Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Int Immunopharmacol ; 121: 110501, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364326

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is an inflammatory condition of the pancreas characterized by oxidative stress and inflammation in its pathophysiology. Acetyl-11-keto-ß-boswellic acid (AKBA) is an active triterpenoid with antioxidant activity. This article seeks to assess the impact of AKBA on AP and investigate its underlying mechanisms. METHODS: AP was induced in wild-type, Lyz2+/cre Nrf2fl/fl mice and Pdx1+/cre Nrf2fl/fl mice by caerulein. Serum amylase and lipase levels, along with histological grading, were utilized to evaluate the severity of AP. Murine bone marrow-derived macrophages (BMDMs) were isolated, cultured, and polarized to the M1 subtype. Flow cytometry and ELISA were utilized to identify the macrophage phenotype. Alterations in oxidative stress damage and intracellular ROS were observed. Nrf2/HO-1 signaling pathways were also evaluated. RESULTS: In a caerulein-induced mouse model of AP, treatment with AKBA reduced blood amylase and lipase activity and ameliorated pancreatic tissue histological and pathological features. Furthermore, AKBA significantly mitigated oxidative stress-induced damage and induced the expression of Nrf2 and HO-1 protein. Additionally, by using conditional knockout mice (Lyz2+/cre Nrf2fl/fl and Pdx1+/cre Nrf2fl/fl mice), we verified that Nrf2 primarily functions in macrophages rather than acinar cells. In vitro, AKBA inhibits pro-inflammatory M1-subtype macrophage polarization and reduces ROS generation through Nrf2/HO-1 oxidative stress pathway. Moreover, the protective effects of AKBA against AP were abolished in myeloid-specific Nrf2-deficient mice and BMDMs. Molecular docking results revealed interactions between AKBA and Nrf2. CONCLUSION: Our results confirm that AKBA exerts protective effects against AP in mice by inhibiting oxidative stress in macrophages through the Nrf2/HO-1 Pathway.


Asunto(s)
Pancreatitis , Animales , Ratones , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ceruletida/farmacología , Enfermedad Aguda , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Macrófagos/metabolismo , Lipasa , Amilasas
2.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175426

RESUMEN

Chronic pancreatitis (CP) is an irreversible and progressive inflammatory disease. Knowledge on the development and progression of CP is limited. The goal of the study was to define the serum profile of pro-inflammatory cytokines and the cell antioxidant defense system (superoxidase dismutase-SOD, and reduced glutathione-GSH) over time in a cerulein-induced CP model and explore the impact of these changes on selected cytokines in the intestinal mucosa and pancreatic tissue, as well as on selected serum biochemical parameters. The mRNA expression of CLDN1 and CDH1 genes, and levels of Claudin-1 and E-cadherin, proteins of gut barrier, in the intestinal mucosa were determined via western blot analysis. The study showed moderate pathomorphological changes in the pigs' pancreas 43 days after the last cerulein injection. Blood serum levels of interleukin (IL)-1-beta, IL-6, tumor necrosis factor alpha (TNF-alpha), C-reactive protein (CRP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGTP), SOD and GSH were increased following cerulein injections. IL-1-beta, IL-6, TNF-alpha and GSH were also increased in jejunal mucosa and pancreatic tissue. In duodenum, decreased mRNA expression of CDH1 and level of E-cadherin and increased D-lactate, an indicator of leaky gut, indicating an inflammatory state, were observed. Based on the current results, we can conclude that repetitive cerulein injections in growing pigs not only led to CP over time, but also induced inflammation in the intestine. As a result of the inflammation, the intestinal barrier was impaired.


Asunto(s)
Pancreatitis Crónica , Factor de Necrosis Tumoral alfa , Animales , Porcinos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ceruletida/farmacología , Proyectos Piloto , Interleucina-6/metabolismo , Pancreatitis Crónica/patología , Páncreas/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Superóxido Dismutasa/metabolismo , ARN Mensajero/metabolismo , Modelos Animales de Enfermedad
3.
Int Immunopharmacol ; 109: 108915, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679663

RESUMEN

Hinokitiol is a natural bio-active tropolone derivative with promising antioxidant and anti-inflammatory properties. This study was conducted to evaluate the ameliorative effects of hinokitiol against acute pancreatitis induced by cerulein. Mice were pre-treated with hinokitiol intraperitoneally for 7 days (50 and 100 mg/kg), and on the final day of study, cerulein (6 × 50 µg/kg) was injected every hour for six times. Six hours after the last dose of cerulein, blood was collected from the mice through retro-orbital plexus for biochemical analysis. After blood collection, mice were euthanized and the pancreas was harvested for studying effects on oxidative stress, pro-inflammatory cytokines, immunohistochemistry and histopathology of tissue sections. Hinokitiol treatment significantly reduced edema of the pancreas and reduced the plasma levels of lipase and amylase in mice with cerulein-induced acute pancreatitis. It also attenuated the oxidative and nitrosative stress related damage as evident from the reduced malondialdehyde (MDA) and nitrite levels, which were significantly increased in the mice with acute pancreatitis. Furthermore, hinokitiol administration significantly reduced the pancreatitis-evoked decrease in the activity of catalase, glutathione (GSH) and superoxide dismutase (SOD) in the pancreatic tissue. Pre-treatment with hinokitiol significantly reduced the elevated levels of pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α) as well as increased the levels of anti-inflammatory cytokine interleukin-10 (IL-10) in the pancreatic tissue of mice with acute pancreatitis. The immunohistochemical expression of nuclear factor kappa light chain enhancer of activated B cells (NF-κB), cyclooxygenase (COX-2) and TNF-α were significantly decreased by hinokitiol in mice with cerulein-induced acute pancreatitis. In conclusion, the results of the present study demonstrate that hinokitiol has significant potential to prevent cerulein-induced acute pancreatitis.


Asunto(s)
Ceruletida , Pancreatitis , Enfermedad Aguda , Animales , Antiinflamatorios/farmacología , Ceruletida/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , Monoterpenos , FN-kappa B/metabolismo , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Tropolona/análogos & derivados , Tropolona/metabolismo , Tropolona/farmacología , Tropolona/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
4.
Int Immunopharmacol ; 108: 108885, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35623294

RESUMEN

Necroptosis is a form of regulated necrosis mainly controlled by receptor-interacting protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Necroptosis has important roles in defensing against pathogenic infections, but it is also implicated in various inflammatory diseases including pancreatitis. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, has been shown to possess anti-inflammatory and anti-pyroptosis properties, yet it is unclear whether baicalin can inhibit necroptosis and confer protection against necroptosis-related diseases. Here we reported that baicalin significantly inhibited necroptosis in macrophages induced by lipopolysaccharide plus pan-caspase inhibitor (IDN-6556), or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). Mechanistically, baicalin did not inhibit the phosphorylation of RIPK1, RIPK3 and MLKL, nor membrane translocation of p-MLKL, during necroptotic induction, but instead inhibited p-MLKL oligomerization that is required for executing necroptosis. As intracellular reactive oxygen species (ROS) has been reported to be involved in p-MLKL oligomerization, we assessed the effects of N-acetyl-L-cysteine (NAC), an ROS scavenger, on necroptosis and found that NAC significantly attenuated TSI-induced necroptosis and intracellular ROS production concomitantly with reduced levels of oligomerized p-MLKL, mirroring the effect of baicalin. Indeed, inhibitory effect of baicalin was associated with reduced TSI-induced superoxide (indicating mitochondrial ROS) production and increased mitochondrial membrane potential within cells during necroptosis. Besides, oral administration of baicalin significantly reduced the severity of caerulein-induced acute pancreatitis in mice, an animal model of necroptosis-related disease. Collectively, baicalin can inhibit necroptosis through attenuating p-MLKL oligomerization and confers protection against caerulein-induced pancreatitis in mice.


Asunto(s)
Necroptosis , Pancreatitis , Enfermedad Aguda , Animales , Apoptosis , Ceruletida/farmacología , Flavonoides/farmacología , Flavonoides/uso terapéutico , Ratones , Necrosis/tratamiento farmacológico , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
5.
Methods Cell Biol ; 168: 139-159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35366980

RESUMEN

Chronic inflammation is known to be associated with pancreatic cancer, however a complete picture regarding how these pathologies intersect is still being characterized. In vivo model systems are critical for the study of mechanisms underlying how inflammation accelerates neoplasia. Repeat injection of cerulein, a cholecystokinin (CCK) analog, is widely used to experimentally induce acute and chronic pancreatitis in vivo. Chronic cerulein administration into genetically engineered mouse models (GEMMs) with predisposition to pancreatic cancer can induce a pro-inflammatory immune response, pancreatic acinar cell damage, pancreatic stellate cell activation, and accelerate the onset of neoplasia. Here we provide a detailed protocol and insights into using cerulein to induce pancreatitis in GEMMs, and methods to experimentally assess inflammation and pancreatic neoplasia.


Asunto(s)
Neoplasias Pancreáticas , Pancreatitis , Células Acinares/patología , Animales , Ceruletida/farmacología , Ratones , Páncreas/patología , Neoplasias Pancreáticas/inducido químicamente , Neoplasias Pancreáticas/genética , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/patología
6.
Am J Physiol Gastrointest Liver Physiol ; 322(6): G561-G570, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35293263

RESUMEN

Proper mitochondrial function and adequate cellular ATP are necessary for normal pancreatic protein synthesis and sorting, maintenance of intracellular organelles and enzyme secretion. Inorganic phosphate is required for generating ATP and its limited availability may lead to reduced ATP production causing impaired Ca2+ handling, defective autophagy, zymogen activation, and necrosis, which are all features of acute pancreatitis. We hypothesized that reduced dietary phosphate leads to hypophosphatemia and exacerbates pancreatitis severity of multiple causes. We observed that mice fed a low-phosphate diet before the induction of pancreatitis by either repeated caerulein administration or pancreatic duct injection as a model of pressure-induced pancreatitis developed hypophosphatemia and exhibited more severe pancreatitis than normophosphatemic mice. Pancreatitis severity was significantly reduced in mice treated with phosphate. In vitro modeling of secretagogue- and pressure-induced pancreatic injury was evaluated in isolated pancreatic acini using cholecystokinin and the mechanoreceptor Piezo1 agonist, Yoda1, under low and normal phosphate conditions. Isolated pancreatic acini were more sensitive to cholecystokinin- and Yoda1-induced acinar cell damage and mitochondrial dysfunction under low-phosphate conditions and improved following phosphate supplementation. Importantly, even mice on a normal phosphate diet exhibited less severe pancreatitis when treated with supplemental phosphate. Thus, hypophosphatemia sensitizes animals to pancreatitis and phosphate supplementation reduces pancreatitis severity. These appear to be direct effects of phosphate on acinar cells through restoration of mitochondrial function. We propose that phosphate administration may be useful in the treatment of acute pancreatitis.NEW & NOTEWORTHY Impaired ATP synthesis disrupts acinar cell homeostasis and is an early step in pancreatitis. We report that reduced phosphate availability impairs mitochondrial function and worsens pancreatic injury. Phosphate supplementation improves mitochondrial function and protects against experimental pancreatitis, raising the possibility that phosphate supplementation may be useful in treating pancreatitis.


Asunto(s)
Hipofosfatemia , Pancreatitis , Enfermedad Aguda , Adenosina Trifosfato/metabolismo , Animales , Ceruletida/farmacología , Colecistoquinina/metabolismo , Hipofosfatemia/metabolismo , Canales Iónicos/metabolismo , Ratones , Páncreas/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Fosfatos/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163177

RESUMEN

Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS) levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative system, thereby alleviating acute pancreatitis.


Asunto(s)
Diterpenos/farmacología , Pancreatitis/tratamiento farmacológico , Fenantrenos/farmacología , Enfermedad Aguda , Animales , Antioxidantes/farmacología , Ceruletida/efectos adversos , Ceruletida/farmacología , China , Modelos Animales de Enfermedad , Diterpenos/metabolismo , Compuestos Epoxi/metabolismo , Compuestos Epoxi/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Páncreas/metabolismo , Pancreatitis/inmunología , Pancreatitis/fisiopatología , Fenantrenos/metabolismo , Especies Reactivas de Oxígeno
8.
Biochem Biophys Res Commun ; 600: 35-43, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35182973

RESUMEN

The excessive inflammatory response mediated by macrophage is one of the key factors for the progress of acute pancreatitis (AP). Paeonol (Pae) was demonstrated to exert multiple anti-inflammatory effects. However, the role of Pae on AP is not clear. In the present study, we aimed to investigate the protective effect and mechanism of Pae on AP in vivo and vitro. In the caerulein-induced mild acute pancreatitis (MAP) model, we found that Pae administration reduced serum levels of amylase, lipase, IL-1ß and IL-6 and alleviated the histopathological manifestations of pancreatic tissue in a dose-dependent manner. And Pae decrease the ROS generated, restore mitochondrial membrane potential (ΔΨm), inhibit M1 macrophage polarization and NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) in vitro. In addition, specific NLRP3 inhibitor MCC950 eliminated the protective effect of Pae on AP induced by caerulein in mice. Correspondingly, the inhibitory effect of Pae on ROS generated and M1 polarization was not observed in BMDMs with MCC950 in vitro. Taken together, our datas for the first time confirmed the protective effects of Pae on AP via the NLRP3 inflammasomes Pathway.


Asunto(s)
Inflamasomas , Pancreatitis , Acetofenonas , Enfermedad Aguda , Animales , Ceruletida/farmacología , Inflamasomas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Especies Reactivas de Oxígeno/efectos adversos
9.
J Investig Med ; 70(5): 1285-1292, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35078865

RESUMEN

Chronic pancreatitis (CP) is a pathological fibroinflammatory syndrome of the pancreas. Currently, there are no therapeutic agents available for treating CP-associated pancreatic fibrosis. Fraxinus rhynchophylla (FR) reportedly exhibits anti-inflammatory, antioxidative and antitumor activities. Although FR possesses numerous properties associated with the regulation of diverse diseases, the effects of FR on CP remain unknown. Herein, we examined the effects of FR on CP. For CP induction, mice were intraperitoneally administered cerulein (50 µg/kg) 6 times a day, 4 days per week for 3 weeks. FR extract (100 or 400 mg/kg) or saline (control group) was intraperitoneally injected 1 hour before the first cerulein injection. After 3 weeks, the pancreas was harvested for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the antifibrogenic effects and regulatory mechanisms of FR. Administration of FR significantly inhibited histological damage in the pancreas, increased pancreatic acinar cell survival, decreased PSC activation and collagen deposition, and decreased pro-inflammatory cytokines. Moreover, FR treatment inhibited the expression of fibrotic mediators, such as α-smooth muscle actin (α-SMA), collagen, fibronectin 1, and decreased pro-inflammatory cytokines in isolated PSCs stimulated with transforming growth factor (TGF)-ß. Furthermore, FR treatment suppressed the phosphorylation of Smad 2/3 but not of Smad 1/5 in TGF-ß-stimulated PSCs. Collectively, these results suggest that FR ameliorates pancreatic fibrosis by inhibiting PSC activation during CP.


Asunto(s)
Fraxinus , Pancreatitis Crónica , Animales , Ceruletida/metabolismo , Ceruletida/farmacología , Ceruletida/uso terapéutico , Colágeno/metabolismo , Colágeno/farmacología , Colágeno/uso terapéutico , Fibrosis , Humanos , Ratones , Páncreas/patología , Pancreatitis Crónica/tratamiento farmacológico , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Corteza de la Planta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
10.
Dig Dis Sci ; 67(9): 4471-4483, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35094251

RESUMEN

BACKGROUND AND AIMS: Acute pancreatitis (AP) is an acute inflammatory disease that can lead to death. Mir-325-3p is strongly and abnormally expressed in many diseases, necessitating exploration of its function and mechanism in AP. METHODS: Blood samples from AP patients and mice were analyzed. The expression levels of miR-325-3p in AP patients and mouse were detected. Whether miR-325-3p targets RIPK3 gene was predicted by TargetScan online database and dual luciferase reporter assay. In vitro experiments verified the effect of miR-325-3p overexpression on caerulein-induced MPC83 pancreatic acinar cancer cell line. In vivo experiments verified the effect of overexpression of miR-325-3p on the disease degree of pancreatic tissues in AP mice. RESULTS: Analysis of blood samples from AP patients and experiments in mice demonstrated that expression of miR-325-3p was significantly reduced during the process of AP in humans and mice. Predicted using the TargetScan online database and through dual luciferase reporter assay detection, miR-325-3p directly targets the RIPK3 gene. In vitro experiments revealed that overexpression of miR-325-3p reversed caerulein-induced apoptosis and necroptosis in MPC83 pancreatic acinar cancer cell line. We used Z-VAD-FMK to assess necroptosis and demonstrated that miR-325-3p targets necroptosis to reduce cell damage. In subsequent experiments in mice, we verified that overexpression of miR-325-3p reduces inflammation, edema, hemorrhage, and necrosis in acute pancreatitis. Characteristic western blot, immunohistochemistry, and transmission electron microscopy results revealed that overexpression of miR-325-3p reduces the severity of acute pancreatitis by inhibiting pancreatic necroptosis in AP mice. CONCLUSIONS: The current research results indicate that miR-325-3p directly targets RIPK3 and exerts a protective role in mouse AP. Necroptosis is still the primary mechanism of RIPK3 regulation. MiR-325-3p inhibits acute pancreatitis by targeting RIPK3-dependent necroptosis, which may represent a novel treatment method for acute pancreatitis.


Asunto(s)
MicroARNs , Pancreatitis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Células Acinares/metabolismo , Enfermedad Aguda , Animales , Ceruletida/farmacología , Humanos , Ratones , MicroARNs/genética , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
11.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808340

RESUMEN

Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by ductal obstructions, tissue fibrosis, atrophy and exocrine and endocrine pancreatic insufficiency. However, our understanding is very limited concerning the disease's progression from a single acute inflammation, via recurrent acute pancreatitis (AP) and early CP, to the late stage CP. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor enzyme activated mostly by oxidative DNA damage. As a co-activator of inflammatory transcription factors, PARP1 is a central mediator of the inflammatory response and it has also been implicated in acute pancreatitis. Here, we set out to investigate whether PARP1 contributed to the pathogenesis of CP. We found that the clinically used PARP inhibitor olaparib (OLA) had protective effects in a murine model of CP induced by multiple cerulein injections. OLA reduced pancreas atrophy and expression of the inflammatory mediators TNFα and interleukin-6 (IL-6), both in the pancreas and in the lungs. Moreover, there was significantly less fibrosis (Masson's trichrome staining) in the pancreatic sections of OLA-treated mice compared to the cerulein-only group. mRNA expression of the fibrosis markers TGFß, smooth muscle actin (SMA), and collagen-1 were markedly reduced by OLA. CP was also induced in PARP1 knockout (KO) mice and their wild-type (WT) counterparts. Inflammation and fibrosis markers showed lower expression in the KO compared to the WT mice. Moreover, reduced granulocyte infiltration (tissue myeloperoxidase activity) and a lower elevation of serum amylase and lipase activity could also be detected in the KO mice. Furthermore, primary acinar cells isolated from KO mice were also protected from cerulein-induced toxicity compared to WT cells. In summary, our data suggest that PARP inhibitors may be promising candidates for repurposing to treat not only acute but chronic pancreatitis as well.


Asunto(s)
Pancreatitis/fisiopatología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Células Acinares/metabolismo , Enfermedad Aguda , Animales , Ceruletida/farmacología , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/metabolismo , Pancreatitis/inmunología , Pancreatitis Crónica/patología , Poli(ADP-Ribosa) Polimerasa-1/fisiología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Inflammation ; 43(5): 1988-1998, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32647955

RESUMEN

Acute pancreatitis (AP), a sudden inflammatory process of pancreas, is painful and may contribute to death. The aberrant expression of miR-27a-5p has been reported in many types of cancers and diseases including AP. Thus, it is urgent to manifest the functions and mechanism of miR-27a-5p in AP. The levels of miR-27a-5p, tumor necrosis factor (TNF) receptor-associated factor 3 (Traf3) in serum of AP patient, or cerulein-treated AR42J cells were detected by qRT-PCR. Functionally, the apoptotic rate, the protein levels of Bcl-2 and Bax, the caspase-3 activity, and the levels of IL-1ß, IL-6, and TNF-α in cerulein-treated AR42J cells were measured by flow cytometry, Western blot, caspase-3 activity assay, and qRT-PCR and ELISA assay, respectively. In addition, the putative target of miR-27a-5p was predicted by TargetScan online database, and the dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify this interaction. Cerulein-treated mouse AP model was established to explore the role of miR-27a-5p in AP in vivo. The level of miR-27a-5p was notably downregulated in AP patients and cerulein-treated AR42J cells. The functional experiments indicated that miR-27a-5p mimics attenuated the promotion effects on cell apoptosis and the inflammatory response in AR42J cells caused by cerulein. The interaction between miR-27a-5p and Traf3 was predicted by TargetScan online database and validated by dual luciferase reporter assay and RIP assay. Following qRT-PCR results exhibited that Traf3 was apparently enhanced in cerulein-treated AR42J cells. The further functional experiments disclosed that Traf3 overexpression relieved the inhibitory effects on cell apoptosis and the inflammatory response induced by miR-27a-5p mimics in cerulein-treated AR42J cells. Moreover, miR-27a-5p alleviated cerulein-induced injury in vivo. In this study, we established the cerulein-treated AR42J cells as AP model in vitro. We validated that miR-27a-5p was significantly downregulated, and Traf3 was strikingly upregulated in AP patient and/or cerulein-treated AR42J cells. The further mechanistical and functional experiments unraveled that miR-27a-5p regulated Traf3 to relieve the cerulein-induced cell apoptosis and inflammatory injury of AR42J cells. Therefore, this novel regulatory network may provide therapeutic target for AP patients.


Asunto(s)
Apoptosis/efectos de los fármacos , Ceruletida/farmacología , Mediadores de Inflamación/metabolismo , MicroARNs/biosíntesis , Pancreatitis/metabolismo , Factor 3 Asociado a Receptor de TNF/biosíntesis , Animales , Apoptosis/fisiología , Línea Celular , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/antagonistas & inhibidores , Pancreatitis/patología , Ratas
13.
Biomed Pharmacother ; 127: 110116, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32428833

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumour with an extremely poor prognosis due to its insidious initiation and a lack of therapeutic strategies. Resveratrol suppresses pancreatic cancer progression and attenuates pancreatitis by modulating multiple targets, including nuclear factor kappa B (NFκB) signalling pathways. However, the effect of resveratrol on pancreatic cancer initiation and its mechanisms remain unclear. In this study, we utilised the LSL-KrasG12D/+; Pdx1-Cre (KC) spontaneous pancreatic precancerous lesion mouse model to explore the anti-tumourigenesis mechanisms of resveratrol in vivo. In vitro acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasias (PanINs) formation assays were performed by pancreatic acinar cell 3-dimensional (3D) culture. Histopathological analysis was used to examine the pathological morphology of pancreatic tissues. Resveratrol prevented the progression of pancreatic precancerous lesions and inhibited the activation of NFκB signalling pathway-related molecules in KC mouse pancreatic tissues. In addition, resveratrol reduced the severity of cerulein-induced pancreatitis and the formation of ADM/PanINs in vivo and in vitro, which may be related to its effect on NFκB inactivation. Furthermore, pancreatic acinar 3D culture demonstrated that activation of the NFκB signalling pathway promoted the formation of ADM/PanINs in vitro, and this initiating effect of NFκB was blocked by resveratrol. Resveratrol slowed the tumourigenesis of pancreatic cancer by inhibiting NFκB activation.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinoma Ductal Pancreático/prevención & control , FN-kappa B/metabolismo , Resveratrol/farmacología , Animales , Carcinoma Ductal Pancreático/metabolismo , Células Cultivadas , Ceruletida/farmacología , Proteínas de Homeodominio/genética , Metaplasia/prevención & control , Ratones , Ratones Transgénicos , Pancreatitis/patología , Pancreatitis/prevención & control , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/efectos de los fármacos , Transactivadores/genética
14.
Dig Dis Sci ; 65(12): 3583-3591, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32088797

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is a sudden inflammation of the pancreas that may be life-threatening disease with high mortality rates, particularly in the presence of systemic inflammatory response and multiple organ failure. Oxidative stress has been shown to be involved in the pathophysiology of acute pancreatitis. AIM: This study is designed to investigate the possible effect of mesna on an experimental model of cerulein-induced acute pancreatitis. METHODS: Animals were divided into five groups: Group 1 served as a control group given the saline; group II (mesna group) received mesna at a dose of (100 mg/kg per dose, i.p.) four times; group III (acute pancreatitis group) received cerulein at a dose of (20 µg/kg/dose, s.c.) four times with 1-h intervals; group VI, cerulein + mesna, was treated with mesna at a dose of (100 mg/kg, i.p.) 15 min before each cerulein injection. RESULTS: Animals with acute pancreatitis showed elevated serum amylase and lipase levels. Biochemical parameters showed increased pancreatic tumor necrosis factors-α (TNF-α) and interleukin-1ß (IL-1ß) levels. A disturbance in oxidative stress markers was evident by elevated pancreatic lipid peroxides (TBARS) and decline in pancreatic antioxidants' concentrations including reduced glutathione (GSH); superoxide dismutase (SOD); and glutathione peroxidase (GSH-Px). Histological examination confirmed pancreatic injury. Pre-treatment with mesna was able to abolish the changes in pancreatic enzymes, oxidative stress markers (TBARS, SOD, GSH and GSH-Px), pancreatic inflammatory markers (TNF-α, IL-1ß) as well as histological changes. CONCLUSIONS: Mesna mitigates AP by alleviating pancreatic oxidative stress damage and inhibiting inflammation.


Asunto(s)
Ceruletida/farmacología , Mesna , Estrés Oxidativo/efectos de los fármacos , Páncreas , Pancreatitis , Animales , Antioxidantes/análisis , Colagogos y Coleréticos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Interleucina-1beta/sangre , Mesna/metabolismo , Mesna/farmacología , Páncreas/efectos de los fármacos , Páncreas/enzimología , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Pancreatitis/prevención & control , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Ratas , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/sangre
15.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G265-G276, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760766

RESUMEN

Kras mutations are associated with pancreatic ductal adenocarcinoma (PDAC). Although tobacco smoking, pancreatitis, and obesity are known environmental risk factors for PDAC, the contribution of moderate alcohol intake to PDAC remains elusive. In the present study, we tested whether a combination of risk factors or moderate alcohol intake induces PDAC development in mice. Control Pdx1Cre and Pdx1Cre;LSL-KrasG12D mutant mice were fed a Western alcohol diet containing high levels of cholesterol and saturated fat, 3.5% alcohol, and lipopolysaccharide for 5 mo. In addition, mice were treated with cerulein, for induction of pancreatitis, and nicotine every month. Treatment with all of these risk factors promoted development of advanced pancreatic neoplasia and PDAC in the Pdx1Cre;LSL-KrasG12D mice but not in the control Pdx1Cre mice. Moderate alcohol intake or Western diet feeding also significantly promoted advanced neoplasia and PDAC development in Pdx1Cre;LSL-KrasG12D mice compared with mice fed a regular chow. Alcohol, but not Western diet, increased tumor development in the liver in the Pdx1Cre;LSL-KrasG12D mice, but its origin remained elusive due to leakiness of Pdx1Cre in hepatocytes. RNA-seq analysis revealed that alcohol feeding increases expression of markers for tumors (Epcam, Krt19, Prom1, Wt1, and Wwtr1), stroma (Dcn, Fn1, and Tnc), and cytokines (Tgfb1 and Tnf) and decreases expression of Fgf21 and Il6 in the pancreatic tumor tissues. Immunostaining showed heterogeneous expression of nephronectin, S100 calcium-binding protein A6, and vascular cell adhesion molecule 1 in pancreatic tumors surrounded by podoplanin-positive stromal cells. Our data indicate that moderate alcohol drinking is a risk factor for development of PDAC.NEW & NOTEWORTHY Heavy alcohol intake has been suspected to be a risk factor of pancreatic ductal adenocarcinoma (PDAC) in humans. However, the contribution of moderate alcohol intake to PDAC development remains elusive. In the present study, we experimentally show that moderate alcohol feeding significantly induces advanced stages of pancreatic intraepithelial neoplasia development and invasive PDAC in Pdx1Cre;LSL-KrasG12D mutant mice. Our data indicate that moderate alcohol drinking is a risk factor for PDAC.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Carcinógenos/toxicidad , Carcinoma Ductal Pancreático/inducido químicamente , Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Neoplasias Pancreáticas/inducido químicamente , Proteínas Proto-Oncogénicas p21(ras)/biosíntesis , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Carcinoma Ductal Pancreático/patología , Ceruletida/farmacología , Citocinas/metabolismo , Dieta Occidental , Hepatocitos/metabolismo , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Neoplasias Hepáticas/inducido químicamente , Ratones , Mutación , Nicotina/farmacología , Neoplasias Pancreáticas/patología , Transactivadores/biosíntesis , Transactivadores/genética
16.
Pflugers Arch ; 471(11-12): 1519-1527, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31729558

RESUMEN

Acute pancreatitis (AP) is a common clinical critical disease with high mortality and the exact pathogenesis is not fully elucidated. The present study aimed to uncover the function of miR-135a in the proliferation, apoptosis, and inflammatory characteristics of diseased pancreatic cells and the potential molecular mechanisms. The expression patterns of miR-135a and family with sequence similarity 129 member A (FAM129A) in patients with AP were analyzed on the basis of the GEO database. The transfection efficiency and expression level of miR-135a in AR42J cells were determined by qRT-PCR. The biological characteristics of AR42J cells treated with cerulein were detected by cell counting kit-8 (CCK-8), flow cytometry, and western blot assays. The potential interaction between miR-135a and FAM129A was confirmed by bioinformatics prediction softwares and luciferase reporter assay. MiR-135a inhibitor and pcDNA3.1-FAM129A were co-transfected to determine the regulation of miR-135a/FAM129A on inflammatory AR42J cell injury. We observed that miR-135a was highly expressed in AP samples. Depletion of miR-135a could alleviate the condition so that the AR42J cells proliferation increased, apoptosis decreased, and the expression of inflammatory cytokines enhanced. In addition, mRNA and protein expression of FAM129A were negatively regulated by miR-135a, and over-expression of FAM129A could strengthen the relief effect of miR-135a inhibitor in AP induced by cerulein. In summary, our data demonstrates that silencing miR-135a reduces AR42J cells injury and inflammatory response in AP induced by cerulein through targeting FAM129A.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Ceruletida/farmacología , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Enfermedad Aguda , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , ARN Mensajero/metabolismo , Ratas , Transfección/métodos
17.
Med Sci Monit ; 25: 8181-8189, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31671079

RESUMEN

BACKGROUND This study aimed to investigate the effects of maresin-1 (MaR1) in a mouse model of caerulein-induced acute pancreatitis (AP). MATERIAL AND METHODS Fifty C57BL/6 mice with caerulein-induced AP were divided into the untreated control group (N=10), the untreated AP model group (N=10), the MaR1-treated (low-dose, 0.1 µg) AP model group (N=10), the MaR1-treated (middle-dose, 0.5 µg) AP model group (N=10), and the MaR1-treated (high-dose, 1 µg) AP model group (N=10). Enzyme-linked immunoassay (ELISA) measured serum levels of amylase, lipase, tumor necrosis factor-alpha (TNF-alpha), interleukin-1ß (IL-1ß), and IL-6 and mRNA was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Malondialdehyde (MDA), protein carbonyls, superoxide dismutase (SOD), and the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) were measured. Histology of the pancreas included measurement of acinar cell apoptosis using the terminal-deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assay. Western blot measured Toll-like receptor 4 (TLR4), MyD88, and phospho-NF-kappaB p65, and apoptosis-associated proteins Bcl-2, Bax, cleaved caspase-3, and cleaved caspase-9. RESULTS Following treatment with MaR1, serum levels of amylase, lipase, TNF-alpha, IL-1ß, and IL-6 decreased, MDA and protein carbonyl levels decreased, SOD and the GSH/GSSG ratio increased in a dose-dependent manner. In the MaR1-treated AP mice, inflammation of the pancreas and the expression of inflammatory cytokines, pancreatic acinar cell apoptosis, Bcl-2 expression, and expression of TLR4, MyD88, and p-NF-kappaB p65 were reduced, but Bax, cleaved caspase-3, and cleaved caspase-9 expression increased. CONCLUSIONS In a mouse model of caerulein-induced AP, treatment with MaR1 reduced oxidative stress and inflammation and reduced apoptosis.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Pancreatitis/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ceruletida/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Páncreas/patología , Pancreatitis/fisiopatología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Mol Immunol ; 114: 620-628, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31542607

RESUMEN

Acute pancreatitis (AP) is a severe inflammatory condition of the pancreas, with no specific treatment available. We have previously reported that Nardostachys jatamansi (NJ) ameliorates cerulein-induced AP. However, the specific compound responsible for this inhibitory effect has not been identified. Therefore, in the present study, we focused on a single compound, 8α-hydroxypinoresinol (HP), from NJ. The aim of this study was to determine the effect of HP on the development of pancreatitis in mice and to explore the underlying mechanism(s). AP was induced by the injection of cerulein (50 µg/kg/h) for 6 h. HP (0.5, 5 or 10 mg/kg, i.p.) was administered 1 h prior to and 1, 3 or 5 h after the first cerulein injection, with vehicle- and DMSO-treated groups as controls. Blood samples were collected to determine serum levels of amylase, lipase, and cytokines. The pancreas was removed for morphological examination, myeloperoxidase (MPO) assays, cytokine assays, and assessment of nuclear factor (NF)-κB activation. The lungs were removed for morphological examination and MPO assays. Administration of HP dramatically improved pancreatic damage and pancreatitis-associated lung damage and also reduced amylase and lipase activities in serum. Moreover, administration of HP reduced the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in the pancreas and serum during AP. In addition, the administration of HP inhibited degradation of inhibitory κ-Bα (Iκ-Bα), NF-κB p65 translocation into nucleus and NF-κB binding activity in the pancreas. Our results suggest that HP exerted therapeutic effects on pancreatitis and these beneficial effects may be due to the inhibition of NF-κB activation.


Asunto(s)
Ceruletida/farmacología , Furanos/farmacología , Lignanos/farmacología , Nardostachys/química , Páncreas/efectos de los fármacos , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Citocinas/metabolismo , Femenino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Páncreas/metabolismo , Pancreatitis/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Exp Cell Res ; 384(1): 111606, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31493386

RESUMEN

Pancreatic stellate cells (PSCs) have been recognized as key mediators of pancreatic fibrosis, a characteristic feature of chronic pancreatitis (CP). As a cullin-based E3 ubiquitin ligase, speckle-type POZ protein (SPOP) has been identified to participate in tumorigenesis and organ development. However, its biological role in CP remains unknown. Therefore, this study sought to investigate the changed expression of SPOP in CP and to examine the effect on mice PSCs activation of SPOP. We found that SPOP was downregulated in the pancreatic tissues of cerulein-induced CP mice. siRNA-mediated knockdown of SPOP led to significant promotion in primary PSCs activity by activating the nuclear factor-kappaB (NF-κB)/interleukin-6 (IL-6) signaling pathway. In addition, we examined the effects of Fas-associated death domain (FADD), a proven SPOP substrate that activates NF-κB, on the regulation of PSCs activation. We found that FADD was downregulated by SPOP via interaction-mediated degradation, and was upregulated during PSCs activation. The promotion of PSCs activation in knocking down SPOP with siSPOP-1 were counteracted by knocking down FADD. The results suggest that the SPOP-induced inhibition of PSCs activation partially depended on FADD. These results highlight the importance of SPOP in CP and provide a potential target for therapeutic intervention.


Asunto(s)
Ceruletida/farmacología , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Páncreas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/fisiología , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/metabolismo , Animales , Células Cultivadas , Dominio de Muerte/efectos de los fármacos , Dominio de Muerte/fisiología , Regulación hacia Abajo/efectos de los fármacos , Fibrosis/metabolismo , Interleucina-6/metabolismo , Ratones , FN-kappa B/metabolismo , Páncreas/fisiología , Células Estrelladas Pancreáticas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
20.
Med Sci Monit ; 25: 3880-3886, 2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31127077

RESUMEN

BACKGROUND Acute pancreatitis is an inflammatory disease of the pancreas associated with high patient morbidity. Lycium barbarum polysaccharide (LBP), a traditional Chinese medicine with an active component extracted from the goji berry, has previously been reported to have anti-inflammatory effects. This study aimed to investigate the effects of LBP in a mouse model of cerulein-induced acute pancreatitis. MATERIAL AND METHODS Acute pancreatitis was induced by intraperitoneal injection of cerulein in C57BL/6 wild-type mice or nuclear factor erythroid-2-related factor 2 (NRF2) gene knockout mice. LBP or normal saline was administrated by gavage once daily for one week before the induction of acute pancreatitis. At 12 hours after the first intraperitoneal injection of cerulein, the mice were euthanized. Blood and pancreatic tissue were sampled for histology and for the measurement of pro-inflammatory cytokines, serum amylase, and lipase. RESULTS In the untreated mouse model of cerulein-induced acute pancreatitis, amylase and lipase levels were increased, and these levels were reduced by LBP treatment when compared with vehicle treatment. In the untreated mouse model, histology of the pancreas showed edema and inflammation, which were reduced in the LBP-treated mice. In the untreated mouse model, increased levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were found, which were reduced in the LBP-treated mice. NRF2 gene knockout mice with cerulein-induced acute pancreatitis showed reduced anti-inflammatory effects of LBP treatment. LBP increased the expression of NRF2 and heme oxygenase-1 (HO-1). CONCLUSIONS In a mouse model of cerulein-induced acute pancreatitis, LBP reduced inflammation by upregulating NRF2 and HO-1.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Páncreas/patología , Pancreatitis/tratamiento farmacológico , Enfermedad Aguda , Amilasas/sangre , Animales , Ceruletida/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/metabolismo , Interleucina-6/metabolismo , Lipasa/sangre , Medicina Tradicional China/métodos , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA