Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.081
Filtrar
1.
Genome Biol Evol ; 16(10)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39318156

RESUMEN

Apoptosis is the main form of regulated cell death in metazoans. Apoptotic pathways are well characterized in nematodes, flies, and mammals, leading to a vision of the conservation of apoptotic pathways in metazoans. However, we recently showed that intrinsic apoptosis is in fact divergent among metazoans. In addition, extrinsic apoptosis is poorly studied in non-mammalian animals, making its evolution unclear. Consequently, our understanding of apoptotic signaling pathways evolution is a black box which must be illuminated by extending research to new biological systems. Lophotrochozoans are a major clade of metazoans which, despite their considerable biological diversity and key phylogenetic position as sister group of ecdysozoans (i.e. flies and nematodes), are poorly explored, especially regarding apoptosis mechanisms. Traditionally, each apoptotic signaling pathway was considered to rely on a specific initiator caspase, associated with an activator. To shed light on apoptosis evolution in animals, we explored the evolutionary history of initiator caspases, caspase activators, and the BCL-2 family (which control mitochondrial apoptotic pathway) in lophotrochozoans using phylogenetic analysis and protein interaction predictions. We discovered a diversification of initiator caspases in molluscs, annelids, and brachiopods, and the loss of key extrinsic apoptosis components in platyhelminths, along with the emergence of a clade-specific caspase with an ankyrin pro-domain. Taken together, our data show a specific history of apoptotic actors' evolution in lophotrochozoans, further demonstrating the appearance of distinct apoptotic signaling pathways during metazoan evolution.


Asunto(s)
Apoptosis , Caspasas , Evolución Molecular , Filogenia , Transducción de Señal , Animales , Caspasas/metabolismo , Caspasas/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
2.
Apoptosis ; 29(9-10): 1515-1528, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068622

RESUMEN

The FAS ligand (FASLG) is expressed on lymphocytes, which employ it to activate death receptors on target cells. Cancer cells are generally resistant to apoptosis triggered by FASLG. In this work, we found a way to circumvent this resistance by treatment with actinomycin D (ActD) and nutlin-3a (Nut3a). We selected this drug combination based on our transcriptomic data showing strong activation of proapoptotic genes, including those for receptor-mediated apoptosis, in cells exposed to actinomycin D and nutlin-3a. To test our hypothesis, we pre-exposed cancer cell lines to this drug combination for 45 h and then treated them with recombinant FASLG. This almost instantaneously killed most cells. Actinomycin D and nutlin-3a strongly cooperated in the sensitization because the effect of the drugs acting solo was not as spectacular as the drug combination, which together with FASLG killed more than 99% of cells. Based on the caspase activation pattern (caspase-8, caspase-9, caspase-10), we conclude that both extrinsic and intrinsic pro-apoptotic pathways were engaged. In engineered p53-deficient cells, this pro-apoptotic effect was completely abrogated. Therefore, the combination of ActD + Nut3a activates p53 in an extraordinary way, which overcomes the resistance of cancer cells to apoptosis triggered by FASLG. Interestingly, other combinations of drugs, e.g., etoposide + nutlin-3a, actinomycin D + RG7112, and actinomycin D + idasanutlin had a similar effect. Moreover, normal human fibroblasts are less sensitive to death induced by ActD + Nut3a + FASLG. Our findings create the opportunity to revive the abandoned attempts of cancer immunotherapy employing the recombinant FAS ligand.


Asunto(s)
Apoptosis , Dactinomicina , Resistencia a Antineoplásicos , Proteína Ligando Fas , Imidazoles , Piperazinas , Proteína p53 Supresora de Tumor , Humanos , Dactinomicina/farmacología , Imidazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Piperazinas/farmacología , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/genética , Línea Celular Tumoral , Caspasas/metabolismo , Caspasas/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Sinergismo Farmacológico
3.
JCI Insight ; 9(16)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024553

RESUMEN

To determine whether hyperlipidemia and chronic kidney disease (CKD) have a synergy in accelerating vascular inflammation via trained immunity (TI), we performed aortic pathological analysis and RNA-Seq of high-fat diet-fed (HFD-fed) 5/6 nephrectomy CKD (HFD+CKD) mice. We made the following findings: (a) HFD+CKD increased aortic cytosolic LPS levels, caspase-11 (CASP11) activation, and 998 gene expressions of TI pathways in the aorta (first-tier TI mechanism); (b) CASP11-/- decreased aortic neointima hyperplasia, aortic recruitment of macrophages, and casp11-gasdermin D-mediated cytokine secretion; (c) CASP11-/- decreased N-terminal gasdermin D (N-GSDMD) membrane expression on aortic endothelial cells and aortic IL-1B levels; (d) LPS transfection into human aortic endothelial cells resulted in CASP4 (human)/CASP11 (mouse) activation and increased N-GSDMD membrane expression; and (e) IL-1B served as the second-tier mechanism underlying HFD+CKD-promoted TI. Taken together, hyperlipidemia and CKD accelerated vascular inflammation by promoting 2-tier trained immunity.


Asunto(s)
Caspasas Iniciadoras , Caspasas , Dieta Alta en Grasa , Hiperlipidemias , Insuficiencia Renal Crónica , Inmunidad Entrenada , Animales , Humanos , Masculino , Ratones , Aorta/patología , Aorta/inmunología , Aorta/metabolismo , Caspasas/metabolismo , Caspasas/genética , Caspasas Iniciadoras/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Gasderminas , Hiperlipidemias/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lipopolisacáridos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/metabolismo
4.
Apoptosis ; 29(7-8): 938-966, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824481

RESUMEN

Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.


Asunto(s)
Caspasas , Ratones Noqueados , Animales , Caspasas/metabolismo , Caspasas/genética , Ratones , Humanos , Apoptosis , Inflamación/enzimología , Modelos Animales de Enfermedad
5.
Acta Physiol (Oxf) ; 240(9): e14187, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38864370

RESUMEN

AIM: Animals exhibit physiological changes designed to eliminate the perceived danger, provoking similar symptoms of fever. However, a high-grade fever indicates poor clinical outcomes. Caspase11 (Casp11) is involved in many inflammatory diseases. Whether Casp11 leads to fever remains unclear. In this study, we investigate the role of the preoptic area of the hypothalamus (PO/AH) microglia Casp11 in fever. METHODS: We perform experiments using a rat model of LPS-induced fever. We measure body temperature and explore the functions of peripheral macrophages and PO/AH microglia in fever signaling by ELISA, immunohistochemistry, immunofluorescence, flow cytometry, macrophage depletion, protein blotting, and RNA-seq. Then, the effects of macrophages on microglia in a hyperthermic environment are observed in vitro. Finally, adeno-associated viruses are used to knockdown or overexpress microglia Casp11 in PO/AH to determine the role of Casp11 in fever. RESULTS: We find peripheral macrophages and PO/AH microglia play important roles in the process of fever, which is proved by macrophage and microglia depletion. By RNA-seq analysis, we find Casp11 expression in PO/AH is significantly increased during fever. Co-culture and conditioned-culture simulate the induction of microglia Casp11 activation by macrophages in a non-contact manner. Microglia Casp11 knockdown decreases body temperature, pyrogenic factors, and inflammasome, and vice versa. CONCLUSION: We report that Casp11 drives fever. Mechanistically, peripheral macrophages transmit immune signals via cytokines to microglia in PO/AH, which activate the Casp11 non-canonical inflammasome. Our findings identify a novel player, the microglia Casp11, in the control of fever, providing an explanation for the transmission and amplification of fever immune signaling.


Asunto(s)
Fiebre , Inflamasomas , Microglía , Animales , Masculino , Ratas , Caspasas/metabolismo , Caspasas/genética , Fiebre/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Área Preóptica/metabolismo , Ratas Wistar
6.
Physiol Plant ; 176(3): e14401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899462

RESUMEN

Metacaspases are cysteine proteases present in plants, fungi and protists. While the association of metacaspases with cell death is studied in a range of organisms, their native substrates are largely unknown. Here, we explored the in vivo proteolytic landscape of the two metacaspases, CrMCA-I and CrMCA-II, present in the green freshwater alga Chlamydomonas reinhardtii, using mass spectrometry-based degradomics approach, during control conditions and salt stress. Comparison between the cleavage events of CrMCA-I and CrMCA-II in metacaspase mutants revealed unique cleavage preferences and substrate specificity. Degradome analysis demonstrated the relevance of the predicted metacaspase substrates to the physiology of C. reinhardtii cells and its adaptation during salt stress. Functional enrichment analysis indicated an involvement of CrMCA-I in the catabolism of carboxylic acids, while CrMCA-II plays an important role in photosynthesis and translation. Altogether, our findings suggest distinct cellular functions of the two metacaspases in C. reinhardtii during salt stress response.


Asunto(s)
Chlamydomonas reinhardtii , Proteolisis , Estrés Salino , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/metabolismo , Proteolisis/efectos de los fármacos , Caspasas/metabolismo , Caspasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
7.
mBio ; 15(7): e0297523, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38837391

RESUMEN

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.


Asunto(s)
Caspasas , Inflamación , Especificidad por Sustrato , Caspasas/metabolismo , Caspasas/genética , Humanos , Inflamación/metabolismo , Animales , Dominio Catalítico , Piroptosis
8.
J Sci Food Agric ; 104(11): 6924-6932, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38597265

RESUMEN

BACKGROUND: The intestine is a barrier resisting various stress responses. Intrauterine growth restriction (IUGR) can cause damage to the intestinal barrier via destroying the balance of intestinal epithelial cells' proliferation and apoptosis. Bacillus subtilis has been reported to regulate intestinal epithelial cells' proliferation and apoptosis. Thus, the purpose of this study was to determine if B. subtilis could regulate intestinal epithelial cells' proliferation and apoptosis in intrauterine growth restriction suckling piglets. RESULTS: Compared with the normal birth weight group, the IUGR group showed greater mean optical density values of Ki-67-positive cells in the ileal crypt (P < 0.05). IUGR resulted in higher ability of proliferation and apoptosis of intestinal epithelial cells, by upregulation of the messenger RNA (mRNA) or proteins expression of leucine rich repeat containing G protein coupled receptor 5, Caspase-3, Caspase-7, ß-catenin, cyclinD1, B-cell lymphoma-2 associated agonist of cell death, and BCL2 associated X (P < 0.05), and downregulation of the mRNA or protein expression of B-cell lymphoma-2 and B-cell lymphoma-2-like 1 (P < 0.05). However, B. subtilis supplementation decreased the mRNA or proteins expression of leucine rich repeat containing G protein coupled receptor 5, SPARC related modular calcium binding 2, tumor necrosis factor receptor superfamily member 19, cyclinD1, Caspase-7, ß-catenin, B-cell lymphoma-2 associated agonist of cell death, and Caspase-3 (P < 0.05), and increased the mRNA expression of B-cell lymphoma-2 (P < 0.05). CONCLUSION: IUGR led to excessive apoptosis of intestinal epithelial cells, which induced compensatory proliferation. However, B. subtilis treatment prevented intestinal epithelial cells of IUGR suckling piglets from excessive apoptosis. © 2024 Society of Chemical Industry.


Asunto(s)
Apoptosis , Bacillus subtilis , Células Epiteliales , Retardo del Crecimiento Fetal , Mucosa Intestinal , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Porcinos , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/genética , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Mucosa Intestinal/metabolismo , Proliferación Celular , Caspasas/metabolismo , Caspasas/genética , Probióticos/farmacología , Probióticos/administración & dosificación , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/genética , Femenino , Masculino
9.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683374

RESUMEN

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Proteínas Protozoarias , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Brasil , Humanos , Malaria Vivax/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Caspasas/genética , Caspasas/metabolismo , Expresión Génica/genética
10.
BMC Genomics ; 25(1): 314, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532358

RESUMEN

BACKGROUND: Apoptosis is involved (directly and indirectly) in several physiological processes including tissue remodeling during the development, the turnover of immune cells, and a defense against harmful stimuli. The disordered apoptotic process participates in the pathogenesis of various diseases, such as neoplasms, and chronic inflammatory or systemic autoimmune diseases, which are associated with its inadequate regulation. Caspases are vital components of the apoptotic pathway that are involved in developmental and immune processes. However, genome-wide identification and functional analysis of caspase have not been conducted in Mytilus coruscus, which is an economically important bivalve. RESULTS: Here, 47 caspase genes were identified from the genomes of M. coruscus, and the expansion of caspase-2/9 and caspase-3/6/7 genes were observed. Tandem duplication acts as an essential driver of gene expansion. The expanded caspase genes were highly diverse in terms of sequence, domain structure, and spatiotemporal expression profiles, suggesting their functional differentiation. The high expression of the expanded caspase genes at the pediveliger larvae stage and the result of apoptosis location in the velum suggest that the apoptosis mediated by them plays a critical role in the metamorphosis of M. coruscus larvae. In gill, caspase genes respond differently to the challenge of different strains, and most caspase-2/9 and caspase-3/6/7 genes were induced by copper stress, whereas caspase-8/10 genes were suppressed. Additionally, most caspase genes were upregulated in the mantle under ocean acidification which could weaken the biomineralization capacity of the mantle tissue. CONCLUSIONS: These results provide a comprehensive overview of the evolution and function of the caspase family and enhanced the understanding of the biological function of caspases in M. coruscus larval development and response to biotic and abiotic challenges.


Asunto(s)
Caspasas , Mytilus , Animales , Caspasas/genética , Mytilus/genética , Caspasa 2 , Caspasa 3 , Concentración de Iones de Hidrógeno , Agua de Mar
11.
BMC Ophthalmol ; 24(1): 144, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553670

RESUMEN

AIM: To elaborate the underlying mechanisms by which IL-1ß promote progression of Dry eye disease(DED) through effect on pyroptosis and apoptosis of corneal epithelial cells(CECs). METHODS: 400 mOsM solutions were used to establish the DED model (hCECs- DED). RT-qPCR was performed to measure IL-1ß mRNA and miR-146a-5p in CECs. Western blotting was performed to measure STAT3, GSDMD, NLRP3, and Caspase-1 levels. Cell counting kit-8 assay was adopted to check cell viability. Apoptosis was detected by flow cytometry. ELISAs were performed to determine IL-18, IL-33 and LDH. The luciferase test detects targeting relationships. RESULTS: After treatment with 400 mOsM solution, cell viability decreased and apoptosis increased. Compared with hCECs, IL-1ß was increased and miR-146a-5p was decreased in hCECs-DED. At the same time, GSDMD, NLRP3, Caspase-1, IL-18, IL-33 and LDH were significantly higher in hCECs-DED than in hCECs, while IL-1ß silencing reversed this effect. In addition, IL-1ß negatively regulated miR-146a-5p. MiR-146a-5p mimics eliminated the inhibition of hCECs-DED pyroptosis and apoptosis caused by IL-1ß silencing. At the same time, miR-146a-5p reduced STAT3 levels in hCECs. CONCLUSION: Highly expressed IL-1ß promoted pyroptosis and apoptosis of hCECs- DED through downregulated miR-146a-5p and inhibited STAT3.


Asunto(s)
Síndromes de Ojo Seco , MicroARNs , Humanos , Piroptosis , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-33/genética , Regulación hacia Abajo , Apoptosis , Síndromes de Ojo Seco/genética , Células Epiteliales/metabolismo , Caspasas/genética , Factor de Transcripción STAT3/genética
12.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489483

RESUMEN

Caspase (CASP) is a family of proteases involved in cleavage and activation of gasdermin, the executor of pyroptosis. In humans, CASP3 and CASP7 recognize the same consensus motif DxxD, which is present in gasdermin E (GSDME). However, human GSDME is cleaved by CASP3 but not by CASP7. The underlying mechanism of this observation is unclear. In this study, we identified a pyroptotic pufferfish GSDME that was cleaved by both pufferfish CASP3/7 and human CASP3/7. Domain swapping between pufferfish and human CASP and GSDME showed that the GSDME C-terminus and the CASP7 p10 subunit determined the cleavability of GSDME by CASP7. p10 contains a key residue that governs CASP7 substrate discrimination. This key residue is highly conserved in vertebrate CASP3 and in most vertebrate (except mammalian) CASP7. In mammals, the key residue is conserved in non-primates (e.g., mouse) but not in primates. However, mouse CASP7 cleaved human GSDME but not mouse GSDME. These findings revealed the molecular mechanism of CASP7 substrate discrimination and the divergence of CASP3/7-mediated GSDME activation in vertebrate. These results also suggested that mutation-mediated functional alteration of CASP probably enabled the divergence and specialization of different CASP members in the regulation of complex cellular activities in mammals.


Cell death is essential for an organism to develop and survive as it plays key roles in processes such as embryo development and tissue regeneration. Cell death is also an important form of defence during an infection. A form of programmed cell death known as pyroptosis can be induced in infected cells, which helps to kill the infectious agent as well as alert the immune system to the infection. Pyroptosis is driven by Gasdermin E, a protein made up of two domains. At one end of the protein, the 'N-terminal' domain punctures holes in cell membranes, which can lead to cell death. At the other end, the 'C-terminal' domain inhibits the activity of the N-terminal domain. A family of proteins called caspases activate Gasdermin E by cleaving it, which releases the N-terminal domain from the inhibitory C-terminal domain. In humans, two caspases known as CASP3 and CASP7 recognize a specific sequence of amino acids ­ the building blocks of proteins ­ in Gasdermin E. However, only CASP3 is able to cleave the protein. After discovering that, unlike in humans, pufferfish Gasdermin E can be cleaved by both CASP3 and CASP7, Xu et al. wanted to investigate the underlying mechanisms behind this difference. Swapping the domains of human and pufferfish Gasdermin E and creating different versions of CASP7 revealed that the C-terminal domain of Gasdermin E and a single amino acid in CASP7 determine whether cleavage is possible. Interestingly, the key amino acid sequence required for cleavage by CASP7 is present in most vertebrate CASP3 and CASP7 proteins. However, it is absent in most mammalian CASP7. The findings of Xu et al. suggest that the different activity of human CASP7 and CASP3 is driven by a single amino acid mutation. This change likely played an important role in the process of different CASP proteins evolving to regulate different cellular activities in mammalian cells. This knowledge will be useful for future studies on the evolution and specialization of other closely related proteins.


Asunto(s)
Gasderminas , Piroptosis , Humanos , Animales , Ratones , Caspasa 3/metabolismo , Piroptosis/genética , Caspasas/genética , Caspasas/metabolismo , Mamíferos/metabolismo
13.
Dev Comp Immunol ; 155: 105139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38325499

RESUMEN

Gasdermin (GSDM) proteins, as the direct executors of pyroptosis, are structurally and functionally conserved among vertebrates and play crucial roles in host defense against infection, inflammation, and cancer. However, the origin of functional GSDMs remains elusive in the animal kingdom. Here, we found that functional GSDME homologs first appeared in the cnidarian. Moreover, these animal GSDME homologs share evolutionarily conserved apoptotic caspase cleavage sites. Thus, we verified the functional conservation of apoptotic caspase-GSDME cascade in Hydra, a representative species of cnidarian. Unlike vertebrate GSDME homologs, HyGSDME could be cleaved by four Hydra caspase homologs with caspase-3 activity at two sites. Furthermore, in vivo activation of Hydra caspases resulted in HyGSDME cleavage to induce pyroptosis, exacerbating injury and restricting bacterial burden, which protects Hydra from pathogen invasion. In conclusion, these results suggest that GSDME-dependent pyroptosis may be an ancient and conserved host defense mechanism, which may contribute to better understanding on the origin and evolution of GSDMs.


Asunto(s)
Hydra , Piroptosis , Animales , Caspasas/genética , Caspasas/metabolismo , Hydra/metabolismo , Gasderminas , Caspasa 3/metabolismo
14.
Science ; 383(6682): 512-519, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301007

RESUMEN

The generation of cyclic oligoadenylates and subsequent allosteric activation of proteins that carry sensory domains is a distinctive feature of type III CRISPR-Cas systems. In this work, we characterize a set of associated genes of a type III-B system from Haliangium ochraceum that contains two caspase-like proteases, SAVED-CHAT and PCaspase (prokaryotic caspase), co-opted from a cyclic oligonucleotide-based antiphage signaling system (CBASS). Cyclic tri-adenosine monophosphate (AMP)-induced oligomerization of SAVED-CHAT activates proteolytic activity of the CHAT domains, which specifically cleave and activate PCaspase. Subsequently, activated PCaspase cleaves a multitude of proteins, which results in a strong interference phenotype in vivo in Escherichia coli. Taken together, our findings reveal how a CRISPR-Cas-based detection of a target RNA triggers a cascade of caspase-associated proteolytic activities.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Caspasas , Myxococcales , Proteolisis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Caspasas/química , Caspasas/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , ARN/metabolismo , Myxococcales/enzimología , Myxococcales/genética , Dominios Proteicos
15.
Nat Commun ; 15(1): 1739, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409108

RESUMEN

Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear. Here, we use multiple genetic approaches to elucidate innate immune pathways in infection or LPS and HS models. Our results show that bacteria and LPS robustly increase inflammatory cell death during HS that is dependent on caspase-1, caspase-11, caspase-8, and RIPK3 through the PANoptosis pathway. Caspase-7 also contributes to PANoptosis in this context. Furthermore, NINJ1 is an important executioner of this cell death to release inflammatory molecules, independent of other pore-forming executioner proteins, gasdermin D, gasdermin E, and MLKL. In an in vivo HS model, mortality is reduced by deleting NINJ1 and fully rescued by deleting key PANoptosis molecules. Our findings suggest that therapeutic strategies blocking NINJ1 or its upstream regulators to prevent PANoptosis may reduce the release of inflammatory mediators and benefit patients.


Asunto(s)
Trastornos de Estrés por Calor , Lipopolisacáridos , Humanos , Gasderminas , Muerte Celular , Inflamación/genética , Caspasas/genética , Respuesta al Choque Térmico/genética , Piroptosis , Apoptosis , Factores de Crecimiento Nervioso , Moléculas de Adhesión Celular Neuronal
16.
Elife ; 132024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231198

RESUMEN

Inflammatory caspases are cysteine protease zymogens whose activation following infection or cellular damage occurs within supramolecular organizing centers (SMOCs) known as inflammasomes. Inflammasomes recruit caspases to undergo proximity-induced autoprocessing into an enzymatically active form that cleaves downstream targets. Binding of bacterial LPS to its cytosolic sensor, caspase-11 (Casp11), promotes Casp11 aggregation within a high-molecular-weight complex known as the noncanonical inflammasome, where it is activated to cleave gasdermin D and induce pyroptosis. However, the cellular correlates of Casp11 oligomerization and whether Casp11 forms an LPS-induced SMOC within cells remain unknown. Expression of fluorescently labeled Casp11 in macrophages revealed that cytosolic LPS induced Casp11 speck formation. Unexpectedly, catalytic activity and autoprocessing were required for Casp11 to form LPS-induced specks in macrophages. Furthermore, both catalytic activity and autoprocessing were required for Casp11 speck formation in an ectopic expression system, and processing of Casp11 via ectopically expressed TEV protease was sufficient to induce Casp11 speck formation. These data reveal a previously undescribed role for Casp11 catalytic activity and autoprocessing in noncanonical inflammasome assembly, and shed new light on the molecular requirements for noncanonical inflammasome assembly in response to cytosolic LPS.


Asunto(s)
Caspasas , Inflamasomas , Animales , Ratones , Caspasas/genética , Citosol , Lipopolisacáridos , Proteolisis
17.
Mol Cell ; 84(1): 170-179, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181758

RESUMEN

Apoptosis, the first regulated form of cell death discovered in mammalian cells, is executed by caspase-3/7, which are dormant in living cells but become activated by upstream caspase-8 or caspase-9 in responding to extracellular cytokines or intracellular stress signals, respectively. The same cell death-inducing cytokines also cause necroptosis when caspase-8 is inhibited, resulting in the activation of receptor-interacting protein kinase 3 (RIPK3), which phosphorylates pseudokinase MLKL to trigger its oligomerization and membrane-disrupting activity. Caspase-1/4/5/11, known as inflammatory caspases, instead induce pyroptosis by cleaving gasdermin D, whose caspase-cleaved N terminus forms pores on the plasma membrane. The membrane protein NINJ1 amplifies the extent of membrane rupture initiated by gasdermin D. Additionally, disturbance of peroxidation of polyunsaturated fatty acid tails of membrane phospholipids triggers ferroptosis, an iron-dependent and caspases-independent necrotic death. This review will discuss how these regulated cell death pathways act individually and interconnectively in particular cell types to carry out specific physiological and pathological functions.


Asunto(s)
Caspasas , Gasderminas , Animales , Caspasa 8 , Muerte Celular , Caspasas/genética , Citocinas , Mamíferos
18.
Am J Physiol Cell Physiol ; 326(3): C784-C794, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189134

RESUMEN

The field of cell death has witnessed significant advancements since the initial discovery of apoptosis in the 1970s. This review delves into the intricacies of pyroptosis, a more recently identified form of regulated, lytic cell death, and explores the roles of pyroptotic effector molecules, with a strong emphasis on their mechanisms and relevance in various diseases. Pyroptosis, characterized by its proinflammatory nature, is driven by the accumulation of large plasma membrane pores comprised of gasdermin family protein subunits. In different contexts of cellular homeostatic perturbations, infections, and tissue damage, proteases, such as caspase-1 and caspase-4/5, play pivotal roles in pyroptosis by cleaving gasdermins. Gasdermin-D (GSDMD), the most extensively studied member of the gasdermin protein family, is expressed in various immune cells and certain epithelial cells. Upon cleavage by caspases, GSDMD oligomerizes and forms transmembrane pores in the cell membrane, leading to the release of proinflammatory cytokines. GSDMD-N, the NH2-terminal fragment, displays an affinity for specific lipids, contributing to its role in pore formation in pyroptosis. While GSDMD is the primary focus, other gasdermin family members are also discussed in detail. These proteins exhibit distinct tissue-specific functions and contribute to different facets of cell death regulation. Additionally, genetic variations in some gasdermins have been linked to diseases, underscoring their clinical relevance. Furthermore, the interplay between GSDM pores and the activation of other effectors, such as ninjurin-1, is elucidated, providing insights into the complexity of pyroptosis regulation. The findings underscore the molecular mechanisms that govern pyroptosis and its implications for various physiological and pathological processes.


Asunto(s)
Gasderminas , Piroptosis , Muerte Celular , Apoptosis , Caspasas/genética
19.
J Appl Toxicol ; 44(4): 623-640, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38053498

RESUMEN

Pitavastatin (PITA) is a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor to treat hypercholesterolemia and in recent studies is focused that its potential anti-cancer effect. This study was aimed to elucidate the effect of PITA alone and in combination with cisplatin on cervical cancer cells (HeLa) in vitro. Cytotoxicity of PITA (5-200 µM) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays for 24, 48, and 72 h. Cell apoptosis and cell cycle analyses were performed in flow cytometry (0.1-100 µM). The evaluation of genotoxic effects and oxidative DNA damage of PITA (2-200 µM) were performed with standard comet assay, formamidopyrimidine glycosylase (fpg)-modified comet assay, and reactive oxygen species (ROS) activation in HeLa cells. PITA alone reduced cell viability in a dose-dependent manner (20-200, 20-200, and 5-200 µM for 24, 48, and 72 h, respectively, in MTT). The combined treatment of PITA with cisplatin resulted in significantly greater inhibition of cell viability. ROS and DNA damage increased significantly at 100 µM for 4 h and 20 µM for 24 h, respectively. PITA-induced apoptosis, an increased proportion of sub G1 cells, was monitored, and also, it increased the expression of active caspase-9 and caspase-3 and upregulated cleaved poly adenosine diphosphate ribose polymerase (PARP) by western blotting and caspase 3/8/9 multiple assay kit. We conclude that PITA can be used to efficiently cervical cancer studies, and promising findings have been obtained for further studies.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Quinolinas , Neoplasias del Cuello Uterino , Femenino , Humanos , Cisplatino/farmacología , Caspasas/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Células HeLa , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Estrés Oxidativo , Daño del ADN , Línea Celular Tumoral
20.
Curr Biol ; 33(20): 4446-4457.e5, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37751744

RESUMEN

Chromosomal instability (CIN), an increased rate of changes in chromosome structure and number, is observed in most sporadic human carcinomas with high metastatic activity. Here, we use a Drosophila epithelial model to show that DNA damage, as a result of the production of lagging chromosomes during mitosis and aneuploidy-induced replicative stress, contributes to CIN-induced invasiveness. We unravel a sub-lethal role of effector caspases in invasiveness by enhancing CIN-induced DNA damage and identify the JAK/STAT signaling pathway as an activator of apoptotic caspases through transcriptional induction of pro-apoptotic genes. We provide evidence that an autocrine feedforward amplification loop mediated by Upd3-a cytokine with homology to interleukin-6 and a ligand of the JAK/STAT signaling pathway-contributes to amplifying the activation levels of the apoptotic pathway in migrating cells, thus promoting CIN-induced invasiveness. This work sheds new light on the chromosome-signature-independent effects of CIN in metastasis.


Asunto(s)
Caspasas , Daño del ADN , Humanos , Caspasas/genética , Aneuploidia , Mitosis , Inestabilidad Cromosómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA