Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nat Commun ; 12(1): 5931, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635673

RESUMEN

The chromatin remodeler RSF1 enriched at mitotic centromeres is essential for proper chromosome alignment and segregation and underlying mechanisms remain to be disclosed. We here show that PLK1 recruitment by RSF1 at centromeres creates an activating phosphorylation on Thr236 in the activation loop of Aurora B and this is indispensable for the Aurora B activation. In structural modeling the phosphorylated Thr236 enhances the base catalysis by Asp200 nearby, facilitating the Thr232 autophosphorylation. Accordingly, RSF1-PLK1 is central for Aurora B-mediated microtubule destabilization in error correction. However, under full microtubule-kinetochore attachment RSF1-PLK1 positions at kinetochores, halts activating Aurora B and phosphorylates BubR1, regardless of tension. Spatial movement of RSF1-PLK1 to kinetochores is triggered by Aurora B-mediated phosphorylation of centromeric histone H3 on Ser28. We propose a regulatory RSF1-PLK1 axis that spatiotemporally controls on/off switch on Aurora B. This feedback circuit among RSF1-PLK1-Aurora B may coordinate dynamic microtubule-kinetochore attachment in early mitosis when full tension yet to be generated.


Asunto(s)
Aurora Quinasa B/genética , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Mitosis , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Transactivadores/genética , Ácido Aspártico/metabolismo , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Nucleares/deficiencia , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina/metabolismo , Transactivadores/deficiencia , Quinasa Tipo Polo 1
2.
Elife ; 72018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547880

RESUMEN

Accurate chromosome segregation relies on bioriented amphitelic attachments of chromosomes to microtubules of the mitotic spindle, in which sister chromatids are connected to opposite spindle poles. BUB-1 is a protein of the Spindle Assembly Checkpoint (SAC) that coordinates chromosome attachment with anaphase onset. BUB-1 is also required for accurate sister chromatid segregation independently of its SAC function, but the underlying mechanism remains unclear. Here we show that, in Caenorhabditis elegans embryos, BUB-1 accelerates the establishment of non-merotelic end-on kinetochore-microtubule attachments by recruiting the RZZ complex and its downstream partner dynein-dynactin at the kinetochore. In parallel, BUB-1 limits attachment maturation by the SKA complex. This activity opposes kinetochore-microtubule attachment stabilisation promoted by CLS-2CLASP-dependent kinetochore-microtubule assembly. BUB-1 is therefore a SAC component that coordinates the function of multiple downstream kinetochore-associated proteins to ensure accurate chromosome segregation.


Asunto(s)
Anafase , Proteínas de Caenorhabditis elegans/genética , Segregación Cromosómica , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Embrión no Mamífero , Regulación de la Expresión Génica , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Huso Acromático/ultraestructura
3.
Nat Commun ; 9(1): 3571, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177685

RESUMEN

Mitosis relies on forces generated in the spindle, a micro-machine composed of microtubules and associated proteins. Forces are required for the congression of chromosomes to the metaphase plate and their separation in anaphase. However, besides forces, torques may exist in the spindle, yet they have not been investigated. Here we show that the spindle is chiral. Chirality is evident from the finding that microtubule bundles in human spindles follow a left-handed helical path, which cannot be explained by forces but rather by torques. Kinesin-5 (Kif11/Eg5) inactivation abolishes spindle chirality. Our theoretical model predicts that bending and twisting moments may generate curved shapes of bundles. We found that bundles turn by about -2 deg µm-1 around the spindle axis, which we explain by a twisting moment of roughly -10 pNµm. We conclude that torques, in addition to forces, exist in the spindle and determine its chiral architecture.


Asunto(s)
Cinetocoros/fisiología , Microtúbulos/fisiología , Huso Acromático/fisiología , Torque , Línea Celular Tumoral , Células HeLa , Humanos , Cinesinas/genética , Cinetocoros/ultraestructura , Microscopía Confocal , Microtúbulos/ultraestructura , Modelos Teóricos , Huso Acromático/genética , Huso Acromático/ultraestructura
4.
J Biol Chem ; 293(40): 15733-15747, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30054275

RESUMEN

Kinetochore fibers (K-fibers) are microtubule bundles attached to chromosomes. Efficient K-fiber formation is required for chromosome congression, crucial for faithful chromosome segregation in cells. However, the mechanisms underlying K-fiber formation before chromosome biorientation remain unclear. Depletion of hepatoma up-regulated protein (HURP), a RanGTP-dependent microtubule-associated protein localized on K-fibers, has been shown to result in low-efficiency K-fiber formation. Therefore, here we sought to identify critical interaction partners of HURP that may modulate this function. Using co-immunoprecipitation and bimolecular fluorescence complementation assays, we determined that HURP interacts directly with the centrosomal protein transforming acidic coiled coil-containing protein 3 (TACC3), a centrosomal protein, both in vivo and in vitro through the HURP1-625 region. We found that HURP is important for TACC3 function during kinetochore microtubule assembly at the chromosome region in prometaphase. Moreover, HURP regulates stable lateral kinetochore attachment and chromosome congression in early mitosis by modulation of TACC3. These findings provide new insight into the coordinated regulation of K-fiber formation and chromosome congression in prometaphase by microtubule-associated proteins.


Asunto(s)
Posicionamiento de Cromosoma , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Prometafase , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas de Neoplasias/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Imagen de Lapso de Tiempo
5.
J Biol Chem ; 293(16): 5755-5765, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29475948

RESUMEN

Chromosome alignment and segregation during mitosis require kinetochore-microtubule (kMT) attachments that are mediated by the molecular motor dynein and the kMT-binding complex Ndc80. The Rod-ZW10-Zwilch (RZZ) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachments in Caenorhabditis elegans besides its role in activating the spindle assembly checkpoint (SAC). However, the mechanism by which these protein complexes control kMT attachments to drive chromosome motility during early mitosis is still unclear. Here, using in vitro total internal reflection fluorescence microscopy, we observed that higher concentrations of Ndc80 inhibited dynein binding to MTs, providing evidence that Ndc80 and dynein antagonize each other's function. High-resolution microscopy and siRNA-mediated functional disruption revealed that severe defects in chromosome alignment induced by depletion of dynein or the dynein adapter Spindly are rescued by codepletion of the RZZ component Rod in human cells. Interestingly, rescue of the chromosome alignment defects was independent of Rod function in SAC activation and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, the chromosome alignment rescue depended on the plus-end-directed motility of centromere protein E (CENP-E) because cells codepleted of CENP-E, Rod, and dynein could not establish stable kMT attachments or align their chromosomes properly. Our findings support the idea that dynein may control the function of the Ndc80 complex in stabilizing kMT attachments directly by interfering with Ndc80-MT binding or indirectly by controlling the Rod-mediated inhibition of Ndc80.


Asunto(s)
Dineínas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares/metabolismo , Proteínas del Citoesqueleto , Células HeLa , Humanos , Cinetocoros/ultraestructura , Microtúbulos/ultraestructura , Unión Proteica
6.
Congenit Anom (Kyoto) ; 57(6): 191-196, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28901661

RESUMEN

Autosomal recessive primary microcephaly (MCPH) is a very rare neuro-developmental disease with brain size reduction. More than a dozen loci encoding proteins of diverse function have been shown to be responsible for MCPH1-13. Mutations in the D40/KNL1/CASC5 gene, which was initially characterized as a gene involved in chromosomal translocation in leukemia and as a member of the cancer/testis gene family, was later found to encode a kinetochore protein essential for mitotic cell division and to cause MCPH4. Although our previous studies showed that this gene is required for cell growth and division in vitro and in animal experiments, the revelation that mutations in this gene caused microcephaly provides in vivo evidence of a critical role in brain growth. In this review, we describe mutated gene targets responsible for MCPH1-13 and summarize clinical studies of, and molecular and biological aspects of the gene and encoded protein responsible for MCPH4.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Expresión Génica , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microcefalia/clasificación , Microcefalia/metabolismo , Microcefalia/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mitosis , Neuronas/metabolismo , Neuronas/patología , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas
7.
PLoS Genet ; 13(5): e1006784, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28505193

RESUMEN

INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animales , Línea Celular , Drosophila/genética , Drosophila/metabolismo , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Mitosis , Ubiquitinación
8.
Nat Commun ; 8: 15346, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28516917

RESUMEN

Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC-APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Meiosis , Oocitos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Securina/genética , Separasa/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Femenino , Regulación de la Expresión Génica , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Puntos de Control de la Fase M del Ciclo Celular , Edad Materna , Ratones , Oocitos/citología , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Securina/metabolismo , Separasa/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
9.
Adv Exp Med Biol ; 925: 89-101, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27722958

RESUMEN

Mitosis is the last phase of the cell cycle and it leads to the formation of two daughter cells with the same genetic information. This process must occurr in a very precise way and this task is essential to preserve genetic stability and to maintain cell viability. Accurate chromosome segregation during mitosis is brought about by an important cellular organelle: the mitotic spindle. This structure is made of microtubules, polymers of alpha and beta tubulin, and it is highly dynamic during the cell cycle: it emanates from two microtubules organizing centers (Spindle Pole Bodies, SPBs, in yeast) that are essential to build a short bipolar spindle, and it undergoes two steps of elongation during anaphase A and anaphase B in order to separate sister chromatids. Several proteins are involved in the control of mitotic spindle dynamics and their activity is tightly coordinated with other cell cycle events and with cell cycle progression.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Microtúbulos/genética , Mitosis , Saccharomyces cerevisiae/genética , Huso Acromático/genética , Proliferación Celular , Segregación Cromosómica , Cinesinas/genética , Cinesinas/metabolismo , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
Biochim Biophys Acta ; 1863(12): 2993-3000, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693251

RESUMEN

To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes.


Asunto(s)
Segregación Cromosómica/efectos de los fármacos , Ciclina B/genética , Quinasas Ciclina-Dependientes/genética , Meiosis/efectos de los fármacos , Oocitos/efectos de los fármacos , Aneuploidia , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Regulación de la Expresión Génica , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Meiosis/genética , Ratones , Ratones Endogámicos ICR , Oocitos/citología , Oocitos/metabolismo , Fenilendiaminas/farmacología , Cuerpos Polares/metabolismo , Cuerpos Polares/ultraestructura , Proteínas de Unión a Poli-ADP-Ribosa , Cultivo Primario de Células , Proteolisis/efectos de los fármacos , Pirimidinas/farmacología , Transducción de Señal , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
11.
Exp Mol Med ; 48: e250, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27491410

RESUMEN

RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore-microtubule interactions, and found that RSK2-depleted cells formed less kinetochore-microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles.


Asunto(s)
Mitosis , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Huso Acromático/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/análisis , Huso Acromático/ultraestructura
12.
Nucleic Acids Res ; 44(5): 2145-59, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26586808

RESUMEN

The incorporation of CENP-A into centromeric chromatin is an essential prerequisite for kinetochore formation. Yet, the molecular mechanisms governing this process are surprisingly divergent in different organisms. While CENP-A loading mechanisms have been studied in some detail in mammals, there are still large gaps to our understanding of CENP-A/Cid loading pathways in Drosophila. Here, we report on the characterization and delineation of at least three different CENP-A preloading complexes in Drosophila. Two complexes contain the CENP-A chaperones CAL1, FACT and/or Caf1/Rbap48. Notably, we identified a novel complex consisting of the histone acetyltransferase Hat1, Caf1 and CENP-A/H4. We show that Hat1 is required for proper CENP-A loading into chromatin, since knock-down in S2 cells leads to reduced incorporation of newly synthesized CENP-A. In addition, we demonstrate that CENP-A/Cid interacts with the HAT1 complex via an N-terminal region, which is acetylated in cytoplasmic but not in nuclear CENP-A. Since Hat1 is not responsible for acetylation of CENP-A/Cid, these results suggest a histone acetyltransferase activity-independent escort function for Hat1. Thus, our results point toward intriguing analogies between the complex processing pathways of newly synthesized CENP-A and canonical histones.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Histona Acetiltransferasas/genética , Histonas/genética , Cinetocoros/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Proteína A Centromérica , Cromatina/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Cinetocoros/ultraestructura , Datos de Secuencia Molecular , Plásmidos/química , Plásmidos/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Transfección
13.
Mol Biol Cell ; 26(22): 3985-98, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26424798

RESUMEN

Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.


Asunto(s)
Segregación Cromosómica/fisiología , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Mitosis/genética , Modelos Genéticos , Animales , Cromosomas , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/genética , Mitosis/fisiología , Huso Acromático/genética , Polos del Huso/genética
14.
Curr Biol ; 25(14): 1842-51, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26166783

RESUMEN

Chromosome biorientation, where sister kinetochores attach to microtubules (MTs) from opposing spindle poles, is the configuration that best ensures equal partitioning of the genome during cell division. Erroneous kinetochore-MT attachments are commonplace but are often corrected prior to anaphase. Error correction, thought to be mediated primarily by the centromere-enriched Aurora B kinase (ABK), typically occurs near spindle poles; however, the relevance of this locale is unclear. Furthermore, polar ejection forces (PEFs), highest near poles, can stabilize improper attachments by pushing mal-oriented chromosome arms away from spindle poles. Hence, there is a conundrum: erroneous kinetochore-MT attachments are weakened where PEFs are most likely to strengthen them. Here, we report that Aurora A kinase (AAK) opposes the stabilizing effect of PEFs. AAK activity contributes to phosphorylation of kinetochore substrates near poles and its inhibition results in chromosome misalignment and an increased incidence of erroneous kinetochore-MT attachments. Furthermore, AAK directly phosphorylates a site in the N-terminal tail of Ndc80/Hec1 that has been implicated in reducing the affinity of the Ndc80 complex for MTs when phosphorylated. We propose that an AAK activity gradient contributes to correcting mal-oriented kinetochore-MT attachments in the vicinity of spindle poles.


Asunto(s)
Aurora Quinasa A/genética , Polaridad Celular , Posicionamiento de Cromosoma , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Animales , Aurora Quinasa A/metabolismo , Células Cultivadas , Cromosomas de Insectos/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Regulación de la Expresión Génica , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura
15.
Elife ; 42015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26090906

RESUMEN

Kinetochore fibers (K-fibers) of the mitotic spindle are force-generating units that power chromosome movement during mitosis. K-fibers are composed of many microtubules that are held together throughout their length. Here, we show, using 3D electron microscopy, that K-fiber microtubules (MTs) are connected by a network of MT connectors. We term this network 'the mesh'. The K-fiber mesh is made of linked multipolar connectors. Each connector has up to four struts, so that a single connector can link up to four MTs. Molecular manipulation of the mesh by overexpression of TACC3 causes disorganization of the K-fiber MTs. Optimal stabilization of K-fibers by the mesh is required for normal progression through mitosis. We propose that the mesh stabilizes K-fibers by pulling MTs together and thereby maintaining the integrity of the fiber. Our work thus identifies the K-fiber meshwork of linked multipolar connectors as a key integrator and determinant of K-fiber structure and function.


Asunto(s)
Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Huso Acromático/metabolismo , Tomografía con Microscopio Electrónico , Expresión Génica , Células HeLa , Humanos , Imagenología Tridimensional , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis
16.
Nat Rev Mol Cell Biol ; 15(11): 736-47, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25303117

RESUMEN

The spindle checkpoint ensures proper chromosome segregation during cell division. Unravelling checkpoint signalling has been a long-standing challenge owing to the complexity of the structures and forces that regulate chromosome segregation. New reports have now substantially advanced our understanding of checkpoint signalling mechanisms at the kinetochore, the structure that connects microtubules and chromatin. In contrast to the traditional view of a binary checkpoint response - either completely on or off - new findings indicate that the checkpoint response strength is variable. This revised perspective provides insight into how checkpoint bypass can lead to aneuploidy and informs strategies to exploit these errors for cancer treatments.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Cromosomas/metabolismo , Mitosis , Huso Acromático/metabolismo , Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica , Segregación Cromosómica , Cromosomas/ultraestructura , Regulación de la Expresión Génica , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Unión Proteica , Transducción de Señal , Análisis Espacio-Temporal , Huso Acromático/ultraestructura
17.
Mol Cancer ; 13: 107, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24886358

RESUMEN

BACKGROUND: Survivin, a member of the inhibitor of apoptosis (IAP) gene family, has a dual role in mitosis and in apoptosis. It is abundantly expressed in every human tumor, compared with normal tissues. During mitosis Survivin assembles with the chromosomal passenger complex and regulates chromosomal segregation. Here, we aim to explore whether interference with the mitotic function of Survivin is linked to p53-mediated G1 cell cycle arrest and affects chromosomal stability. METHODS: In this study, we used HCT116, SBC-2, and U87-MG and generated corresponding isogenic p53-deficient cells. Retroviral vectors were used to stably knockdown Survivin. The resulting phenotype, in particular the mechanisms of cell cycle arrest and of initiation of aneuploidy, were investigated by Western Blot analysis, confocal laser scan microscopy, proliferation assays, spectral karyotyping and RNAi. RESULTS: In all cell lines Survivin-RNAi did not induce instant apoptosis but caused polyplodization irrespective of p53 status. Strikingly, polyploidization after knockdown of Survivin resulted in merotelic kinetochore spindle assemblies, γH2AX-foci, and DNA damage response (DDR), which was accompanied by a transient p53-mediated G1-arrest. That p53 wild type cells specifically arrest due to DNA damage was shown by simultaneous inhibition of ATM and DNA-PK, which abolished induction of p21waf/cip. Cytogenetic analysis revealed chromosomal aberrations indicative for DNA double strand break repair by the mechanism of non-homologous end joining (NHEJ), only in Survivin-depleted cells. CONCLUSION: Our findings suggest that Survivin plays an essential role in proper amphitelic kinetochore-spindle assembly and that constraining Survivin's mitotic function results in polyploidy and aneuploidy which cannot be controlled by p53. Therefore, Survivin critically safeguards chromosomal stability independently from p53.


Asunto(s)
Aneuploidia , Reparación del ADN por Unión de Extremidades , Proteínas Inhibidoras de la Apoptosis/genética , Mitosis , Poliploidía , Proteína p53 Supresora de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Segregación Cromosómica , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Cariotipificación , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Survivin , Proteína p53 Supresora de Tumor/metabolismo
18.
Curr Biol ; 23(24): 2534-9, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24291092

RESUMEN

Since the dissolution of sister chromatid cohesion by separase and cyclin B destruction is irreversible, it is essential to delay both until all chromosomes have bioriented on the mitotic spindle. Kinetochores that are not correctly attached to the spindle generate the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C) and blocks anaphase onset. This process is known as the spindle assembly checkpoint (SAC). The SAC is especially important in meiosis I, where bivalents consisting of homologous chromosomes held together by chiasmata biorient. Since the first meiotic division is unaffected by rare achiasmatic chromosomes or misaligned bivalents, it is thought that several tensionless kinetochores are required to produce sufficient MCC for APC/C inhibition. Consistent with this, univalents lacking chiasmata elicit a SAC-mediated arrest in Mlh1(-/-) oocytes. In contrast, chromatids generated by TEV protease-induced cohesin cleavage in Rec8(TEV/TEV) oocytes merely delay APC/C activation. Since the arrest of Mlh1(-/-)Rec8(TEV/TEV) oocytes is alleviated by TEV protease, even when targeted to kinetochores, we conclude that their SAC depends on cohesin as well as dedicated kinetochore proteins. This has important implications for aging oocytes, where cohesin deterioration will induce sister kinetochore biorientation and compromise MCC production, leading to chromosome missegregation and aneuploid fetuses.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Cinetocoros/ultraestructura , Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Oocitos/citología , Animales , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Cinetocoros/fisiología , Ratones , Imagen de Lapso de Tiempo , Cohesinas
19.
PLoS One ; 8(11): e80039, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244602

RESUMEN

TFIIB (transcription factor IIB) is a transcription factor that provides a bridge between promoter-bound TFIID and RNA polymerase II, and it is a target of various transcriptional activator proteins that stimulate the pre-initiation complex assembly. The localization and/or attachment matrix of TFIIB in the cytoplast is not well understood. This study focuses on the function of TFIIB and its interrelationship with α-tubulins in a mouse model. During oocyte maturation TFIIB distributes throughout the entire nucleus of the germinal vesicle (GV). After progression to GV breakdown (GVBD), TFIIB and α-tubulin co-localize and accumulate in the vicinity of the condensed chromosomes. During the MII stage, the TFIIB signals are more concentrated at the equatorial plate and the kinetochores. Colcemid treatment of oocytes disrupts the microtubule (MT) system, although the TFIIB signals are still present with the altered MT state. Injection of oocytes with TFIIB antibodies and siRNAs causes abnormal spindle formation and irregular chromosome alignment. These findings suggest that TFIIB dissociates from the condensed chromatids and then tightly binds to microtubules from GVBD to the MII phase. The assembly and disassembly of TFIIB may very well be associated with and driven by microtubules. TFIIB maintains its contact with the α-tubulins and its co-localization forms a unique distribution pattern. Depletion of Tf2b in oocytes results in a significant decrease in TFIIB expression, although polar body extrusion does not appear to be affected. Knockdown of Tf2b dramatically affects subsequent embryo development with more than 85% of the embryos arrested at the 2-cell stage. These arrested embryos still maintain apparently normal morphology for at least 96h without any obvious degeneration. Analysis of the effects of TFIIB in somatic cells by co-transfection of BiFC plasmids pHA-Tf2b and pFlag-Tuba1α further confirms a direct interaction between TFIIB and α-tubulins.


Asunto(s)
Desarrollo Embrionario/genética , Meiosis , Oocitos/metabolismo , Factor de Transcripción TFIIB/genética , Tubulina (Proteína)/genética , Animales , Anticuerpos/farmacología , Antineoplásicos/farmacología , Cromátides/efectos de los fármacos , Cromátides/metabolismo , Cromátides/ultraestructura , Demecolcina/farmacología , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Ratones , Microinyecciones , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Plásmidos/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Factor de Transcripción TFIIB/antagonistas & inhibidores , Factor de Transcripción TFIIB/metabolismo , Tubulina (Proteína)/metabolismo
20.
Mol Biol Cell ; 24(22): 3483-95, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24048451

RESUMEN

Sumoylation of centromere, kinetochore, and other mitotic chromosome-associated proteins is essential for chromosome segregation. The mechanisms regulating spatial and temporal sumoylation of proteins in mitosis, however, are not well understood. Here we show that the small ubiquitin-related modifier (SUMO)-specific isopeptidases SENP1 and SENP2 are targeted to kinetochores in mitosis. SENP2 targeting occurs through a mechanism dependent on the Nup107-160 subcomplex of the nuclear pore complex and is modulated through interactions with karyopherin α. Overexpression of SENP2, but not other SUMO-specific isopeptidases, causes a defect in chromosome congression that depends on its precise kinetochore targeting. By altering SENP1 kinetochore associations, however, this effect on chromosome congression could be phenocopied. In contrast, RNA interference-mediated knockdown of SENP1 delays sister chromatid separation at metaphase, whereas SENP2 knockdown produces no detectable phenotypes. Our findings indicate that chromosome segregation depends on precise spatial and temporal control of sumoylation in mitosis and that SENP1 and SENP2 are important mediators of this control.


Asunto(s)
Segregación Cromosómica , Cisteína Endopeptidasas/genética , Endopeptidasas/genética , Mitosis , Sumoilación , Centrómero/metabolismo , Centrómero/ultraestructura , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Imagen Molecular , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plásmidos , Multimerización de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Ubiquitina/genética , Ubiquitina/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA