Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.028
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4609, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816425

RESUMEN

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.


Asunto(s)
Calcio , Citosol , Replicación del ADN , Proteínas de la Membrana , Canales Catiónicos TRPV , Humanos , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Calcio/metabolismo , Citosol/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células HEK293 , ADN/metabolismo , Células HeLa , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Fosforilación , Inestabilidad Genómica , Daño del ADN , Animales
2.
Elife ; 132024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780415

RESUMEN

Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.


All living organisms breakdown food molecules to generate energy for processes, such as growing, reproducing and movement. The series of chemical reactions that breakdown sugars into smaller molecules ­ known as glycolysis ­ is so important that it occurs in all life forms, from bacteria to humans. In higher organisms, such as fungi and animals, these reactions take place in the cytosol, the space surrounding the cell's various compartments. A transport protein then shuttles the end-product of glycolysis ­ pyruvate ­ into specialised compartments, known as the mitochondria, where most energy is produced. However, recently it was discovered that a group of living organisms, called the stramenopiles, have a branched glycolysis in which the enzymes involved in the second half of this process are located in both the cytosol and mitochondrial matrix. But it was not known how the intermediate molecules produced after the first half of glycolysis enter the mitochondria. To answer this question, Pyrihová et al. searched for transport protein(s) that could link the two halves of the glycolysis pathway. Computational analyses, comparing the genetic sequences of many transport proteins from several different species, revealed a new group found only in stramenopiles. Pyrihová et al. then used microscopy to visualise these new transport proteins ­ called GIC-1 and GIC-2 ­ in the parasite Blastocystis, which infects the human gut, and observed that they localise to mitochondria. Further biochemical experiments showed that GIC-1 and GIC-2 can physically bind these intermediate molecules, but only GIC-2 can transport them across membranes. Taken together, these observations suggest that GIC-2 links the two halves of glycolysis in Blastocystis. Further analyses could reveal corresponding transport proteins in other stramenopiles, many of which have devastating effects on agriculture, such as Phytophthora, which causes potato blight, or Saprolegnia, which causes skin infections in farmed salmon. Since human cells do not have equivalent transporters, they could be new drug targets not only for Blastocystis, but for these harmful pathogens as well.


Asunto(s)
Blastocystis , Citosol , Glucólisis , Mitocondrias , Blastocystis/metabolismo , Blastocystis/genética , Humanos , Mitocondrias/metabolismo , Citosol/metabolismo , Transporte Biológico , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
3.
PLoS Comput Biol ; 20(5): e1012059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753883

RESUMEN

The eukaryotic mRNA life cycle includes transcription, nuclear mRNA export and degradation. To quantify all these processes simultaneously, we perform thiol-linked alkylation after metabolic labeling of RNA with 4-thiouridine (4sU), followed by sequencing of RNA (SLAM-seq) in the nuclear and cytosolic compartments of human cancer cells. We develop a model that reliably quantifies mRNA-specific synthesis, nuclear export, and nuclear and cytosolic degradation rates on a genome-wide scale. We find that nuclear degradation of polyadenylated mRNA is negligible and nuclear mRNA export is slow, while cytosolic mRNA degradation is comparatively fast. Consequently, an mRNA molecule generally spends most of its life in the nucleus. We also observe large differences in the nuclear export rates of different 3'UTR transcript isoforms. Furthermore, we identify genes whose expression is abruptly induced upon metabolic labeling. These transcripts are exported substantially faster than average mRNAs, suggesting the existence of alternative export pathways. Our results highlight nuclear mRNA export as a limiting factor in mRNA metabolism and gene regulation.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , ARN Mensajero , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Núcleo Celular/metabolismo , Estabilidad del ARN/genética , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Citosol/metabolismo
4.
Virulence ; 15(1): 2357670, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38804638

RESUMEN

Salmonella enterica subspecies enterica serovar Typhimurium is an intracellular pathogen that invades and colonizes the intestinal epithelium. Following bacterial invasion, Salmonella is enclosed within a membrane-bound vacuole known as a Salmonella-containing vacuole (SCV). However, a subset of Salmonella has the capability to prematurely rupture the SCV and escape, resulting in Salmonella hyper-replication within the cytosol of epithelial cells. A recently published RNA-seq study provides an overview of cytosolic and vacuolar upregulated genes and highlights pagN vacuolar upregulation. Here, using transcription kinetics, protein production profile, and immunofluorescence microscopy, we showed that PagN is exclusively produced by Salmonella in SCV. Gentamicin protection and chloroquine resistance assays were performed to demonstrate that deletion of pagN affects Salmonella replication by affecting the cytosolic bacterial population. This study presents the first example of a Salmonella virulence factor expressed within the endocytic compartment, which has a significant impact on the dynamics of Salmonella cytosolic hyper-replication.


Asunto(s)
Proteínas Bacterianas , Citosol , Salmonella typhimurium , Vacuolas , Factores de Virulencia , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Citosol/microbiología , Vacuolas/microbiología , Vacuolas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Virulencia , Infecciones por Salmonella/microbiología , Células HeLa , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica
5.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743629

RESUMEN

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Asunto(s)
Citosol , Glutarredoxinas , Glutatión , Proteínas Hierro-Azufre , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutatión/metabolismo , Mitocondrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Mitocondriales/metabolismo
6.
Sci Adv ; 10(18): eadl6082, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701207

RESUMEN

The AAA+-ATPase valosin-containing protein (VCP; also called p97 or Cdc48), a major protein unfolding machinery with a variety of essential functions, localizes to different subcellular compartments where it has different functions. However, the processes regulating the distribution of VCP between the cytosol and nucleus are not understood. Here, we identified p37 (also called UBXN2B) as a major factor regulating VCP nucleocytoplasmic shuttling. p37-dependent VCP localization was crucial for local cytosolic VCP functions, such as autophagy, and nuclear functions in DNA damage repair. Mutations in VCP causing multisystem proteinopathy enhanced its association with p37, leading to decreased nuclear localization of VCP, which enhanced susceptibility to DNA damage accumulation. Both VCP localization and DNA damage susceptibility in cells with such mutations were normalized by lowering p37 levels. Thus, we uncovered a mechanism by which VCP nucleocytoplasmic distribution is fine-tuned, providing a means for VCP to respond appropriately to local needs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Núcleo Celular , Citosol , Proteína que Contiene Valosina , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Humanos , Citosol/metabolismo , Núcleo Celular/metabolismo , Mutación , Transporte Activo de Núcleo Celular , Daño del ADN , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transporte de Proteínas , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Reparación del ADN , Autofagia , Unión Proteica , Células HEK293
7.
Cell Death Dis ; 15(5): 361, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796462

RESUMEN

Disease models of neurodegeneration with brain iron accumulation (NBIA) offer the possibility to explore the relationship between iron dyshomeostasis and neurodegeneration. We analyzed hiPS-derived astrocytes from PANK2-associated neurodegeneration (PKAN), an NBIA disease characterized by progressive neurodegeneration and high iron accumulation in the globus pallidus. Previous data indicated that PKAN astrocytes exhibit alterations in iron metabolism, general impairment of constitutive endosomal trafficking, mitochondrial dysfunction and acquired neurotoxic features. Here, we performed a more in-depth analysis of the interactions between endocytic vesicles and mitochondria via superresolution microscopy experiments. A significantly lower number of transferrin-enriched vesicles were in contact with mitochondria in PKAN cells than in control cells, confirming the impaired intracellular fate of cargo endosomes. The investigation of cytosolic and mitochondrial iron parameters indicated that mitochondrial iron availability was substantially lower in PKAN cells compared to that in the controls. In addition, PKAN astrocytes exhibited defects in tubulin acetylation/phosphorylation, which might be responsible for unregulated vesicular dynamics and inappropriate iron delivery to mitochondria. Thus, the impairment of iron incorporation into these organelles seems to be the cause of cell iron delocalization, resulting in cytosolic iron overload and mitochondrial iron deficiency, triggering mitochondrial dysfunction. Overall, the data elucidate the mechanism of iron accumulation in CoA deficiency, highlighting the importance of mitochondrial iron deficiency in the pathogenesis of disease.


Asunto(s)
Astrocitos , Citosol , Sobrecarga de Hierro , Hierro , Mitocondrias , Astrocitos/metabolismo , Astrocitos/patología , Humanos , Mitocondrias/metabolismo , Citosol/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Tubulina (Proteína)/metabolismo , Fosforilación , Deficiencias de Hierro , Acetilación
8.
Cancer Immunol Immunother ; 73(5): 92, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564022

RESUMEN

Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.


Asunto(s)
Camptotecina/análogos & derivados , Neoplasias Colorrectales , Inhibidores de Topoisomerasa I , Humanos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Neoplasias Colorrectales/terapia , Citosol , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 121(15): e2313004121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564631

RESUMEN

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP's many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we quantify the motion of chromosomal loci and cytoplasmic tracer particles. In the absence of polyP and upon starvation, we observe a 2- to 10-fold increase in mean cytoplasmic diffusivity. Tracer particles reveal that polyP also modulates the partitioning between a "more mobile" and a "less mobile" population: Small particles in cells unable to make polyP are more likely to be "mobile" and explore more of the cytoplasm, particularly during starvation. Concomitant with this larger freedom of motion in polyP-deficient cells, we observe decompaction of the nucleoid and an increase in the steady-state concentration of ATP. The dramatic polyP-dependent effects we observe on cytoplasmic transport properties occur under nitrogen starvation, but not carbon starvation, suggesting that polyP may have distinct functions under different types of starvation.


Asunto(s)
Polifosfatos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Polifosfatos/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo
10.
Basic Clin Pharmacol Toxicol ; 134(6): 846-857, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664998

RESUMEN

Fungal anthraquinones dermocybin and dermorubin are attractive alternatives for synthetic dyes but their metabolism is largely unknown. We conducted a qualitative in vitro study to identify their metabolism using human liver microsomes and cytosol, as well as recombinant human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes. Additionally, liver microsomal and cytosolic fractions from rat, mouse and pig were used. Following incubations of the biocolourants with the enzymes in the presence of nicotinamide adenine dinucleotide phosphate, UDP-glucuronic acid, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) or S-adenosyl methionine (SAM) to enable CYP oxidation, glucuronidation, sulfonation or methylation, we observed several oxidation and conjugation metabolites for dermocybin but none for dermorubin. Human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A7 catalysed dermocybin oxidation. The formation of dermocybin glucuronides was catalysed by human UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10 and 2B15. Human SULT1B1, 1C2 and 2A1 sulfonated dermocybin. Dermocybin oxidation was faster than conjugation in human liver microsomes. Species differences were seen in dermocybin glucuronidation between human, rat, mouse and pig. In conclusion, many CYP and conjugation enzymes metabolized dermocybin, whereas dermorubin was not metabolized in human liver fractions in vitro. The results indicate that dermocybin would be metabolized in humans in vivo.


Asunto(s)
Antraquinonas , Sistema Enzimático del Citocromo P-450 , Glucuronosiltransferasa , Microsomas Hepáticos , Microsomas Hepáticos/metabolismo , Humanos , Animales , Ratas , Ratones , Porcinos , Glucuronosiltransferasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Antraquinonas/metabolismo , Masculino , Proteínas Recombinantes/metabolismo , Hígado/metabolismo , Hígado/enzimología , Citosol/metabolismo , Oxidación-Reducción , Glucurónidos/metabolismo
11.
PLoS Biol ; 22(4): e3002597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38684033

RESUMEN

Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.


Asunto(s)
Proteínas de Unión al Calcio , Citosol , Flagelina , Interacciones Huésped-Patógeno , Inflamasomas , Salmonella typhimurium , Sistemas de Secreción Tipo III , Citosol/metabolismo , Citosol/microbiología , Animales , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Inflamasomas/metabolismo , Ratones , Flagelina/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Análisis de la Célula Individual/métodos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo
12.
Cell Biochem Funct ; 42(3): e4016, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613224

RESUMEN

EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.


Asunto(s)
Fenómenos Biológicos , Proteínas Nucleares , Humanos , Proteínas de la Membrana , Citoplasma , Citosol , Proteínas Portadoras
13.
New Phytol ; 242(6): 2453-2463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38567702

RESUMEN

CO2 release in the light (RL) and its presumed source, oxidative pentose phosphate pathways, were found to be insensitive to CO2 concentration. The oxidative pentose phosphate pathways form glucose 6-phosphate (G6P) shunts that bypass the nonoxidative pentose phosphate reactions of the Calvin-Benson cycle. Using adenosine diphosphate glucose and uridine diphosphate glucose as proxies for labeling of G6P in the stroma and cytosol respectively, it was found that only the cytosolic shunt was active. Uridine diphosphate glucose, a proxy for cytosolic G6P, and 6-phosphogluconate (6PG) were significantly less labeled than Calvin-Benson cycle intermediates in the light. But ADP glucose, a proxy for stromal G6P, is labeled to the same degree as Calvin-Benson cycle intermediates and much greater than 6PG. A metabolically inert pool of sedoheptulose bisphosphate can slowly equilibrate keeping the label in sedoheptulose lower than in other stromal metabolites. Finally, phosphorylation of fructose 6-phosphate (F6P) in the cytosol can allow some unlabeled carbon in cytosolic F6P to dilute label in phosphenolpyruvate. The results clearly show that there is oxidative pentose phosphate pathway activity in the cytosol that provides a shunt around the nonoxidative pentose phosphate pathway reactions of the Calvin-Benson cycle and is not strongly CO2-sensitive.


Asunto(s)
Dióxido de Carbono , Oxidación-Reducción , Vía de Pentosa Fosfato , Fotosíntesis , Dióxido de Carbono/metabolismo , Glucosa-6-Fosfato/metabolismo , Citosol/metabolismo , Luz , Arabidopsis/metabolismo , Arabidopsis/fisiología
14.
Redox Biol ; 72: 103141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599017

RESUMEN

The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]2/[GSSG] redox potential, cellular H2O2 and NAD(P)H+H+ amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single H2O2 pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify H2O2, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.


Asunto(s)
Arabidopsis , Citosol , Glutatión , Peróxido de Hidrógeno , Oxidación-Reducción , Peróxido de Hidrógeno/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Glutatión/metabolismo , Citosol/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Disulfuro de Glutatión/metabolismo , NADP/metabolismo
15.
Cancer Sci ; 115(6): 1834-1850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594840

RESUMEN

Constitutively active KRAS mutations are among the major drivers of lung cancer, yet the identity of molecular co-operators of oncogenic KRAS in the lung remains ill-defined. The innate immune cytosolic DNA sensor and pattern recognition receptor (PRR) Absent-in-melanoma 2 (AIM2) is best known for its assembly of multiprotein inflammasome complexes and promoting an inflammatory response. Here, we define a role for AIM2, independent of inflammasomes, in KRAS-addicted lung adenocarcinoma (LAC). In genetically defined and experimentally induced (nicotine-derived nitrosamine ketone; NNK) LAC mouse models harboring the KrasG12D driver mutation, AIM2 was highly upregulated compared with other cytosolic DNA sensors and inflammasome-associated PRRs. Genetic ablation of AIM2 in KrasG12D and NNK-induced LAC mouse models significantly reduced tumor growth, coincident with reduced cellular proliferation in the lung. Bone marrow chimeras suggest a requirement for AIM2 in KrasG12D-driven LAC in both hematopoietic (immune) and non-hematopoietic (epithelial) cellular compartments, which is supported by upregulated AIM2 expression in immune and epithelial cells of mutant KRAS lung tissues. Notably, protection against LAC in AIM2-deficient mice is associated with unaltered protein levels of mature Caspase-1 and IL-1ß inflammasome effectors. Moreover, genetic ablation of the key inflammasome adapter, ASC, did not suppress KrasG12D-driven LAC. In support of these in vivo findings, AIM2, but not mature Caspase-1, was upregulated in human LAC patient tumor biopsies. Collectively, our findings reveal that endogenous AIM2 plays a tumor-promoting role, independent of inflammasomes, in mutant KRAS-addicted LAC, and suggest innate immune DNA sensing may provide an avenue to explore new therapeutic strategies in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Proteínas de Unión al ADN , Inflamasomas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Animales , Inflamasomas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Caspasa 1/metabolismo , Caspasa 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Mutación , Nitrosaminas , Femenino , Citosol/metabolismo , Proliferación Celular , Línea Celular Tumoral
16.
Sci Adv ; 10(10): eadl0515, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446884

RESUMEN

Single-cell RNA sequencing has revolutionized our understanding of cellular heterogeneity, but routine methods require cell lysis and fail to probe the dynamic trajectories responsible for cellular state transitions, which can only be inferred. Here, we present a nanobiopsy platform that enables the injection of exogenous molecules and multigenerational longitudinal cytoplasmic sampling from a single cell and its progeny. The technique is based on scanning ion conductance microscopy (SICM) and, as a proof of concept, was applied to longitudinally profile the transcriptome of single glioblastoma (GBM) brain tumor cells in vitro over 72 hours. The GBM cells were biopsied before and after exposure to chemotherapy and radiotherapy, and our results suggest that treatment either induces or selects for more transcriptionally stable cells. We envision the nanobiopsy will contribute to transforming standard single-cell transcriptomics from a static analysis into a dynamic assay.


Asunto(s)
Perfilación de la Expresión Génica , Glioblastoma , Humanos , Citoplasma , Transcriptoma , Citosol , Bioensayo , Glioblastoma/genética
17.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542297

RESUMEN

Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol. Native-PAGE and Western blot analysis of neuronal cytosol from mouse brains demonstrated the presence of both GM1 and monomeric aSyn in the neuronal cytosol of normal mouse brain. To demonstrate that an adequate level of GM1 prevents the aggregation of aSyn, we used NG108-15 and SH-SY5Y cells with and without treatment of 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), which inhibits the synthesis/expression of GM1. Cells treated with PPMP to reduce GM1 expression showed a significant increase in the formation of aggregated aSyn compared to untreated cells. We thus demonstrated that sufficient GM1 prevents the aggregation of aSyn. For this to occur, aSyn and GM1 must show proximity within the neuron. The present study provides evidence for such co-localization in neuronal cytosol, which also facilitates the inverse interaction revealed in studies with the two cell types above. This adds to the explanation of how GM1 prevents the aggregation of aSyn and onset of Parkinson's disease.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Citosol/metabolismo , Gangliósido G(M1)/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1868(6): 130603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521470

RESUMEN

BACKGROUND: Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. METHODS: We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. RESULTS: Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well. CONCLUSIONS: Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. GENERAL SIGNIFICANCE: Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.


Asunto(s)
Citosol , Glutatión , Mitocondrias , Oxidación-Reducción , Pez Cebra , Animales , Pez Cebra/metabolismo , Pez Cebra/embriología , Glutatión/metabolismo , Mitocondrias/metabolismo , Citosol/metabolismo , Desarrollo Embrionario , Disulfuro de Glutatión/metabolismo , Embrión no Mamífero/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(11): e2317658121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437537

RESUMEN

Identification of mechanisms that program early effector T cells to either terminal effector T (Teff) or memory T (Tm) cells has important implications for protective immunity against infections and cancers. Here, we show that the cytosolic transcription factor aryl hydrocarbon receptor (AhR) is used by early Teff cells to program memory fate. Upon antigen engagement, AhR is rapidly up-regulated via reactive oxygen species signaling in early CD8+ Teff cells, which does not affect the effector response, but is required for memory formation. Mechanistically, activated CD8+ T cells up-regulate HIF-1α to compete with AhR for HIF-1ß, leading to the loss of AhR activity in HIF-1αhigh short-lived effector cells, but sustained in HIF-1αlow memory precursor effector cells (MPECs) with the help of autocrine IL-2. AhR then licenses CD8+ MPECs in a quiescent state for memory formation. These findings partially resolve the long-standing issue of how Teff cells are regulated to differentiate into memory cells.


Asunto(s)
Linfocitos T CD8-positivos , División Celular , Citosol , Especies Reactivas de Oxígeno
20.
Biochem Biophys Res Commun ; 707: 149783, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38493746

RESUMEN

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Asunto(s)
Adhesinas Bacterianas , Porphyromonas gingivalis , Animales , Ratones , Humanos , Cisteína-Endopeptidasas Gingipaínas/metabolismo , Células CACO-2 , Porphyromonas gingivalis/fisiología , Citosol/metabolismo , Ocludina/metabolismo , Adhesinas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA