific mechanism is still unclear. OBJECTIVE: This study aims to investigate the impact of TMZ on myocardial damage in mice exhibiting diabetic cardiomyopathy (DCM), and to furnish a laboratory foundation for the clinical treatment of diabetic cardiomyopathy. METHOD: Male db/db mice (6 weeks old, n = 21) and male wild-type (wt) (6 weeks old, n = 20) mice were selected for the study. The wt mice were randomly assigned to the wt group (n = 10) and wt + TMZ group (n = 10), while the remaining db/db mice were randomly allocated to the db/db group (n = 11) and db/db + TMZ group (n = 10). Following 8 weeks of feeding, the wt + TMZ group and db/db + TMZ group received TMZ via gavage, whereas the remaining groups were administered physiological saline. Periodic measurements of blood glucose, blood lipids, and myocardial enzymes were conducted in mice, with samples obtained after the 12th week for subsequent biochemical analysis, myocardial pathology assessment, immunohistochemistry, western blot analysis, and TUNEL staining (TdT-mediated dUTP Nick-End Labeling). RESULT: GLU, TC, TG, LDL-C, and CK-MB levels were significantly higher in db/db mice compared to wt mice (GLU: M ± SD wt 5.94 ± 0.37, db/db 17.63 ± 0.89, p < 0.05, ES = 0.991; TC: M ± SD wt 3.01 ± 0.32, db/db 6.97 ± 0.36, p < 0.05, ES = 0.972; TG: M ± SD wt 0.58 ± 0.2, db/db 1.75 ± 0.14, p < 0.05, ES = 0.920; LDL-C: M ± SD wt 1.59 ± 0.12, db/db 3.87 ± 0.14, p < 0.05, ES = 0.989; CK-MB: M ± SD wt 0.12 ± 0.01, db/db 0.31 ± 0.04, p < 0.05, ES = 0.928). HDL-C levels were significantly lower in db/db mice (M ± SD wt 1.89 ± 0.08, db/db 0.64 ± 0.09, p < 0.05, ES = 0.963). Histopathological analysis confirmed myocardial damage in db/db mice. Treatment with TMZ reduced GLU, TC, TG, LDL-C, and CK-MB levels (p < 0.05, ES > 0.9) and increased HDL-C levels compared to untreated db/db mice. Additionally, TMZ treatment significantly decreased myocardial cell apoptosis (p < 0.05, ES = 0.980). These results demonstrate the efficacy of TMZ in reversing myocardial injury in DCM mice. CONCLUSION: TMZ can mitigate myocardial damage in db/db mice by downregulating the expression of caspase-12, a protein associated with the endoplasmic reticulum stress (ERS) cell apoptosis pathway, consequently diminishing cell apoptosis. This underscores the protective efficacy of TMZ against myocardial damage in mice afflicted with DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Miocardio , Trimetazidina , Animales , Trimetazidina/farmacología , Trimetazidina/uso terapéutico , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Ratones , Masculino , Miocardio/patología , Miocardio/metabolismo , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Vasodilatadores/uso terapéutico , Vasodilatadores/farmacología , Modelos Animales de Enfermedad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
7.
Biomed Pharmacother ; 175: 116613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657502

RESUMEN

Diabetic cardiomyopathy (DCM) contributes significantly to the heightened mortality rate observed among diabetic patients, with myocardial fibrosis (MF) being a pivotal element in the disease's progression. Hydrogen sulfide (H2S) has been shown to mitigate MF, but the specific underlying mechanisms have yet to be thoroughly understood. A connection has been established between the evolution of DCM and the incidence of cardiomyocyte pyroptosis. Our research offers insights into H2S protective impact and its probable mode of action against DCM, analyzed through the lens of MF. In this study, a diabetic rat model was developed using intraperitoneal injections of streptozotocin (STZ), and hyperglycemia-stimulated cardiomyocytes were employed to replicate the cellular environment of DCM. There was a marked decline in the expression of cystathionine γ-lyase (CSE), a catalyst for H2S synthesis, in both the STZ-induced diabetic rats and hyperglycemia-stimulated cardiomyocytes. Experimental results in vivo indicated that H2S ameliorates MF and enhances cardiac functionality in diabetic rats by mitigating cardiomyocyte pyroptosis. In vitro assessments highlighted the induction of cardiomyocyte pyroptosis and the subsequent decline in cell viability under hyperglycemic conditions. However, the administration of sodium hydrosulfide (NaHS) curtailed cardiomyocyte pyroptosis and augmented cell viability. In contrast, propargylglycine (PAG), a CSE inhibitor, reversed the effects rendered by NaHS administration. Additional exploration indicated that the mitigating effect of H2S on cardiomyocyte pyroptosis is modulated through the ROS/NLRP3 pathway. In essence, our findings corroborate the potential of H2S in alleviating MF in diabetic subjects. This therapeutic effect is likely attributable to the regulation of cardiomyocyte pyroptosis via the ROS/NLRP3 pathway. This discovery furnishes a prospective therapeutic target for the amelioration and management of MF associated with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Sulfuro de Hidrógeno , Miocitos Cardíacos , Piroptosis , Ratas Sprague-Dawley , Animales , Piroptosis/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Ratas , Cistationina gamma-Liasa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estreptozocina , Miocardio/patología , Miocardio/metabolismo , Glicina/farmacología , Glicina/análogos & derivados , Supervivencia Celular/efectos de los fármacos
8.
Cell Stress Chaperones ; 29(2): 272-284, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485044

RESUMEN

Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Hiperglucemia , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Proteínas de Choque Térmico/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Lactato Deshidrogenasas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
9.
Circulation ; 149(9): 684-706, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-37994595

RESUMEN

BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Células Madre Pluripotentes Inducidas , Ubiquitina Tiolesterasa , Animales , Humanos , Ratones , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lípidos , Ratones Noqueados , Miocitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Estreptozocina/metabolismo , Estreptozocina/uso terapéutico , Ubiquitina Tiolesterasa/análisis , Ubiquitina Tiolesterasa/metabolismo
10.
J Cell Mol Med ; 28(2): e18055, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113341

RESUMEN

Diabetic cardiomyopathy (DCM) is a chronic microvascular complication of diabetes that is generally defined as ventricular dysfunction occurring in patients with diabetes and unrelated to known causes. Several mechanisms have been proposed to contribute to the occurrence and persistence of DCM, in which oxidative stress and autophagy play a non-negligible role. Diabetic cardiomyopathy is involved in a variety of physiological and pathological processes. The 5' adenosine monophosphate-activated protein kinase/nuclear factor-erythroid 2-related factor 2 (AMPK/Nrf2) are expressed in the heart, and studies have shown that asiaticoside (ASI) and activated AMPK/Nrf2 have a protective effect on the myocardium. However, the roles of ASI and AMPK/Nrf2 in DCM are unknown. The intraperitoneal injection of streptozotocin (STZ) and high-fat feed were used to establish the DCM models in 100 C57/BL mice. Asiaticoside and inhibitors of AMPK/Nrf2 were used for intervention. Cardiac function, oxidative stress, and autophagy were measured in mice. DCM mice displayed increased levels of oxidative stress while autophagy levels declined. In addition, AMPK/Nrf2 was activated in DCM mice with ASI intervention. Further, we discovered that AMPK/Nrf2 inhibition blocked the protective effect of ASI by compound C and treatment with ML-385. The present study demonstrates that ASI exerts a protective effect against DCM via the potential activation of the AMPK/Nrf2 pathway. Asiaticoside is a potential therapeutic target for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Triterpenos , Humanos , Ratones , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estrés Oxidativo
11.
J Cachexia Sarcopenia Muscle ; 14(6): 2719-2732, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37899701

RESUMEN

BACKGROUND: Diabetic cardiomyopathy, a distinctive complication of diabetes mellitus, has been correlated with the presence of intracellular lipid deposits. However, the intricate molecular mechanisms governing the aberrant accumulation of lipid droplets within cardiomyocytes remain to be comprehensively elucidated. METHODS: Both obese diabetic (db/db) mice and HL-1 cells treated with 200 µmol/L palmitate and 200 µmol/L oleate were used to simulate type 2 diabetes conditions. Transmission electron microscopy is employed to assess the size and quantity of lipid droplets in the mouse hearts. Transcriptomics analysis was utilized to interrogate mRNA levels. Lipidomics and ubiquitinomics were employed to explore the lipid composition alterations and proteins participating in ubiquitin-mediated degradation in mice. Clinical data were collected from patients with diabetes-associated cardiomyopathy and healthy controls. Western blot analysis was conducted to assess the levels of proteins linked to lipid metabolism, and the biotin-switch assay was employed to quantify protein cysteine S-sulfhydration levels. RESULTS: The administration of H2 S donor, NaHS, effectively restored hydrogen sulfide levels in both the cardiac tissue and plasma of db/db mice (+7%, P < 0.001; +5%, P < 0.001). Both db/db mice (+210%, P < 0.001) and diabetic patients (+83%, P = 0.22, n = 5) exhibit elevated plasma triglyceride levels. Treatment with GYY4137 effectively lowers triglyceride levels in db/db mice (-43%, P = 0.007). The expression of cystathionine gamma-lyase and HMG-CoA reductase degradation protein 1 (SYVN1) was decreased in db/db mice compared with the wild-type mice (cystathionine gamma-lyase: -31%, P = 0.0240; SYVN1: -35%, P = 0.01), and NaHS-treated mice (SYVN1: -31%, P = 0.03). Conversely, the expression of sterol regulatory element-binding protein 1 (SREBP1) was elevated (+91%, P = 0.007; +51%, P = 0.03 compared with control and NaHS-treated mice, respectively), along with diacylglycerol O-acyltransferase 1 (DGAT1) (+95%, P = 0.001; +35%, P = 0.02) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) (+88%, P = 0.01; +22%, P = 0.32). Exogenous H2 S led to a reduction in lipid droplet formation (-48%, P < 0.001), restoration of SYVN1 expression, modification of SYVN1's S-sulfhydration status and enhancement of SREBP1 ubiquitination. Overexpression of SYVN1 mutated at Cys115 decreased SREBP1 ubiquitination and increased the number of lipid droplets. CONCLUSIONS: Exogenous H2 S enhances ubiquitin-proteasome degradation of SREBP1 and reduces its nuclear translocation by modulating SYVN1's cysteine S-sulfhydration. This pathway limits lipid droplet buildup in cardiac myocytes, ameliorating diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Humanos , Ratones , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Lípidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Triglicéridos/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas
12.
Cardiovasc Diabetol ; 22(1): 294, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891673

RESUMEN

BACKGROUND: The PI3K/AKT pathway transduces the majority of the metabolic actions of insulin. In addition to cytosolic targets, insulin-stimulated phospho-AKT also translocates to mitochondria in the myocardium. Mouse models of diabetes exhibit impaired mitochondrial AKT signaling but the implications of this on cardiac structure and function is unknown. We hypothesized that loss of mitochondrial AKT signaling is a critical step in cardiomyopathy and reduces cardiac oxidative phosphorylation. METHODS: To focus our investigation on the pathophysiological consequences of this mitochondrial signaling pathway, we generated transgenic mouse models of cardiac-specific, mitochondria-targeting, dominant negative AKT1 (CAMDAKT) and constitutively active AKT1 expression (CAMCAKT). Myocardial structure and function were examined using echocardiography, histology, and biochemical assays. We further investigated the underlying effects of mitochondrial AKT1 on mitochondrial structure and function, its interaction with ATP synthase, and explored in vivo metabolism beyond the heart. RESULTS: Upon induction of dominant negative mitochondrial AKT1, CAMDAKT mice developed cardiac fibrosis accompanied by left ventricular hypertrophy and dysfunction. Cardiac mitochondrial oxidative phosphorylation efficiency and ATP content were reduced, mitochondrial cristae structure was lost, and ATP synthase structure was compromised. Conversely, CAMCAKT mice were protected against development of diabetic cardiomyopathy when challenged with a high calorie diet. Activation of mitochondrial AKT1 protected cardiac function and increased fatty acid uptake in myocardium. In addition, total energy expenditure was increased in CAMCAKT mice, accompanied by reduced adiposity and reduced development of fatty liver. CONCLUSION: CAMDAKT mice modeled the effects of impaired mitochondrial signaling which occurs in the diabetic myocardium. Disruption of this pathway is a key step in the development of cardiomyopathy. Activation of mitochondrial AKT1 in CAMCAKT had a protective role against diabetic cardiomyopathy as well as improved metabolism beyond the heart.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Adenosina Trifosfato/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/diagnóstico por imagen , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Metabolismo Energético , Insulina/farmacología , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Phytomedicine ; 119: 154987, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37531901

RESUMEN

BACKGROUND: Hyperglycemic induced cardiac hypertrophy and cardiac inflammation are important pathological processes in diabetic cardiomyopathy. ß-elemene (Ele) is a natural compound extracted from Curcuma Rhizoma and has anti-tumor effects. It also has therapeutic effects in some inflammatory diseases. However, the therapeutic effect of Ele on diabetic cardiomyopathy is not clear. The purpose of this study was to evaluate the effect of Ele on hyperglycemia-caused cardiac remodeling and heart failure. METHODS: C57BL/6 mice were intraperitoneally injected with streptozotocin to induce DCM, and Ele was administered intragastric after 8 weeks to investigate the effect of Ele. RNA sequencing of cardiac tissue was performed to investigate the mechanism. RESULTS: Ele markedly inhibited cardiac inflammation, fibrosis and hypertrophy in diabetic mice, as well as in high glucose-induced cardiomyocytes. RNA sequencing showed that cardioprotective effect of Ele involved the JAK/STAT3-NF-κB signaling pathway. Ele alleviated heart and cardiomyocyte inflammation in mice by blocking diabetes-induced JAK2 and STAT3 phosphorylation and NF-κB activation. CONCLUSIONS: The study found that Ele preserved the hearts of diabetic mice by inhibiting JAK/STAT3 and NF-κB mediated inflammatory responses, suggesting that Ele is an effective therapy for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Hiperglucemia , Ratones , Animales , FN-kappa B/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratones Endogámicos C57BL , Hiperglucemia/metabolismo , Miocitos Cardíacos , Inflamación/metabolismo
14.
Redox Biol ; 64: 102788, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356134

RESUMEN

Brain and muscle arnt-like protein 1 (Bmal1) is a crucial transcription factor, regulating circadian rhythm and involved in multiple heart diseases. However, it is unknown whether Bmal1 promotes diabetic cardiomyopathy (DCM) pathogenesis. The objective of this investigation was to ascertain the vital role of Bmal1 in the progression of DCM. Mice with T2D and H9c2 cardiomyoblasts exposed to high glucose and palmitic acid (HGHP) were used. Cardiomyocyte-specific knockout mouse of Bmal1 (CKB) was also generated, and cardiac Bmal1 was overexpressed in type 2 diabetes (T2D) mice using an adeno-associated virus. Bmal1 gene recombinant adenovirus was used to either knockdown or overexpress in H9c2 cardiomyoblasts. Bmal1 expression was significantly altered in diabetic mice hearts. Bmal1 downregulation in CKB and T2D mice heart accelerated cardiac hypertrophy and diastolic dysfunction, while Bmal1 overexpression ameliorated these pathological changes in DCM mice. Furthermore, DCM mice had significant mitochondrial ultrastructural defects, reactive oxygen species accumulation, and apoptosis, which could be alleviated by overexpressing Bmal1. In H9c2 cardiomyoblasts, genetic downregulation of Bmal1 or HGHP markedly decreased the binding of Bcl2 to IP3R, thus increasing Ca2+ release to mitochondria through mitochondria-associated endoplasmic reticulum membranes. Importantly, chromatin immunoprecipitation revealed Bmal1 could bind directly to the Bcl2 gene promoter region. Bmal1 overexpression augmented the Bmal1/Bcl2 binding, enhancing the inhibition of Bcl2 on IP3R activity, thus alleviating mitochondrial Ca2+ overload and subsequent cell apoptosis. These results show that Bmal1 is involved in the DCM development through Bcl2/IP3R-mediated mitochondria Ca2+ overload. Therapy targeting the circadian clock (Bmal1) can treat DCM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Regulación hacia Abajo , Ratones Noqueados , Mitocondrias/metabolismo
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 545-551, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37248582

RESUMEN

Objective: To investigate the protective effect of irisin in diabetic cardiomyopathy (DCM) and its mechanism. Methods: A mouse model of DCM was established by high-fat diet combined with the injection of streptozotocin. The mice were assigned to a control group, a DCM group, a DCM+low-dose irisin group, a DCM+high-dose irisin group, and a DCM+pyrrolidine dithiocarbamate (PDTC) (nuclear factor [NF]-κB inhibitor) group. Then, the mice received irisin intervention for 3 weeks after successful modeling. Myocardial morphologic changes were observed by hematoxylin and eosin (HE) staining and Masson staining. The levels of serum creatine kinase (CK) and creatine kinase isoenzyme CK-MB were examined by automatic biochemical analyzer. H9c2 cells were divided into the control group, high glucose and high lipid (HG/HL) group, HG/HL+low-dose irisin group, HG/HL+high-dose irisin group, and HG/HL+PDTC group. CCK-8 assay was conducted to determine cell viability. The expression levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 in the myocardial tissue and the cells were determined by ELISA. In addition, nuclear translocation of NF-κB p65 protein and the protein expression level of NF-κB inhibitor protein α (IκBα) in the myocardial tissue and the cells were determined by Western blot. Results: According to the results of animal experiment, low and high doses of irisin could alleviate the pathological injury and fibrosis of myocardial tissue to varying degrees. Irisin inhibited the levels of CK, CK-MB, and inflammatory factors, up-regulated IκB protein expression, and diminished NF-κB nuclear translocation. According to the results of cell experiment, low and high doses of irisin could enhance H9c2 cell viability to varying degrees, increase the level of intracellular IκB proteins, and inhibit NF-κB p65 nuclear translocation and inflammatory factor expression. The changes in these aspects in the DCM+low-dose irisin group and the DCM+high-dose irisin group were similar to those in the DCM+PDTC group. Conclusion: Through inhibiting NF-κB p65 nuclear translocation, irisin may reduce the inflammatory response in the myocardial tissue of DCM mice and H9c2 cells of myocardial injury induced by high glucose and high fat, thereby exerting a protective effect on myocardium.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratones , Animales , FN-kappa B/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/inducido químicamente , Cardiomiopatías Diabéticas/metabolismo , Fibronectinas , Factor de Necrosis Tumoral alfa/metabolismo , Creatina Quinasa , Glucosa/efectos adversos
16.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166710, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37054997

RESUMEN

Cardiovascular diseases are the primary cause of mortality in patients with diabetes and obesity. Hyperglycemia and hyperlipidemia in diabetes alters cardiac function, which is associated with broader cellular processes such as aberrant inflammatory signaling. Recent studies have shown that a pattern recognition receptor called Dectin-1, expressed on macrophages, mediates pro-inflammatory responses in innate immunity. In the present study, we examined the role of Dectin-1 in the pathogenesis of diabetic cardiomyopathy. We observed increased Dectin-1 expression in heart tissues of diabetic mice and localized the source to macrophages. We then investigated the cardiac function in Dectin-1-deficient mice with STZ-induced type 1 diabetes and high-fat-diet-induced type 2 diabetes. Our results show that Dectin-1 deficient mice are protected against diabetes-induced cardiac dysfunction, cardiomyocyte hypertrophy, tissue fibrosis, and inflammation. Mechanistically, our studies show that Dectin-1 is important for cell activation and induction of inflammatory cytokines in high-concentration glucose and palmitate acid (HG + PA)-challenged macrophages. Deficiency of Dectin-1 generate fewer paracrine inflammatory factors capable of causing cardiomyocyte hypertrophy and fibrotic responses in cardiac fibroblasts. In conclusion, this study provides evidence that Dectin-1 mediates diabetes-induced cardiomyopathy through regulating inflammation. Dectin-1 may be a potential target to combat diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Hipertrofia , Inflamación , Macrófagos/metabolismo
17.
J Biochem Mol Toxicol ; 37(5): e23330, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36890713

RESUMEN

Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-ß/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-ß pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.


Asunto(s)
Alcaloides , Diabetes Mellitus , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta
18.
J Mol Med (Berl) ; 101(4): 419-430, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36867206

RESUMEN

NIMA (never in mitosis, gene A)-related kinase-6 (NEK6), a cell cycle regulatory gene, was found to regulate cardiac hypertrophy. However, its role in diabetes-induced cardiomyopathy has not been fully elucidated. This research was designed to illustrate the effect of NEK6 involved in diabetic cardiomyopathy. Here we used a streptozotocin (STZ)-induced mice diabetic cardiomyopathy model and NEK6 knockout mice to explore the role and mechanism of NEK6 in diabetic-induced cardiomyopathy. NEK6 knockout mice and wild-type littermates were subjected to STZ injection (50 mg/kg/day for 5 days) to induce a diabetic cardiomyopathy model. As a result, 4 months after final STZ injection, DCM mice revealed cardiac hypertrophy, fibrosis, and systolic and diastolic dysfunction. NEK6 deficiency causes deteriorated cardiac hypertrophy, fibrosis, and cardiac dysfunction. Furthermore, we observed inflammation and oxidative stress in the hearts of NEK6 deficiency mice under diabetic cardiomyopathy pathology. Adenovirus was used to upregulate NEK6 in neonatal rat cardiomyocytes, and it was found that NEK6 ameliorated high glucose-induced inflammation and oxidative stress. Our findings revealed that NEK6 increased the phosphorylation of heat shock protein 72 (HSP72) and increased the protein level of PGC-1α and NRF2. Co-IP assay experiment confirmed that NEK6 interacted with HSP72. When HSP72 was silenced, the anti-inflammation and anti-oxidative stress effects of NEK6 were blurred. In summary, NEK6 may protect diabetic-induced cardiomyopathy by interacting with HSP72 and promoting the HSP72/PGC-1α/NRF2 signaling. KEY MESSAGES: NEK6 knockout deteriorated cardiac dysfunction, cardiac hypertrophy, fibrosis as well as inflammation response, and oxidative stress. NEK6 overexpression attenuated high glucose induced inflammation and oxidative stress. The underlying mechanisms of the protective role of NEK6 in the development of diabetic cardiomyopathy seem to involve the regulation of HSP72-NRF2- PGC-1α pathway. NEK6 may become a new therapeutic target for diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratas , Ratones , Animales , Cardiomiopatías Diabéticas/metabolismo , Proteínas del Choque Térmico HSP72/genética , Proteínas del Choque Térmico HSP72/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Mitosis , Glucosa , Cardiomegalia/metabolismo , Fibrosis , Ratones Noqueados
19.
J Appl Toxicol ; 43(9): 1306-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36928891

RESUMEN

Diabetic cardiomyopathy is a common diabetic complication, resulting in heart failure. Rutaecarpine is an active compound with cardiovascular protective effects. However, the function of rutaecarpine in diabetic cardiomyopathy is largely unknown. The aim of this research was to study the effect and action mechanism of rutaecarpine in high glucose (HG)-induced cardiomyocyte damage. The overlapping genes of diabetic cardiomyopathy and rutaecarpine were analyzed according to GeneCards, DisGeNet, and SwissTargetPrediction. Cell damage was investigated by determining apoptosis, oxidative stress, and inflammatory response in HG-stimulated AC16 cells. The expression of proteins involved in the mitogen-activated protein kinase (MAPK) signaling was measured using Western blotting. Totally seven overlapping genes of diabetic cardiomyopathy and rutaecarpine were screened out and predicted to be associated with the MAPK signaling. Rutaecarpine protected against HG-induced cardiomyocyte damage by enhancing cell viability and reducing cell apoptosis, caspase-3 activity, and lactate dehydrogenase (LDH) release. Rutaecarpine mitigated HG-induced oxidative stress in cardiomyocytes through decreasing reactive oxygen species (ROS) formation and malondialdehyde (MDA) level and elevating superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) level. Rutaecarpine alleviated HG-induced inflammatory response via reducing the level of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and IL-8. Moreover, rutaecarpine inhibited HG-induced activation of the MAPK pathway. Treatment with MAPK signaling agonist reversed the suppressive effect of rutaecarpine on HG-induced damage. In conclusion, rutaecarpine alleviated HG-induced cardiomyocyte damage through decreasing apoptosis, oxidative stress, and inflammatory response by inactivating the MAPK pathway.


Asunto(s)
Cardiomiopatías Diabéticas , Miocitos Cardíacos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Factor de Necrosis Tumoral alfa/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo
20.
J Cell Mol Med ; 27(9): 1277-1289, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967707

RESUMEN

Diabetic cardiomyopathy (DCM) is associated with differential and time-specific regulation of ß-adrenergic receptors and cardiac cyclic nucleotide phosphodiesterases with consequences for total cyclic adenosine 3'-5' monophosphate (cAMP) levels. We aimed to investigate whether these changes are associated with downstream impairments in cAMP and Ca2+ signalling in a type 1 diabetes (T1D)-induced DCM model. T1D was induced in adult male rats by streptozotocin (65 mg/kg) injection. DCM was assessed by cardiac structural and molecular remodelling. We delineated sequential changes affecting the exchange protein (Epac1/2), cAMP-dependent protein kinase A (PKA) and Ca2+ /Calmodulin-dependent kinase II (CaMKII) at 4, 8 and 12 weeks following diabetes, by real-time quantitative PCR and western blot. Expression of Ca2+ ATPase pump (SERCA2a), phospholamban (PLB) and Troponin I (TnI) was also examined. Early upregulation of Epac1 transcripts was noted in diabetic hearts at Week 4, followed by increases in Epac2 mRNA, but not protein levels, at Week 12. Expression of PKA subunits (RI, RIIα and Cα) remained unchanged regardless of the disease stage, whereas CaMKII increased at Week 12 in DCM. Moreover, PLB transcripts were upregulated in diabetic hearts, whereas SERCA2a and TnI gene expression was unchanged irrespective of the disease evolution. PLB phosphorylation at threonine-17 was increased in DCM, whereas phosphorylation of both PLB at serine-16 and TnI at serine-23/24 was unchanged. We show for the first time differential and time-specific regulations in cardiac cAMP effectors and Ca2+ handling proteins, data that may prove useful in proposing new therapeutic approaches in T1D-induced DCM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Cardiomiopatías Diabéticas , Masculino , Ratas , Animales , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Troponina I/metabolismo , Fosforilación , Serina/metabolismo , Adenosina/metabolismo , Miocardio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA