Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.515
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 199, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026314

RESUMEN

BACKGROUND: The demand for bioplastics has increased exponentially as they have emerged as alternatives to petrochemical plastics. However, there is a substantial lack of knowledge regarding bioplastic degradation. This study developed a novel pretreatment method to improve the accessibility of a bioplastic substrate for biodegradation. In this study, cellulose acetate, a bioplastic found in the world's most littered waste, e.g. cigarette filters, was selected as a potential substrate. Before anaerobic digestion, three thermal alkaline pretreatments: TA 30 °C, TA 90 °C, and TA 121 °C, were used to evaluate their effects on the chemical alterations of cellulose acetate. RESULT: The ester groups in cellulose acetate were significantly reduced by the TA 30 °C pretreatment, as seen by a decrease in C = O stretching vibrations and shortening of C - O stretches (1,270 ∼ 1,210 cm- 1), indicating effective removal of acetyl groups. This pretreatment significantly enhanced cellulose acetate biodegradability to a maximum of 91%, surpassing the previously reported cellulose acetate degradation. Methane production increased to 695.0 ± 4 mL/g of volatile solid after TA 30 °C pretreatment, indicating enhanced cellulose acetate accessibility to microorganisms, which resulted in superior biogas production compared to the control (306.0 ± 10 mL/g of volatile solid). Diverse microbes in the anaerobic digestion system included hydrolytic (AB240379_g, Acetomicrobium, FN436103_g, etc.), fermentative, and volatile fatty acids degrading bacteria (JF417922_g, AB274492_g, Coprothermobacter, etc.), with Methanobacterium and Methanothermobacter being the sole hydrogenotrophic methanogens in the anaerobic digestion system. Additionally, an attempt to predict the pathway for the effective degradation of cellulose acetate from the microbial community in different pretreatment conditions. CONCLUSIONS: To the best of our knowledge, this is the first study to estimate the maximum cellulose acetate degradation rate, with a simple and cost-effective pretreatment procedure. This approach holds promise for mitigating the environmental impact of cellulose acetate of cigarette filters and presents a sustainable and economically viable waste management strategy.


Asunto(s)
Biodegradación Ambiental , Celulosa , Celulosa/metabolismo , Celulosa/análogos & derivados , Metano/metabolismo , Anaerobiosis , Biocombustibles , Productos de Tabaco , Bacterias/metabolismo , Temperatura , Filtración
2.
Int J Biol Macromol ; 274(Pt 2): 133549, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971653

RESUMEN

Bagasse cellulose, an industrial waste byproduct of sugar production, was demonstrated to be a viable solid support for a solid-phase ionic oxidation catalyst enabling organic solvent-free aqueous reaction conditions and facile catalyst recovery. Bagasse cellulose-supported quaternary ammonium peroxyphosphotungstate was synthesized from bagasse cellulose-supported quaternary ammonium chloride, phosphotungstic acid, and hydrogen peroxide. The chemical structure of this material was characterized by SEM, XRD, FT-IR, XPS, and 13C NMR, revealing stability of the cellulose matrix to the catalyst loading conditions and effective dispersion of the acicular catalyst crystals throughout the matrix. High catalytic activity of this synthetic complex was demonstrated in the oxidation of cyclohexene to 1,2-cyclohexanediol with hydrogen peroxide in the absence of solvent. Optimized conditions providing trans-1,2-cyclohexanediol with 86.2 % selectivity were 12 wt% catalyst and 4 mL/g 30 % H2O2 (vs. cyclohexene) at 50 °C for 10 h.


Asunto(s)
Celulosa , Ciclohexenos , Oxidación-Reducción , Compuestos de Amonio Cuaternario , Solventes , Celulosa/química , Catálisis , Ciclohexenos/química , Compuestos de Amonio Cuaternario/química , Solventes/química , Peróxido de Hidrógeno/química
3.
Plant Cell Rep ; 43(8): 202, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073636

RESUMEN

KEY MESSAGE: E1 holoenzyme was extensively Hyp-O-glycosylated at the proline rich linker region in plants, which substantially increased the molecular size and improved the enzymatic digestibility of the biomass of transgenic plants. Thermophilic E1 endo-1,4-ß-glucanase derived from Acidothermus cellulolyticus has been frequently expressed in planta to reconstruct the plant cell wall to overcome biomass recalcitrance. However, the expressed holoenzyme exhibited a larger molecular size (~ 100 kDa) than the theoretical one (57 kDa), possibly due to posttranslational modifications in the recombinant enzyme within plant cells. This study investigates the glycosylation of the E1 holoenzyme expressed in tobacco plants and determines its impact on enzyme activity and biomass digestibility. The E1 holoenzyme, E1 catalytic domain (E1cd) and E1 linker (E1Lk) were each expressed in tobacco plants and suspension cells. The accumulation of holoenzyme was 2.0- to 2.3- times higher than that of E1cd. The proline-rich E1Lk region was extensively hydroxyproline-O-glycosylated with arabinogalactan polysaccharides. Compared with E1cd, the holoenzyme displayed a broader optimal temperature range (70 to 85 ºC). When grown in greenhouse, the expression of E1 holoenzyme induced notable phenotypic changes in plants, including delayed flowering and leaf variegation post-flowering. However, the final yield of plant biomass was not significantly affected. Finally, plant biomass engineering with E1 holoenzyme showed 1.7- to 1.8-fold higher saccharification efficiency than the E1cd lines and 2.4- to 2.7-fold higher than the wild-type lines, which was ascribed to the synergetic action of the E1Lk and cellulose binding module in reducing cell wall recalcitrance.


Asunto(s)
Biomasa , Celulasa , Hidroxiprolina , Nicotiana , Plantas Modificadas Genéticamente , Glicosilación , Celulasa/metabolismo , Celulasa/genética , Nicotiana/genética , Nicotiana/metabolismo , Hidroxiprolina/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Caldicellulosiruptor/genética , Caldicellulosiruptor/metabolismo
4.
Carbohydr Polym ; 340: 122270, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858000

RESUMEN

Targeted and stimuli-responsive drug delivery enhances therapeutic efficacy and minimizes undesirable side effects of cancer treatment. Although cellulose nanocrystals (CNCs) are used as drug carriers because of their robustness, spindle shape, biocompatibility, renewability, and nontoxicity, the lack of programmability and functionality of CNCs-based platforms hampers their application. Thus, high adaptability and the capacity to form dynamic 3D nanostructures of DNA may be advantageous, as they can provide functionalities such as target-specific and stimuli-responsive drug release. Using DNA nanotechnology, the functional polymeric form of DNA nanostructures can be replicated using rolling circle amplification (RCA), and the biologically and physiologically stable DNA nanostructures may overcome the challenges of CNCs. In this study, multifunctional polymeric DNAs produced with RCA were strongly complexed with surface-modified CNCs via electrostatic interactions to form polymeric DNA-decorated CNCs (pDCs). Particle size, polydispersity, zeta potential, and biostability of the nanocomplexes were analyzed. As a proof of concept, the dynamic structural functionalities of DNA nanostructures were verified by observing cancer-targeted intracellular delivery and pH-responsive drug release. pDCs showed anticancer properties without side effects in vitro, owing to their aptamer and i-motif functionalities. In conclusion, pDCs exhibited multifunctional anticancer activities, demonstrating their potential as a promising hybrid nanocomplex platform for targeted cancer therapy.


Asunto(s)
Celulosa , ADN , Portadores de Fármacos , Liberación de Fármacos , Nanopartículas , Nanoestructuras , Celulosa/química , Humanos , Nanopartículas/química , ADN/química , Nanoestructuras/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Polímeros/química , Concentración de Iones de Hidrógeno , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Supervivencia Celular/efectos de los fármacos
5.
Int J Biol Macromol ; 272(Pt 1): 132509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843608

RESUMEN

Functional packaging represents a new frontier for research on food packaging materials. In this context, adding antioxidant properties to packaging films is of interest. In this study, poly(butylene adipate-co-terephthalate) (PBAT) and olive leaf extract (OLE) have been melt-compounded to obtain novel biomaterials suitable for applications which would benefit from the antioxidant activity. The effect of cellulose nanocrystals (CNC) on the PBAT/OLE system was investigated, considering the interface interactions between PBAT/OLE and OLE/CNC. The biomaterials' physical and antioxidant properties were characterized. Morphological analysis corroborates the full miscibility between OLE and PBAT and that OLE favours CNC dispersion into the polymer matrix. Tensile tests show a stable plasticizer effect of OLE for a month in line with good interface PBAT/OLE interactions. Simulant food tests indicate a delay of OLE release from the 20 wt% OLE-based materials. Antioxidant activity tests prove the antioxidant effect of OLE depending on the released polyphenols, prolonged in the system at 20 wt% of OLE. Fluorescence spectroscopy demonstrates the nature of the non-covalent PBAT/OLE interphase interactions in π-π stacking bonds. The presence of CNC in the biomaterials leads to strong hydrogen bonding interactions between CNC and OLE, accelerating OLE released from the PBAT matrix.


Asunto(s)
Antioxidantes , Materiales Biocompatibles , Celulosa , Nanopartículas , Olea , Extractos Vegetales , Hojas de la Planta , Poliésteres , Celulosa/química , Antioxidantes/química , Antioxidantes/farmacología , Olea/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Embalaje de Alimentos/métodos
6.
Arch Dermatol Res ; 316(7): 353, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850353

RESUMEN

Despite the great progress in developing wound dressings, delayed wound closure still remains a global challenge. Thus, developing novel wound dressings and employing advanced strategies, including tissue engineering, are urgently desired. The carboxylated cellulose was developed through the in situ synthesis method and further reinforced by incorporating pal-KTTKS to stimulate collagen synthesis and improve wound healing. The developed composites supported cell adhesion and proliferation and showed good biocompatibility. To boost wound-healing performance, adipose-derived mesenchymal stem cells (MSC) were seeded on the pal-KTTKS-enriched composites to be implanted in a rat model of burn wound healing. Healthy male rats were randomly divided into four groups and wound-healing performance of Vaseline gauze (control), carboxylated cellulose (CBC), pal-KTTKS-enriched CBC (KTTKS-CBC), and MSCs seeded on the KTTKS-CBC composites (MSC-KTTKS-CBC) were evaluated on days 3, 7, and 14 post-implantation. In each group, the designed therapeutic dressings were renewed every 5 days to increase wound-healing performance. We found that KTTKS-CBC and MSC-KTTKS-CBC composites exhibited significantly better wound healing capability, as evidenced by significantly alleviated inflammation, increased collagen deposition, improved angiogenesis, and considerably accelerated wound closure. Nevertheless, the best wound-healing performance was observed in the MSC-KTTKS-CBC groups among all four groups. This research suggests that the MSC-KTTKS-CBC composite offers a great deal of promise as a wound dressing to enhance wound regeneration and expedite wound closure in the clinic.


Asunto(s)
Quemaduras , Celulosa , Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Cicatrización de Heridas , Animales , Quemaduras/terapia , Cicatrización de Heridas/efectos de los fármacos , Masculino , Ratas , Trasplante de Células Madre Mesenquimatosas/métodos , Ratas Sprague-Dawley , Vendajes , Colágeno/metabolismo , Humanos , Piel/patología , Piel/lesiones , Piel/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas
7.
Sci Rep ; 14(1): 13985, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886450

RESUMEN

Crocin is a carotenoid compound in saffron with anti-cancer properties. However, its therapeutic application is limited by its low absorption, bioavailability, and stability, which can be overcome through nanocarrier delivery systems. This study used surface-modified Nano-crystalline cellulose (NCC) to deliver crocin to cancer cells. NCC modified with CTAB were loaded with crocin and then conjugated with folic acid (NCF-CR-NPs). The synthesized nanoparticles (NPs) were characterized using FTIR, XRD, DLS, and FESEM. The crystallinity index of NCC was 66.64%, higher than microcrystalline cellulose (61.4%). The crocin loading and encapsulation efficiency in NCF-CR-NPs were evaluated. Toxicity testing by MTT assay showed that NCF-CR-NPs had higher toxicity against various cancer cell lines, including colon cancer HT-29 cells (IC50 ~ 11.6 µg/ml), compared to free crocin. Fluorescent staining, flow cytometry, and molecular analysis confirmed that NCF-CR-NPs induced apoptosis in HT-29 cells by increasing p53 and caspase 8 expression. The antioxidant capacity of NCF-CR-NPs was also evaluated using ABTS and DPPH radical scavenging assays. NCF-CR-NPs exhibited high free radical scavenging ability, with an IC50 of ~ 46.5 µg/ml for ABTS. In conclusion, this study demonstrates the potential of NCF-CR-NPs to deliver crocin to cancer cells effectively. The NPs exhibited enhanced anti-cancer and antioxidant activities compared to free crocin, making them a promising nanocarrier system for crocin-based cancer therapy.


Asunto(s)
Apoptosis , Carotenoides , Celulosa , Ácido Fólico , Nanopartículas , Carotenoides/química , Carotenoides/farmacología , Ácido Fólico/química , Ácido Fólico/farmacología , Humanos , Celulosa/química , Nanopartículas/química , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Células HT29 , Portadores de Fármacos/química , Antioxidantes/farmacología , Antioxidantes/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos
8.
Int J Biol Macromol ; 272(Pt 2): 132883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838898

RESUMEN

Glycyrrhiza glabra extract is widely known for its antioxidant and anti-inflammatory properties and can improve the wound healing process. The aim of this work was to shorten the time of the healing process by using an eco-sustainable wound dressing based on Spanish broom flexible cellulosic fabric by impregnation with G. glabra extract-loaded ethosomes. Chemical analysis of G. glabra extract was performed by LC-DAD-MS/MS and its encapsulation into ethosomes was obtained using the ethanol injection method. Lipid vesicles were characterized in terms of size, polydispersity index, entrapment efficiency, zeta potential, and stability. In vitro release studies, biocompatibility, and scratch test on 3T3 fibroblasts were performed. Moreover, the structure of Spanish broom dressing and its ability to absorb wound exudate was characterized by Synchrotron X-ray phase contrast microtomography (SR-PCmicroCT). Ethosomes showed a good entrapment efficiency, nanometric size, good stability over time and a slow release of polyphenols compared to the free extract, and were not cytotoxic. Lastly, the results revealed that Spanish broom wound dressing loaded with G. glabra ethosomes is able to accelerate wound closure by reducing wound healing time. To sum up, Spanish broom wound dressing could be a potential new green tool for biomedical applications.


Asunto(s)
Vendajes , Celulosa , Glycyrrhiza , Extractos Vegetales , Spartium , Cicatrización de Heridas , Animales , Ratones , Glycyrrhiza/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Spartium/química , Células 3T3
9.
Int J Biol Macromol ; 273(Pt 1): 132783, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825285

RESUMEN

In this study, a brand-new, easy, and environmentally friendly approach for chemically functionalizing 2,2,6,6-tetramethylpiperidinyloxyl radical (TEMPO)-oxidized cellulose nanofiber (TOCNF) to produce modified cellulose nanofiber (octadecylamine-citric acid-CNF) was proposed. Effects of octadecylamine (ODA)/TOCNF mass ratio on the chemical structure, morphology, surface hydrophobicity and oleophobicity were studied. According to Fourier transform infrared spectroscopy (FTIR) analysis, ODA was successfully grafted onto the TOCNF by simple citric acid (CA) esterification and amidation reactions. Scanning electron microscopy (SEM) showed that a new rough structure was formed on the ODA-CA-CNF surface. The water contact angle (WCA) and the castor oil contact angle (OCA) of the ODA-CA-CNF reached 139.6° and 130.6°, respectively. The high-grafting-amount ODA-CA-CNF was sprayed onto paper, and the OCA reached 118.4°, which indicated good oil-resistance performance. The low-grafting-amount ODA-CNF was applied in a pH-responsive indicator film, exhibiting a colour change in response to the pH level, which can be applied in smart food packaging. The ODA-CA-CNF with excellent water/oil-resistance properties and fluorine-free properties can replace petrochemical materials and can be used in the fields of fluorine-free oil-proof paper.


Asunto(s)
Celulosa , Óxidos N-Cíclicos , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Nanofibras/química , Celulosa/química , Óxidos N-Cíclicos/química , Aminas/química , Ácido Cítrico/química , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Flúor/química , Propiedades de Superficie
10.
Int J Biol Macromol ; 273(Pt 2): 132706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825294

RESUMEN

Benzene, as a common volatile organic compound, represents serious risk to human health and environment even at low level concentration. There is an urgent concern on visualized, sensitive and real time detection of benzene gases. Herein, by doping Fe3+ and graphene quantum dots (GQDs), a cellulose nanocrystal (CNC) chiral nematic film was designed with dual response of photonic colors and fluorescence to benzene gas. The chiral nematic CNC/Fe/GQDs film could respond to benzene gas changes by reversible motion. Moreover, chiral nematic film also displays reversible responsive to humidity changes. The resulting CNC/Fe/GQDs chiral nematic film showed excellent response performance at benzene gas concentrations of 0-250 mg/m3. The maximal reflection wavelength film red shifted from 576 to 625 nm. Furthermore, structural color of CNC/Fe/GQDs chiral nematic film change at 44 %, 54 %, 76 %, 87 %, and 99 % relative humidity. Interestingly, due to the stability of GQDs to water molecules, CNC/Fe/GQDs chiral nematic film exhibit fluorescence response to benzene gas even in high humidity (RH = 99 %) environment. Besides, we further developed a smartphone-based response network system for quantitively determinization and signal transformation. This work provides a promising routine to realize a new benzene gas response regime and promotes the development of real-time benzene gas detection.


Asunto(s)
Benceno , Celulosa , Nanopartículas , Celulosa/química , Benceno/química , Benceno/análisis , Nanopartículas/química , Puntos Cuánticos/química , Grafito/química , Fluorescencia , Gases/análisis , Gases/química , Color , Fotones
11.
Int J Biol Macromol ; 273(Pt 1): 132998, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866290

RESUMEN

Paclitaxel, a diterpenoid isolated from the bark of Taxus wallichiana var. chinensis (Pilger) Florin, is currently showing significant therapeutic effects against a variety of cancers. Baccatin III (Bac) and 10-Deacetylbaccatin III (10-DAB) are in great demand as important precursors for the synthesis of paclitaxel. This work aims to develop a simple, rapid and highly selective, safe, and non-polluting molecularly imprinted material for 10-DAB and Bac enrichment. In this study, we innovatively prepared molecularly imprinted materials with nanocellulose aerogel microspheres and 2-vinylpyridine (2-VP) as a bifunctional monomer, and 10-DAB and Bac as bis-template molecules. In particular, functionalized nanocellulose dual-template molecularly imprinted aerogel microsphere (FNCAG-DMIM) were successfully synthesized by the bifunctional introduction of functional nanocellulose aerogel microsphere (FNCAG) modified with Polyethyleneimine (PEI) as a carrier and functional monomer, which provided a large number of recognition sites for bimodal molecules. FNCAG-DMIM showed high specificity for 10-DAB and Bac specific assays. Under the optimal experimental conditions, the adsorption capacities of FNCAG-DMIM for 10-DAB and Bac reached 52.27 mg g-1 and 53.81 mg g-1, respectively. In addition, it showed good reliability and practicality in the determination of real samples. The present study extends the research on the synthesis of natural functional monomers by molecularly imprinted materials and opens up new horizons for the targeted isolation of plant compounds by dual-template molecularly imprinted materials.


Asunto(s)
Celulosa , Geles , Microesferas , Impresión Molecular , Celulosa/química , Celulosa/análogos & derivados , Geles/química , Impresión Molecular/métodos , Adsorción , Taxoides/química
12.
Int J Biol Macromol ; 273(Pt 2): 133119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880452

RESUMEN

Ethyl cellulose (EC)-based composite sponges were developed for oil spillage treatment. The EC sponge surface was decorated with helical carbon nanotubes (HCNTs) and molybdenum disulfide (MoS2) (1 phr) using the inside-out sugar templating method. The inside surface of a sugar cube was coated with HCNTs and MoS2. After filling the sugar cube pores with EC and the subsequent sugar leaching, the decorating materials presented on the sponge surface. The EC/HCNT/MoS2 sponge had a high level of oil removal based on its adsorption capacity (41.68 g/g), cycled adsorption (∼75-79 %), separation flux efficiency (∼85-95 %), and efficiency in oil/water emulsion separation (92-94 %). The sponge maintained adsorption capacity in acidic, basic, and salty conditions, adsorbed oil under water, and functioned as an oil/water separator in a continuous pump-assisted system. The compressive stress and Young's modulus of the EC sponge increased following its decoration using HCNTs and MoS2. The composite sponge was robust based on cycled compression and was thermally stable up to ∼120 οC. Based on the eco-friendliness of EC, the low loading of HCNTs and MoS2, and sponge versatility, the developed EC/HCNT/MoS2 sponge should be good candidate for use in sustainable oil adsorption and separation applications.


Asunto(s)
Celulosa , Disulfuros , Molibdeno , Nanotubos de Carbono , Celulosa/química , Celulosa/análogos & derivados , Disulfuros/química , Nanotubos de Carbono/química , Adsorción , Molibdeno/química , Agua/química , Aceites/química , Purificación del Agua/métodos
13.
Int J Biol Macromol ; 273(Pt 2): 133191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880455

RESUMEN

Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.


Asunto(s)
Celulosa , Animales , Celulosa/química , Celulosa/farmacología , Ratas , Adherencias Tisulares/prevención & control , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino , Pared Abdominal/cirugía , Pared Abdominal/patología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Propiedades de Superficie , Hernia Abdominal/prevención & control , Mallas Quirúrgicas , Ratas Sprague-Dawley
14.
Int J Biol Macromol ; 273(Pt 2): 133226, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38889827

RESUMEN

Multifunctional transparent woods have recently attracted a great interest as efficient products for many applications, such as smart window and smart packaging. Herein, a transparent wood with several desirable properties, including flame-retardant activity, ultraviolet shielding, superhydrophobicity, good roughness, durability and photostability was developed. The current photoluminescent wood showed a remarkable capacity to keep releasing light in the dark for extended durations. Multifunctional transparent wood was prepared by infiltrating a delignified wooden bulk with a combination of polyvinyl alcohol (PVA), ammonium polyphosphate (APP), cellulose nanocrystals, and rare-earth strontium aluminate nanoparticles (RSAN). Cellulose nanocrystals were prepared from microcrystalline cellulose, and used as reinforcement nanofiller to enhance the mechanical strength of the polyvinyl alcohol matrix and a dispersant agent to avoid agglomeration of RSAN. RSAN displayed diameters of 8-16 nm, while cellulose nanocrystals displayed lengths of 75-150 nm and diameters of 5-10 nm. According to photoluminescence spectra and the colorimetric space coordinates reported by the CIE Lab parameters, the transparent wood changed color to bright green when exposed to UV irradiation. For the produced phosphorescent wood surfaces, an absorption band was detected at 365 nm to generate an emission band at 519 nm.


Asunto(s)
Celulosa , Nanocompuestos , Nanopartículas , Alcohol Polivinílico , Madera , Celulosa/química , Nanocompuestos/química , Madera/química , Alcohol Polivinílico/química , Nanopartículas/química , Fenómenos Mecánicos , Rayos Ultravioleta
15.
PLoS One ; 19(6): e0299312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843202

RESUMEN

This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.


Asunto(s)
Arecaceae , Celulosa , Frutas , Lignina , Oxidación-Reducción , Celulosa/química , Frutas/química , Arecaceae/química , Lignina/química , Nanofibras/química , Aceite de Palma/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Peróxido de Hidrógeno/química
16.
Meat Sci ; 216: 109552, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38878411

RESUMEN

Food safety is a global concern due to the risk posed by microbial pathogens, toxins and food deterioration. Hence, materials with antibacterial and antioxidant properties have been widely studied for their packaging application to ensure food safety. The current study has been designed to fabricate the chitosan/starch-based film with cinnamon essential oil (CEO) and cellulose nanofibers for active packaging. The nanocomposite films developed in this study were characterized by using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM), and Gas Chromatography-Mass Spectroscopy (GC-MS). The biodegradability, hydrodynamic, mechanical, antioxidant and antibacterial properties of the films were also evaluated. From the results, the addition of CEO and cellulose nanofibers was found to enhance the antimicrobial and material properties of the film. FE-SEM analysis has also revealed a rough and porous surface morphology for the developed nanocomposite film. FT-IR analysis further demonstrated the molecular interactions among the various components used for the preparation of the film. The film has also been shown to have antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the film was found to reduce the bacterial load of the stored beef meat when used as a packaging material. The study hence provides valuable insights into the development of chitosan/starch-based films incorporated with CEO and cellulose nanofibers for active food packaging applications. This is due to its excellent antimicrobial and physicochemical properties. Hence, the nanocomposite film developed in the study can be considered to have promising applications in the food packaging industry.


Asunto(s)
Antibacterianos , Celulosa , Quitosano , Cinnamomum zeylanicum , Escherichia coli , Embalaje de Alimentos , Nanofibras , Aceites Volátiles , Carne Roja , Staphylococcus aureus , Almidón , Quitosano/farmacología , Quitosano/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Embalaje de Alimentos/métodos , Celulosa/química , Animales , Staphylococcus aureus/efectos de los fármacos , Bovinos , Cinnamomum zeylanicum/química , Almidón/química , Carne Roja/microbiología , Carne Roja/análisis , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Carga Bacteriana , Microbiología de Alimentos , Antioxidantes/farmacología , Nanocompuestos/química
17.
Int J Biol Macromol ; 274(Pt 2): 133419, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936575

RESUMEN

Bacterial cellulose (BC) has recently attracted a lot of attention as a high-performance, low-cost separator substrate for a variety of lithium-ion (LIBs) and lithium­sulfur batteries (LISs). BC-base can be used in the design and manufacture of separators, mainly because of its unique properties compared to traditional polyethylene/polypropylene separator materials, such as high mechanical properties, high safety, good ionic conductivity, and suitability for a variety of design and manufacturing needs. In this review, we briefly introduce the sources, production methods, and modification strategies of BC, and further describe the preparation methods and properties of BC battery separators for various LIBs and LISs.


Asunto(s)
Celulosa , Suministros de Energía Eléctrica , Litio , Azufre , Litio/química , Celulosa/química , Azufre/química , Bacterias , Iones/química
18.
Int J Biol Macromol ; 274(Pt 2): 133515, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944070

RESUMEN

Nanocellulose (NC) is a promising biopolymer for various biomedical applications owing to its biocompatibility and low toxicity. However, it faces challenges in tissue engineering (TE) applications due to the inconsistency of the microenvironment within the NC-based scaffolds with target tissues, including anisotropy microstructure and biomechanics. To address this challenge, a facile swelling-induced nanofiber alignment and a novel in situ biomineralization reinforcement strategies were developed for the preparation of NC-based scaffolds with tunable anisotropic structure and mechanical strength for guiding the differentiation of bone marrow-derived mesenchymal stem cells for potential TE application. The bacterial cellulose (BC) and cellulose nanofibrils (CNFs) based scaffolds with tunable swelling anisotropic index in the range of 10-100 could be prepared by controlling the swelling medium. The in situ biomineralization efficiently reinforced the scaffolds with 2-4 times and 10-20 times modulus increasement for BC and CNFs, respectively. The scaffolds with higher mechanical strength were superior in supporting cell growth and proliferation, suggesting the potential application in TE application. This work demonstrated the feasibility of the proposed strategy in the preparation of scaffolds with mechanical anisotropy to induce cells-directed differentiation for TE applications.


Asunto(s)
Biomineralización , Diferenciación Celular , Celulosa , Células Madre Mesenquimatosas , Nanofibras , Andamios del Tejido , Celulosa/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Andamios del Tejido/química , Diferenciación Celular/efectos de los fármacos , Anisotropía , Nanofibras/química , Ingeniería de Tejidos/métodos , Animales , Proliferación Celular/efectos de los fármacos , Células de la Médula Ósea/citología
19.
Int J Biol Macromol ; 274(Pt 2): 133512, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944080

RESUMEN

Nanocellulose@chitosan (nc@ch) composite beads were prepared via coagulation technique for the elimination of malachite green dye from aqueous solution. As malachite green dye is highly used in textile industries for dyeing purpose which after usage shows fatal effects to the ecosystems and human beings also. In this study the formulated nanocellulose@chitosan composite beads were characterized by Particle size analysis (PSA), Field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis were done to evaluate nanoparticles size distribution, morphological behaviour, functional group entities and degree of crystallinity of prepared beads. The nanocomposite beads adsorption performance was investigated for malachite green (MG) dye and BET analysis were also recorded to know about porous behaviour of the nanocomposite beads. Maximum removal of malachite green (MG) dye was found to be 72.0 mg/g for 100 ppm initial dye concentration. For accurate observations linear and non-linear modelling was done to know about the best-fitted adsorption model during the removal mechanism of dye molecules, on evaluating it has been observed that Langmuir isotherm and Freundlich isotherm show best-fitted observation in the case of linear and non-linear isotherm respectively (R2 = 0.96 & R2 = 0.957). In the case of kinetic linear models, the data was well fitted with pseudo-second-order showing chemosorption mechanism (R2 = 0.999), and in the case of non-linear kinetic model pseudo first order showed good fit showing physisorption mechanism during adsorption (R2 = 0.999). The thermodynamic study showed positive values for ΔH° and ΔS° throughout the adsorption process respectively, implying an endothermic behaviour. In view of cost effectiveness, desorption or regeneration study was done and it was showed that after the 5th cycle, the removal tendency had decreased from 48 to 38 % for 20-100 ppm dye solution accordingly. Thus, nanocomposite beads prepared by the coagulation method seem to be a suitable candidate for dye removal from synthetic wastewater and may have potential to be used in small scale textile industries for real wastewater treatment.


Asunto(s)
Celulosa , Quitosano , Colorantes , Nanocompuestos , Colorantes de Rosanilina , Contaminantes Químicos del Agua , Nanocompuestos/química , Quitosano/química , Celulosa/química , Adsorción , Colorantes/química , Contaminantes Químicos del Agua/química , Colorantes de Rosanilina/química , Purificación del Agua/métodos , Cinética , Modelos Lineales , Dinámicas no Lineales , Concentración de Iones de Hidrógeno
20.
Int J Biol Macromol ; 273(Pt 1): 133030, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857730

RESUMEN

Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results indicated the successful coating of chitosan and aloesin on cellulose without any physical damage. The drug release kinetics confirmed the sustained release of aloesin by showing a cumulative release of up to 88 % over 24 h. The biocompatibility of the aloesin-loaded chitosan/cellulose (AlCsCFp) scaffold was evaluated by the WST-8 assay that confirmed the significantly increased adherence and proliferation of fibroblasts on the AlCsCFp scaffold. The in vivo wound healing study showed that both 0.05 % and 0.025 % AlCsCFp scaffolds have significantly higher wound closure rates (i.e. 88.2 % and 95.6 % approximately) as compared to other groups. This showed that novel composite scaffold has a wound healing ability. Furthermore, histological and gene expression analysis demonstrated that the scaffold also induced cell migration, angiogenesis, re-epithelialization, collagen deposition, and tissue granulation formation. Thus, it is concluded that the aloesin-loaded chitosan/cellulose-based scaffold has great therapeutic potential for being used in wound healing applications in the clinical setting in the future.


Asunto(s)
Celulosa , Quitosano , Regeneración , Piel , Andamios del Tejido , Cicatrización de Heridas , Quitosano/química , Quitosano/farmacología , Celulosa/química , Celulosa/farmacología , Cicatrización de Heridas/efectos de los fármacos , Piel/efectos de los fármacos , Animales , Andamios del Tejido/química , Regeneración/efectos de los fármacos , Ratas , Fibroblastos/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA