Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 911
Filtrar
1.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732512

RESUMEN

Non-invasive diagnostics are crucial for the timely detection of renal cell carcinoma (RCC), significantly improving survival rates. Despite advancements, specific lipid markers for RCC remain unidentified. We aimed to discover and validate potent plasma markers and their association with dietary fats. Using lipid metabolite quantification, machine-learning algorithms, and marker validation, we identified RCC diagnostic markers in studies involving 60 RCC and 167 healthy controls (HC), as well as 27 RCC and 74 HC, by analyzing their correlation with dietary fats. RCC was associated with altered metabolism in amino acids, glycerophospholipids, and glutathione. We validated seven markers (l-tryptophan, various lysophosphatidylcholines [LysoPCs], decanoylcarnitine, and l-glutamic acid), achieving a 96.9% AUC, effectively distinguishing RCC from HC. Decreased decanoylcarnitine, due to reduced carnitine palmitoyltransferase 1 (CPT1) activity, was identified as affecting RCC risk. High intake of polyunsaturated fatty acids (PUFAs) was negatively correlated with LysoPC (18:1) and LysoPC (18:2), influencing RCC risk. We validated seven potential markers for RCC diagnosis, highlighting the influence of high PUFA intake on LysoPC levels and its impact on RCC occurrence via CPT1 downregulation. These insights support the efficient and accurate diagnosis of RCC, thereby facilitating risk mitigation and improving patient outcomes.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico , Neoplasias Renales/diagnóstico , Estudios de Casos y Controles , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Anciano , Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos Insaturados/sangre , Carnitina O-Palmitoiltransferasa/metabolismo , Adulto , Lisofosfatidilcolinas/sangre , Carnitina/sangre , Carnitina/análogos & derivados , Aprendizaje Automático , Metabolismo de los Lípidos , Triptófano/sangre
2.
Cell Commun Signal ; 22(1): 283, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783346

RESUMEN

BACKGROUND: In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS: Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS: We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS: Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Carnitina O-Palmitoiltransferasa , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Humanos , Animales , Línea Celular Tumoral , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Metabolismo Energético/genética , Regulación hacia Arriba , Progresión de la Enfermedad , Proliferación Celular , Ratones Desnudos , Ratones , Femenino , Masculino , Fase S , Ratones Endogámicos BALB C
3.
Oncoimmunology ; 13(1): 2352179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746869

RESUMEN

Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carnitina O-Palmitoiltransferasa , Interleucina-6 , Macrófagos , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fenotipo , Animales , Ratones , Masculino , Femenino , Línea Celular Tumoral , Tolerancia Inmunológica
4.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 207-212, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38650450

RESUMEN

OBJECTIVES: To investigate the clinical characteristic and genetic variants of children with carnitine palmitoyltransferase 2 (CPT2) deficiency. METHODS: The clinical and genetic data of 6 children with CPT2 deficiency were retrospectively analyzed. The blood acylcarnitines and genetic variants were detected with tandem mass spectrometry and whole-exon gene sequencing, respectively. RESULTS: There were 4 males and 2 females with a mean age of 32 months (15 d-9 years) at diagnosis. One case was asymptomatic and with normal laboratory test results, 2 had delayed onset, and 3 were of infantile type. Three cases were diagnosed at neonatal screening, and 3 cases presented with clinical manifestations of fever, muscle weakness, and increased muscle enzymes. Five children presented with decreased free carnitine and elevated levels of palmitoyl and octadecenoyl carnitines. CPT2 gene variants were detected at 8 loci in 6 children (4 harboring biallelic mutations and 2 harboring single locus mutations), including 3 known variants (p.R631C, p.T589M, and p.D255G) and 5 newly reported variants (p.F352L, p.R498L, p.F434S, p.A515P, and c.153-2A>G). It was predicted by PolyPhen2 and SIFT software that c.153-2A>G and p.F352L were suspected pathogenic variants, while p.R498L, p.F434S and p.A515P were variants of unknown clinical significance. CONCLUSIONS: The clinical phenotypes of CPT2 deficiency are diverse. An early diagnosis can be facilitated by neonatal blood tandem mass spectrometry screening and genetic testing, and most patients have good prognosis after a timely diagnosis and treatment.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Mutación , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Carnitina/sangre , Carnitina/metabolismo , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/diagnóstico , Tamizaje Neonatal , Estudios Retrospectivos
6.
Diabetes ; 73(6): 879-895, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38506804

RESUMEN

Defective fatty acid oxidation (FAO) has been implicated in diabetic kidney disease (DKD), yet little is known about the role of carnitine palmitoyltransferase-1A (CPT1A), a pivotal rate-limiting enzyme of FAO, in the progression of DKD. Here, we investigate whether CPT1A is a reliable therapeutic target for DKD. We first confirmed the downregulation expression of CPT1A in glomeruli from patients with diabetes. We further evaluated the function of CPT1A in diabetic models. Overexpression of CPT1A exhibited protective effects in diabetic conditions, improving albuminuria and glomerular sclerosis as well as mitigating glomerular lipid deposits and podocyte injury in streptozotocin-induced diabetic mice. Mechanistically, CPT1A not only fostered lipid consumption via fatty acid metabolism pathways, thereby reducing lipotoxicity, but also anchored Bcl2 to the mitochondrial membrane, thence preventing cytochrome C release and inhibiting the mitochondrial apoptotic process. Furthermore, a novel transcription factor of CPT1A, FOXA1, was identified. We elucidate the crucial role of CPT1A in mitigating podocyte injury and the progression of DKD, indicating that targeting CPT1A may be a promising avenue for DKD treatment.


Asunto(s)
Apoptosis , Carnitina O-Palmitoiltransferasa , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Animales , Humanos , Masculino , Ratones , Albuminuria/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Ácidos Grasos/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Podocitos/metabolismo , Podocitos/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
7.
Adv Sci (Weinh) ; 11(21): e2308422, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520724

RESUMEN

Accumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO). Inhibition of carnitine palmitoyl transferase 1A (CPT1A) significantly compromises palmitate-induced cell stemness. Mechanistically, FAO-derived acetyl-CoA enhances H3K27 acetylation (H3K27Ac) modification level in the promoter of stemness genes, increasing stemness and nodal metastasis in the lipid-rich nodal environment. Genetic and pharmacological loss of CPT1A function markedly suppresses the metastatic colonization of CCa cells in tumor-draining lymph nodes. Together, these findings propose an effective method of cancer therapy by targeting FAO in patients with CCa and lymph node metastasis.


Asunto(s)
Acetilcoenzima A , Ácidos Grasos , Metástasis Linfática , Oxidación-Reducción , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Femenino , Humanos , Ácidos Grasos/metabolismo , Acetilcoenzima A/metabolismo , Ratones , Línea Celular Tumoral , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Modelos Animales de Enfermedad , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología
8.
Surgery ; 175(5): 1264-1275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38302326

RESUMEN

BACKGROUND: Although we have made progress in treatment and have increased the 5-year survival by ≤30% in pancreatic cancer, chemotherapy resistance remains a major obstacle. However, whether reprogrammed lipid metabolism contributes to chemoresistance still needs to be further studied. METHODS: Gene expression was determined using Western blotting and quantitative reverse transcription polymerase chain reaction. Cell cloning formation assay, Cell Counting Kit-8, EdU assay, wound healing assay, transwell assay, and flow cytometry were used to detect apoptosis, cell proliferation capacity, migration capacity, and cytotoxicity of gemcitabine. Confocal fluorescence microscopy, transmission electron microscopy, etc., were used to detect the changes in intracellular reactive oxygen species, glutathione, lipid peroxidation level, and cell morphology. An animal study was performed to evaluate the effect of CPT1B knockdown on tumor growth and gemcitabine efficacy. RESULTS: In our study, we observed that the CPT1B expression level was higher in pancreatic ductal adenocarcinoma tissues than in normal tissues and correlated with a low rate of survival. Moreover, silencing of CPT1B significantly suppressed the proliferative ability and metastasis of pancreatic cancer cells. Furthermore, we discovered that CPT1B interacts with Kelch-like ECH-associated protein 1, and CPT1B knockdown led to decreased NRF2 expression and ferroptosis induction. In addition, CPT1B expression increased after gemcitabine treatment, and it was highly expressed in gemcitabine-resistant pancreatic ductal adenocarcinoma cells. Finally, we discovered that ferroptosis induced by CPT1B knockdown enhanced the gemcitabine toxicity in pancreatic ductal adenocarcinoma. CONCLUSION: CPT1B may act as a promising target in treating patients with gemcitabine-resistant pancreatic ductal adenocarcinoma .


Asunto(s)
Carcinoma Ductal Pancreático , Carnitina O-Palmitoiltransferasa , Ferroptosis , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Neoplasias Pancreáticas , Animales , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/farmacología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Gemcitabina , Homeostasis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/genética
9.
Sci Rep ; 14(1): 4318, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383657

RESUMEN

The principal aim of this investigation is to identify pivotal biomarkers linked to the prognosis of osteosarcoma (OS) through the application of artificial intelligence (AI), with an ultimate goal to enhance prognostic prediction. Expression profiles from 88 OS cases and 396 normal samples were procured from accessible public databases. Prognostic models were established using univariate COX regression analysis and an array of AI methodologies including the XGB method, RF method, GLM method, SVM method, and LASSO regression analysis. Multivariate COX regression analysis was also employed. Immune cell variations in OS were examined using the CIBERSORT software, and a differential analysis was conducted. Routine blood data from 20,679 normal samples and 437 OS cases were analyzed to validate lymphocyte disparity. Histological assessments of the study's postulates were performed through immunohistochemistry and hematoxylin and eosin (HE) staining. AI facilitated the identification of differentially expressed genes, which were utilized to construct a prognostic model. This model discerned that the survival rate in the high-risk category was significantly inferior compared to the low-risk cohort (p < 0.05). SERPINE2 was found to be positively associated with memory B cells, while CPT1B correlated positively with CD8 T cells. Immunohistochemical assessments indicated that SERPINE2 was more prominently expressed in OS tissues relative to adjacent non-tumorous tissues. Conversely, CPT1B expression was elevated in the adjacent non-tumorous tissues compared to OS tissues. Lymphocyte counts from routine blood evaluations exhibited marked differences between normal and OS groups (p < 0.001). The study highlights SERPINE2 and CPT1B as crucial biomarkers for OS prognosis and suggests that dysregulation of lymphocytes plays a significant role in OS pathogenesis. Both SERPINE2 and CPT1B have potential utility as prognostic biomarkers for OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Pronóstico , Serpina E2 , Inteligencia Artificial , Biomarcadores , Osteosarcoma/diagnóstico , Carnitina O-Palmitoiltransferasa
10.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377647

RESUMEN

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Cardiomiopatías , Carnitina O-Palmitoiltransferasa/deficiencia , Errores Innatos del Metabolismo Lipídico , Errores Innatos del Metabolismo , Proteína Trifuncional Mitocondrial/deficiencia , Tamizaje Neonatal , Rabdomiólisis , Humanos , Recién Nacido , Estudios Retrospectivos , Masculino , Femenino , Tamizaje Neonatal/métodos , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/complicaciones , Bélgica/epidemiología , Lactante , Síndromes Congénitos de Insuficiencia de la Médula Ósea/complicaciones , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Ácidos Grasos/metabolismo , Preescolar , Enfermedades Musculares/diagnóstico , Niño , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/complicaciones , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/complicaciones , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/diagnóstico
11.
Biochem Biophys Res Commun ; 691: 149273, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38029544

RESUMEN

Recently, the fatty acid elongation enzyme ELOVL5 was identified as a critical pro-metastatic factor in prostate cancer, required for cell growth and mitochondrial homeostasis. The fatty acid elongation reaction catalyzed by ELOVL5 utilizes malonyl-CoA as the carbon donor. Here, we demonstrate that ELOVL5 knockdown causes malonyl-CoA accumulation. Malonyl-CoA is a cellular substrate that can inhibit fatty acid ß-oxidation in the mitochondria through allosteric inhibition of carnitine palmitoyltransferase 1A (CPT1A), the enzyme that controls the rate-limiting step of the long chain fatty acid ß-oxidation cycle. We hypothesized that changes in malonyl-CoA abundance following ELOVL5 knockdown could influence mitochondrial ß-oxidation rates in prostate cancer cells, and regulate cell viability. Accordingly, we find that ELOVL5 knockdown is associated with decreased mitochondrial ß-oxidation in prostate cancer cells. Combining ELOVL5 knockdown with FASN inhibition to increase malonyl-CoA abundance endogenously enhances the effect of ELOVL5 knockdown on prostate cancer cell viability, while preventing malonyl-CoA production rescues the cells from the effect of ELOVL5 knockdown. Our findings indicate an additional role for fatty acid elongation, in the control of malonyl-CoA homeostasis, alongside its established role in the production of long-chain fatty acid species, to explain the importance of fatty acid elongation for cell viability.


Asunto(s)
Malonil Coenzima A , Neoplasias de la Próstata , Masculino , Humanos , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacología , Supervivencia Celular , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo
12.
Pharmacology ; 109(1): 52-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38016436

RESUMEN

INTRODUCTION: Cancer stem cells (CSCs) play critical roles in lung adenocarcinoma (LUAD) progression, and fatty acid oxidation is key for CSC growth and survival. Therefore, investigating the molecular mechanisms regulating fatty acid ß-oxidation in LUAD is important for its treatment. METHODS: Bioinformatics analysis assessed CPT1B and MITF expression and their correlation in LUAD tissues, as well as the pathways enriched by CPT1B. qRT-PCR assessed expression of CPT1B and MITF, while CCK-8 and sphere-forming assays were used to measure cell viability and stemness, respectively. Dual staining detected lipid accumulation, while kits were used to measure fatty acid ß-oxidation and glycerol content. qRT-PCR was used to assay expression of lipid oxidation genes. Western blot was used to examine expression of stem cell-related markers. Dual-luciferase assay and ChIP assay were used to verify the binding relationship between MITF and CPT1B. RESULTS: CPT1B was found to be highly expressed in LUAD and enriched in linoleic acid metabolism pathway and α-linolenic acid metabolism pathway. Functional experiments showed that CPT1B could promote stemness in LUAD cells by regulating fatty acid ß-oxidation. Additionally, CPT1B was found to be regulated by the upstream transcription factor MITF, which was lowly expressed in LUAD and could downregulate CPT1B expression. Rescue experiments revealed that CPT1B/MITF axis could affect stemness in LUAD cells by regulating fatty acid ß-oxidation. CONCLUSION: Transcription factor MITF inhibited transcription of CPT1B to regulate fatty acid ß-oxidation, thereby suppressing stemness in LUAD cells. MITF and CPT1B may become new targets for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Factores de Transcripción , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Ácidos Grasos , Lípidos , Proliferación Celular , Línea Celular Tumoral , Factor de Transcripción Asociado a Microftalmía/genética , Carnitina O-Palmitoiltransferasa/genética
13.
Technol Cancer Res Treat ; 22: 15330338231212071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37926998

RESUMEN

PURPOSE: The malignant transformation of cells can lead to aerobic glycolysis, an important form of metabolic reprogramming in colon cancer cells, which can cause the accumulation of lactate and accelerate the proliferation of tumor cells also enhance their chemotherapy drug resistance. The aim of this study was to investigate the possible molecular mechanisms responsible for the increased lactate expression in colon cancer. METHODS: Several bioinformatics methods, including differential analysis, gene ontology enrichment, univariate and multivariate Cox regression analysis were used to find the lactic acid-related gene carnitine palmitoyltransferase 2. We analyzed the relationship between carnitine palmitoyltransferase 2 and clinical features as well as immune microenvironment. To further explore the mechanism of carnitine palmitoyltransferase 2 in colon cancer, we performed methylation analysis and constructed a competitive endogenous RNA network, which was validated in cell lines and clinical specimens. RESULTS: We used bioinformatics to select the lactic acid-related gene carnitine palmitoyltransferase 2 and found low expression of carnitine palmitoyltransferase 2 was associated with poor prognosis in colon cancer. An inhibitory tumor microenvironment was created when carnitine palmitoyltransferase 2 expression was reduced, with decreased CD4 T cells, CD8 T cells, dendritic cells, and B cells but increased cancer-associated fibroblasts. Methylation analysis showed that the abnormal decrease in carnitine palmitoyltransferase 2 might be caused by hypermethylation. We constructed a network of SGMS1-AS1/microRNA-106a-5p/carnitine palmitoyltransferase 2 and verified their expression in cell lines and clinical specimens. CONCLUSION: Our work revealed the possible mechanism of lactate accumulation in colon cancer and explored a new potential treatment for colon cancer by cutting off aerobic glycolysis in tumor cells.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neoplasias del Colon , MicroARNs , Humanos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Transformación Celular Neoplásica , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Ácido Láctico , Proteínas de la Membrana , MicroARNs/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Microambiente Tumoral/genética
14.
Redox Biol ; 68: 102959, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977042

RESUMEN

Colorectal cancer (CRC) is a common and deadly disease of the digestive system, but its targeted therapy is hampered by the lack of reliable and specific biomarkers. Hence, discovering new therapeutic targets and agents for CRC is an urgent and challenging task. Here we report that carnitine palmitoyltransferase 1A (CPT1A), a mitochondrial enzyme that catalyzes fatty acid oxidation (FAO), is a potential target for CRC treatment. We show that CPT1A is overexpressed in CRC cells and that its inhibition by a secolignan-type compound, 2,6-dihydroxypeperomin B (DHP-B), isolated from the plant Peperomia dindygulensis, suppresses tumor cell growth and induces apoptosis. We demonstrate that DHP-B covalently binds to Cys96 of CPT1A, blocks FAO, and disrupts the mitochondrial CPT1A-VDAC1 interaction, leading to increased mitochondrial permeability and reduced oxygen consumption and energy metabolism in CRC cells. We also reveal that CPT1A expression correlates with the survival of tumor-bearing animals and that DHP-B exhibits anti-CRC activity in vitro and in vivo. Our study uncovers the molecular mechanism of DHP-B as a novel CPT1A inhibitor and provides a rationale for its preclinical development as well as a new strategy for CRC targeted therapy.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neoplasias Colorrectales , Animales , Apoptosis , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Oxidación-Reducción , Canales Aniónicos Dependientes del Voltaje/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(41): e2221653120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788309

RESUMEN

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth. Mechanistically, nuclear VCP binds to histone deacetylase 1 (HDAC1) and facilitates its degradation, thus promoting the transcription of FAO genes, including the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). FAO is an alternative fuel for cancer cells in environments exhibiting limited glucose availability. We observed that a VCP inhibitor blocked the upregulation of FAO activity and CPT1A expression triggered by metformin in colorectal cancer (CRC) cells. Combined VCP inhibitor and metformin prove more effective than either agent alone in culture and in vivo. Our study illustrates the molecular mechanism underlying the regulation of FAO by nuclear VCP and demonstrates the potential therapeutic utility of VCP inhibitor and metformin combination treatment for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Metformina , Humanos , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Procesos Neoplásicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ácidos Grasos/metabolismo , Metformina/farmacología , Carnitina O-Palmitoiltransferasa/metabolismo , Oxidación-Reducción
16.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722058

RESUMEN

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neoplasias , Humanos , Carnitina O-Palmitoiltransferasa/genética , Citotoxicidad Inmunológica , Ácidos Grasos , Metabolismo de los Lípidos , Neoplasias/terapia , Linfocitos T Citotóxicos
17.
Cell Signal ; 110: 110838, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37541641

RESUMEN

Kidney cancer is a common kind of tumor with approximately 400,000 new diagnoses each year. Clear cell renal cell carcinoma (ccRCC) accounts for 70-80% of all renal cell carcinomas. Lipid metabolism disorder is a hallmark of ccRCC. With a better knowledge of the importance of fatty acid oxidation (FAO) in cancer, carnitine palmitoyltransferase 2 (CPT2) has gained prominence as a major mediator in the cancer metabolic pathway. However, the biological functions and mechanism of CPT2 in the progression of ccRCC are still unclear. Herein, we performed assays in vitro and in vivo to explore CPT2 functions in ccRCC. Moreover, we discovered that CPT2 induced FAO, which inhibited the generation of reactive oxygen species (ROS) by increasing nicotinamide adenine dinucleotide phosphate (NADPH) production. Additionally, we demonstrated that CPT2 suppresses tumor proliferation, invasion, and migration by inhibiting the ROS/ PPARγ /NF-κB pathway. Gene set enrichment analysis (GSEA) and drug sensitivity analysis showed that high expression of CPT2 in ccRCC was associated with higher sorafenib sensitivity, which was also validated in vitro and in vivo. In summary, our results suggest that CPT2 acts as a tumor suppressor in the development of ccRCC through the ROS/PPARγ/NF-κB pathway. Moreover, CPT2 is a potential therapeutic target for increasing sorafenib sensitivity in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Sorafenib/farmacología , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Ácidos Grasos , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
18.
Oncol Rep ; 50(1)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264961

RESUMEN

Gastric cancer tissue­derived mesenchymal stem cells (GC­MSCs) play a critical role in facilitating gastric cancer metastasis. Recently, circular RNAs (circRNAs) and metabolic reprogramming have been found to be extensively involved in the malignant progression of tumors, including gastric cancer. However, the biological role and potential mechanisms of GC­MSC­derived circRNAs in metabolic reprogramming remain elusive. Herein, the expression profiles of circRNAs and mRNAs were compared between GC­MSCs and bone marrow­derived MSCs (BM­MSCs) using microarray analysis. circ_0024107 was identified to mediate GC­MSCs to promote gastric cancer lymphatic metastasis by inducing fatty acid oxidation (FAO) metabolic reprogramming. Mechanistically, circ_0024107 served as a sponge of miR­5572 and miR­6855­5p to elicit the FAO metabolic reprograming of GC­MSCs by upregulating carnitine palmitoyltransferase 1A (CPT1A). In addition, GC­MSCs promoted metastasis which was dependent on the induction of FAO in gastric cancer cells mediated by circ_0024107. The circ_0024107/miR­5572/6855­5p/CPT1A axis was deregulated in gastric cancer tissues and GC­MSCs, and was associated with lymph node metastasis and the prognosis of patients with gastric cancer. Taken together, the findings of the present study suggest the crucial role of FAO metabolic reprogramming mediated by GC­MSC­derived circ_0024107 in synergistically promoting gastric cancer lymphatic metastasis via miR­5572/6855­5p­CPT1A signaling; this suggests that circ_0024107 may be an attractive target for gastric cancer intervention.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Metástasis Linfática/genética , ARN Circular/genética , ARN Circular/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ácidos Grasos/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/fisiología , Línea Celular Tumoral
19.
Commun Biol ; 6(1): 618, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291333

RESUMEN

Mitochondria are dynamic organelles that are important for cell growth and proliferation. Dysregulated mitochondrial dynamics are highly associated with the initiation and progression of various cancers, including ovarian cancer. However, the regulatory mechanism underlying mitochondrial dynamics is still not fully understood. Previously, our study showed that carnitine palmitoyltransferase 1A (CPT1A) is highly expressed in ovarian cancer cells and promotes the development of ovarian cancer. Here, we find that CPT1A regulates mitochondrial dynamics and promotes mitochondrial fission in ovarian cancer cells. Our study futher shows that CPT1A regulates mitochondrial fission and function through mitochondrial fission factor (MFF) to promote the growth and proliferation of ovarian cancer cells. Mechanistically, we show that CPT1A promotes succinylation of MFF at lysine 302 (K302), which protects against Parkin-mediated ubiquitin-proteasomal degradation of MFF. Finally, the study shows that MFF is highly expressed in ovarian cancer cells and that high MFF expression is associated with poor prognosis in patients with ovarian cancer. MFF inhibition significantly inhibits the progression of ovarian cancer in vivo. Overall, CPT1A regulates mitochondrial dynamics through MFF succinylation to promote the development of ovarian cancer. Moreover, our findings suggest that MFF is a potential therapeutic target for ovarian cancer.


Asunto(s)
Dinámicas Mitocondriales , Neoplasias Ováricas , Femenino , Humanos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo
20.
Int J Biol Sci ; 19(7): 2067-2080, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151873

RESUMEN

Cellular senescence is a state of proliferative arrest, and the development of carcinoma can be suppressed by conferring tumor cell senescence. Recently, we found that carnitine palmitoyltransferase 1C (CPT1C) controls tumor cell proliferation and senescence via regulating lipid metabolism and mitochondrial function. Here, 13C-metabolic flux analysis (13C-MFA) was performed and the results revealed that CPT1C knockdown in MDA-MB-231 cells significantly induced cellular senescence accompanied by altered fatty acid metabolism. Strikingly, stearate synthesis was decreased while oleate was increased. Furthermore, stearate significantly inhibited proliferation while oleate reversed the senescent phenotype induced by silencing CPT1C in MDA-MB-231 cells as well as PANC-1 cells. A939572, an inhibitor of stearoyl-Coenzyme A desaturase 1, had the same effect as stearate to inhibit cellular proliferation. These results demonstrated that stearate and oleate are involved in CPT1C-mediated tumor cellular senescence, and the regulation of stearate/oleate rate via inhibition of SCD-1 could be an additional strategy with depletion of CPT1C for cancer therapy.


Asunto(s)
Neoplasias , Ácido Oléico , Humanos , Ácido Oléico/farmacología , Estearatos , Análisis de Flujos Metabólicos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Senescencia Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA