Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioelectrochemistry ; 133: 107451, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32109845

RESUMEN

Caveolae consist in lipid raft domains composed of caveolin proteins, cholesterol, glycosphingolipids, and GPI-anchored proteins. Caveolin proteins present three different types, caveolin 1 (CAV-1), caveolin 2 (CAV-2) and caveolin 3 (CAV-3), with a very similar structure and amino acid composition. The native caveolin proteins oxidation mechanism was investigated for the first time, at a glassy carbon electrode, using cyclic, square wave and differential pulse voltammetry. The three native caveolin proteins oxidation mechanism presented only one tyrosine and tryptophan amino acid residues oxidation peak. Denatured caveolin proteins presented also the tyrosine, tryptophan and cysteine amino acid residues oxidation peaks. The reverse cholesterol transport is related to caveolae and caveolin proteins, and CAV-1 is directly connected to cholesterol transport. The influence of cholesterol on the three caveolin proteins electrochemical behaviour was evaluated. In the absence and in the presence of cholesterol, significant differences in the CAV-1 oxidation peak current were observed.


Asunto(s)
Caveolina 1/metabolismo , Caveolina 2/metabolismo , Caveolina 3/metabolismo , Colesterol/metabolismo , Caveolas/metabolismo , Caveolina 1/química , Caveolina 2/química , Caveolina 3/química , Técnicas Electroquímicas , Humanos , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28747506

RESUMEN

Autophagy plays important roles in maintaining cellular homeostasis. It uses double- or multiple-membrane vesicles termed autophagosomes to remove protein aggregates and damaged organelles from the cytoplasm for recycling. Hepatitis C virus (HCV) has been shown to induce autophagy to enhance its own replication. Here we describe a procedure that combines membrane flotation and affinity chromatography for the purification of autophagosomes from cells that harbor an HCV subgenomic RNA replicon. The purified autophagosomes had double- or multiple-membrane structures with a diameter ranging from 200 nm to 600 nm. The analysis of proteins associated with HCV-induced autophagosomes by proteomics led to the identification of HCV nonstructural proteins as well as proteins involved in membrane trafficking. Notably, caveolin-1, caveolin-2, and annexin A2, which are proteins associated with lipid rafts, were also identified. The association of lipid rafts with HCV-induced autophagosomes was confirmed by Western blotting, immunofluorescence microscopy, and immunoelectron microscopy. Their association with autophagosomes was also confirmed in HCV-infected cells. The association of lipid rafts with autophagosomes was specific to HCV, as it was not detected in autophagosomes induced by nutrient starvation. Further analysis indicated that the autophagosomes purified from HCV replicon cells could mediate HCV RNA replication in a lipid raft-dependent manner, as the depletion of cholesterol, a major component of lipid rafts, from autophagosomes abolished HCV RNA replication. Our studies thus demonstrated that HCV could specifically induce the association of lipid rafts with autophagosomes for its RNA replication.IMPORTANCE HCV can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma, and is one of the most important human pathogens. Infection with HCV can lead to the reorganization of membrane structures in its host cells, including the induction of autophagosomes. In this study, we developed a procedure to purify HCV-induced autophagosomes and demonstrated that HCV could induce the localization of lipid rafts to autophagosomes to mediate its RNA replication. This finding provided important information for further understanding the life cycle of HCV and its interaction with the host cells.


Asunto(s)
Autofagosomas/fisiología , Hepacivirus/fisiología , Microdominios de Membrana/fisiología , Replicación Viral , Anexina A2/química , Anexina A2/aislamiento & purificación , Autofagosomas/química , Autofagosomas/virología , Autofagia , Western Blotting , Caveolina 1/química , Caveolina 1/aislamiento & purificación , Caveolina 2/química , Caveolina 2/aislamiento & purificación , Línea Celular , Colesterol/análisis , Cromatografía de Afinidad , Interacciones Huésped-Patógeno , Humanos , Microdominios de Membrana/química , Microdominios de Membrana/virología , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Proteómica , ARN Viral/fisiología , Replicón , Proteínas no Estructurales Virales/metabolismo
3.
Biochim Biophys Acta ; 1853(5): 1022-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25667086

RESUMEN

Here, we demonstrate that insulin receptor (IR) tyrosine kinase catalyzes Tyr-19 and Tyr-27 phosphorylation of caveolin-2 (cav-2), leading to stimulation of signaling proteins downstream of IR, and that the catalysis is dependent on fatty acylation status of cav-2, promoting its interaction with IR. Cav-2 is myristoylated at Gly-2 and palmitoylated at Cys-109, Cys-122, and Cys-145. The fatty acylation deficient mutants are unable to localize in the plasma membrane and not phosphorylated by IR tyrosine kinase. IR interacts with the C-terminal domain of cav-2 containing the cysteines for palmitoylation. IR mutants, Y999F and K1057A, but not W1220S, fail interaction with cav-2. Insulin receptor substrate-1 (IRS-1) is recruited to interact with the IR-catalyzed phospho-tyrosine cav-2, which facilitates IRS-1 association with and activation by IR to initiate IRS-1-mediated downstream signaling. Cav-2 fatty acylation and tyrosine phosphorylation are necessary for the IRS-1-dependent PI3K-Akt and ERK activations responsible for glucose uptake and cell survival and proliferation. In conclusion, fatty acylated cav-2 is a new substrate of IR tyrosine kinase, and the fatty acylation and phosphorylation of cav-2 present novel mechanisms by which insulin signaling is activated.


Asunto(s)
Caveolina 2/metabolismo , Ácidos Grasos/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Acilación/efectos de los fármacos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Biocatálisis/efectos de los fármacos , Caveolina 2/química , Línea Celular , Cisteína/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Insulina/farmacología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Lipoilación/efectos de los fármacos , Ratones , Mitógenos/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
4.
Nat Commun ; 4: 2540, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24096474

RESUMEN

Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVß, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Caveolina 1/antagonistas & inhibidores , Caveolina 2/antagonistas & inhibidores , Proteínas de Unión a Tacrolimus/genética , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Potenciales de Acción , Animales , Bloqueadores de los Canales de Calcio/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Caveolina 1/química , Caveolina 1/metabolismo , Caveolina 2/química , Caveolina 2/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Descubrimiento de Drogas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Ratones , Imitación Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Técnicas de Placa-Clamp , Unión Proteica , Ratas , Sirolimus/farmacología , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo
5.
Biochemistry ; 47(1): 101-11, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18081315

RESUMEN

In the present study, using a combination of reconstituted systems and endothelial cells endogenously expressing caveolins, we show that phosphorylation of caveolin-2 at serines 23 and 36 can be differentially regulated by caveolin-1 mediated subcellular targeting to lipid raft/caveolae and in endothelial cells synchronized in mitosis. Detergent insolubility and sucrose flotation gradient experiments revealed that serine 23 phosphorylation of caveolin-2 preferably occurs in detergent-resistant membranes (DRMs), while serine 36 phosphorylation takes place in non-DRMs. Furthermore, immunofluorescence microscopy studies determined that in the presence of caveolin-1, serine 23-phosphorylated caveolin-2 mostly localizes to plasma membrane, while serine 36-phosphorylated caveolin-2 primarily resides in intracellular compartments. To directly address the role of caveolin-1 in regulating phosphorylation of endogenous caveolin-2, we have used the siRNA approach. The specific knockdown of caveolin-1 in endothelial cells decreases caveolin-2 phosphorylation at serine 23 but not at serine 36. Thus, upregulation of serine 23 phosphorylation of caveolin-2 depends on caveolin-1-driven targeting to plasma membrane lipid rafts and caveolae. Interestingly, although serine 36 phosphorylation does not seem to be regulated in endothelial cells by caveolin-1, it can be selectively upregulated in endothelial cells synchronized in mitosis. The latter data suggests a possible involvement of serine 36-phosphorylated caveolin-2 in modulating mitosis.


Asunto(s)
Caveolas/metabolismo , Caveolina 2/metabolismo , Células Endoteliales/metabolismo , Microdominios de Membrana/metabolismo , Serina/metabolismo , Caveolina 1/química , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/química , Caveolina 2/genética , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Detergentes/química , Dimerización , Células Endoteliales/citología , Citometría de Flujo , Humanos , Microscopía Fluorescente , Mitosis/fisiología , Fosforilación , Transporte de Proteínas , ARN Interferente Pequeño/genética , Serina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA