Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Lasers Med Sci ; 38(1): 115, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37133615

RESUMEN

A growing amount of experimental evidence has proven that the application of gold nanorods (AuNRs) in photodynamic therapy (PDT) can significantly enhance its therapeutic efficacy. The aim of this study was to establish a protocol for investigating the effect of gold nanorods loaded with the photosensitizer chlorin e6 (Ce6) on photodynamic therapy in the OVCAR3 human ovarian cancer cell line in vitro and to determine whether the PDT effect was different from that of Ce6 alone. OVCAR3 cells were randomly divided into three groups: the control group, Ce6-PDT group, and AuNRs@SiO2@Ce6-PDT group. Cell viability was measured by MTT assay. The generation of reactive oxygen species (ROS) was measured by a fluorescence microplate reader. Cell apoptosis was detected by flow cytometry. The expression of apoptotic proteins was detected by immunofluorescence and western blotting. The results showed that compared with that of the Ce6-PDT group, the cell viability of the AuNRs@SiO2@Ce6-PDT group was significantly decreased (P < 0.05) in a dose-dependent manner, and ROS production increased significantly (P < 0.05). The flow cytometry results showed that the proportion of apoptotic cells in the AuNRs@SiO2@Ce6-PDT group was significantly higher than that in the Ce6-PDT group (P < 0.05). Immunofluorescence and western blot results showed that the protein expression levels of cleaved caspase-9, cleaved caspase-3, cleaved PARP, and Bax in the AuNRs@SiO2@Ce6-PDT-treated-OVCAR3 cells were higher than those in the Ce6-PDT-treated cells (P < 0.05), and the protein expression levels of caspase-3, caspase-9, PARP, and Bcl-2 were slightly lower than those in the Ce6-PDT group (P < 0.05). In summary, our results show that AuNRs@SiO2@Ce6-PDT has a significantly stronger effect on OVCAR3 cells than the effect of Ce6-PDT alone. The mechanism may be related to the expression of Bcl-2 family and caspase family in the mitochondrial pathway.


Asunto(s)
Clorofilidas , Nanotubos , Neoplasias Ováricas , Fotoquimioterapia , Porfirinas , Humanos , Femenino , Fotoquimioterapia/métodos , Caspasa 3/metabolismo , Dióxido de Silicio , Caspasa 9/metabolismo , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Oro/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Clorofilidas/farmacología
2.
Biomaterials ; 290: 121832, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228518

RESUMEN

Photodynamic therapy (PDT) induces apoptosis of cancer cells by generating cytotoxic reactive oxygen species, the therapeutic effect of which, however, is impeded by intrinsic/inducible apoptosis-resistant mechanisms in cancer cells and hypoxia of tumor microenvironment (TME); also, PDT-induced anti-tumor immunity activation is insufficient. To deal with these obstacles, a novel biomimetic nanoplatform is fabricated for the precise delivery of photosensitizer chlorin e6 (Ce6), hemin and PEP20 (CD47 inhibitory peptide), integrating oxygen-boosted PDT, ferroptosis activation and CD47-SIRPα blockade. Hemin's catalase-mimetic activity alleviates TME hypoxia and enhances PDT. The nanoplatform activates ferroptosis via both classical (down-regulating glutathione peroxidase 4 pathway) and non-classical (inducing Fe2+ overload) modes. Besides the role of hemin in consuming glutathione and up-regulating heme oxygenase-1 expression, interestingly, we observe that Ce6 enhance ferroptosis activation via both classical and non-classical modes. The anti-cancer immunity is reinforced by combining PEP20-mediated CD47-SIRPα blockade and PDT-mediated T cell activation, efficiently suppressing primary tumor growth and metastasis. PEP20 has been revealed for the first time to sensitize ferroptosis by down-regulating system Xc-. This work sheds new light on the mechanisms of PDT-ferroptosis activation interplay and bridges immunotherapy and ferroptosis activation, laying the theoretical foundation for novel combinational modes of cancer treatment.


Asunto(s)
Clorofilidas , Ferroptosis , Fotoquimioterapia , Porfirinas , Humanos , Antígeno CD47 , Microambiente Tumoral , Oxígeno/farmacología , Biomimética , Hemina/farmacología , Clorofilidas/farmacología , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia , Hipoxia/tratamiento farmacológico
3.
J Control Release ; 348: 911-923, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760234

RESUMEN

As we step into the post-antibiotic era, the accelerated emergence of antibiotic-resistant pathogenic bacteria poses an increasingly serious threat to public health. The formation of antibiotic-resistant biofilms further challenges currently available drugs and treatment options, calling for novel strategies for effective ablation of such biofilm with minimal concern on safety and development of resistance. Herein, we report a novel type of photodynamic nanoagent, composed of chlorin e6 (Ce6)-loaded water-soluble chitosan-coated iron oxide nanoparticles (named Ce6@WCS-IONP), for drug-resistant bacteria killing and biofilm eradication. The fabricated Ce6@WCS-IONP has negligible toxicity to mammalian cells and exhibited equivalent singlet oxygen generation capacity to free Ce6; however, its association with methicillin-resistant Staphylococcus aureus (MRSA) was greatly enhanced, as evidenced by flow cytometry analysis and transmission electron microscope. In vitro studies verified that Ce6@WCS-IONP has superior photodynamic bactericidal effect against planktonic MRSA. Furthermore, with the aid of the cationic nature and small size, Ce6@WCS-IONP could effectively penetrate into MRSA biofilm, revealed by 3D fluorescence imaging. Both biomass analysis and viable bacteria counting demonstrated that Ce6@WCS-IONP showed potent biofilm ablation efficacy, averagely 7.1 log unit lower than that in free Ce6 group upon identical light irradiation. In addition, local treatment of MRSA-infected mice with Ce6@WCS-IONP plus light irradiation resulted in significant antibacterial and wound healing effect, accompanied by good biocompatibility in vivo. Collectively, photosensitizer-loaded cationic IONP with effective biofilm penetration and photodynamic eradication potential might be a promising nano platform in fighting against antibiotic-resistant microbial pathogen and biofilm.


Asunto(s)
Clorofilidas , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Fotoquimioterapia , Porfirinas , Animales , Antibacterianos/farmacología , Biopelículas , Cationes/farmacología , Clorofilidas/farmacología , Nanopartículas Magnéticas de Óxido de Hierro , Mamíferos , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología , Porfirinas/uso terapéutico
4.
Biosensors (Basel) ; 12(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35200371

RESUMEN

Accurate diagnosis of cancer cells directly affects the clinical treatment of cancer and can significantly improve the therapeutic effect of cancer patients. Cancer cells have a unique microenvironment with a large amount of peroxide inside, effectively differentiated from relevant microenvironment normal cells. Therefore, designing the high-sensitive probes to recognize and distinguish the special physiological microenvironment of cancer cells can shed light on the early diagnosis of cancers. In this article, we design and construct a fluorescence (FL) contrast agent for cancer cell recognition and imaging analysis. Firstly, luminol-gold NPs (Lum-AuNPs) have been initially built, and then successfully loaded with the fluorescent receptor Chlorin e6 (Ce6) to prepare the luminescent nanoprobes (Ce6@Lum-AuNPs) with green synthesis, i.e., with biocompatible agents and mild temperature. The as-prepared fluorescent Ce6@Lum-AuNPs can efficiently and sensitively realize FL bioimaging of cancer cells. The relevant bio-sensing mechanism pertains to the presence of hypochlorite (ClO-); hydrogen peroxide (H2O2) in cancer cells could readily interact with luminol to produce chemiluminescence, which can activate the Ce6 component to emit near-infrared (NIR) FL. Therefore, this raises the possibility of utilizing the Ce6@Lum-AuNPs as efficient fluorescent nanoprobes for promising cancer early diagnosis and other relevant disease bioanalysis.


Asunto(s)
Clorofilidas/farmacología , Nanopartículas del Metal , Neoplasias , Fotoquimioterapia , Animales , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/uso terapéutico , Oro , Humanos , Peróxido de Hidrógeno/química , Ácido Hipocloroso/química , Luminol/química , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos
5.
ACS Appl Mater Interfaces ; 14(3): 4456-4468, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35021012

RESUMEN

Coronavirus represents an inspiring model for designing drug delivery systems due to its unique infection machinery mechanism. Herein, we have developed a biomimetic viruslike nanocomplex, termed SDN, for improving cancer theranostics. SDN has a unique core-shell structure consisting of photosensitizer chlorin e6 (Ce6)-loaded nanostructured lipid carrier (CeNLC) (virus core)@poly(allylamine hydrochloride)-functionalized MnO2 nanoparticles (virus spike), generating a virus-mimicking nanocomplex. SDN not only prompted cellular uptake through rough-surface-mediated endocytosis but also achieved mitochondrial accumulation by the interaction of cationic spikes and the anionic mitochondrial surface, leading to mitochondria-specific photodynamic therapy. Meanwhile, SDN could even mediate oxygen generation to relieve tumor hypoxia and, consequently, improve macrophage-associated anticancer immune response. Importantly, SDN served as a robust magnetic resonance imaging (MRI) contrast agent due to the fast release of Mn2+ in the presence of intracellular redox components. We identified that SDN selectively accumulated in tumors and released Mn2+ to generate a 5.71-fold higher T1-MRI signal, allowing for effectively detecting suspected tumors. Particularly, SDN induced synergistic immunophotodynamic effects to eliminate malignant tumors with minimal adverse effects. Therefore, we present a novel biomimetic strategy for improving targeted theranostics, which has a wide range of potential biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/terapia , SARS-CoV-2/química , Biónica/métodos , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/farmacología , Medios de Contraste/química , Medios de Contraste/farmacología , Humanos , Inmunoterapia/métodos , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Neoplasias/inmunología , Óxidos/química , Óxidos/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Poliaminas/química , Poliaminas/farmacología
6.
ACS Appl Mater Interfaces ; 14(5): 6404-6416, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35077153

RESUMEN

In situ oxygen generation is the most common strategy to boost reactive oxygen species (ROS) for enhancing the efficacy of phototherapy in cancer, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, hyperoxidation or hyperthermia often triggers stress-defense pathways and promotes tumor cell survival, thus severely limiting the therapeutic efficacy. To overcome the tumor hypoxia and thermal resistance existing in phototherapy, we constructed a self-synergistic nanoplatform for tumors by incorporating brusatol, a nuclear factor erythroid 2-related factor (Nrf2) inhibitor, into the silica nanonetwork. It was then sequentially decorated with MnO2 and the photosensitizer chlorin e6 (Ce6) and then coated with poly(ethylene glycol)-folate (PEG-FA)-functionalized polydopamine (PDA) (designated as brusatol/silica@MnO2/Ce6@PDA-PEG-FA). As an oxygen generator, MnO2 can promote ROS production, which not only directly enhances Ce6-mediated PDT but also strengthens PDA-mediated PTT by attacking heat shock proteins (HSPs). Particularly, brusatol could efficiently inhibit the activation of Nrf2 defense pathway under hyperoxidation and hyperthermia and cause glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH) inactivation, thereby inducing ferroptosis and ultimately enhancing the phototherapeutic effects. By exploiting these features, brusatol/silica@MnO2/Ce6@PDA-PEG-FA exhibited excellent antitumor efficacy with enhanced PDT and PTT both in in vitro and in vivo studies. Overall, our work highlights a promising strategy against hypoxia- and hyperthermia-associated resistance in phototherapy via suppressing stress-defense system and inducing ferroptosis.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2/metabolismo , Nanoestructuras/química , Fototerapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/farmacología , Clorofilidas/uso terapéutico , Ferroptosis/efectos de los fármacos , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Humanos , Hipertermia Inducida , Indoles/química , Rayos Infrarrojos , Compuestos de Manganeso/química , Ratones , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Nanoestructuras/uso terapéutico , Nanoestructuras/toxicidad , Óxidos/química , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Polietilenglicoles/química , Polímeros/química , Cuassinas/química , Dióxido de Silicio/química
7.
ACS Appl Mater Interfaces ; 13(50): 59787-59802, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34894664

RESUMEN

Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn2+-chelating probe (Ce6-Leu@Mn2+) was demonstrated to have the capability to catalyze endogenous H2O2 to persistently release O2 at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Glutatión/metabolismo , Leucil Aminopeptidasa/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Nanomedicina Teranóstica , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clorofilidas/química , Clorofilidas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ensayo de Materiales , Estructura Molecular , Imagen Óptica , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química
8.
Molecules ; 26(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34885922

RESUMEN

To improve the tumor-targeting efficacy of photodynamic therapy, biotin was conjugated with chlorin e6 to develop a new tumor-targeting photosensitizer, Ce6-biotin. The Ce6-biotin had good water solubility and low aggregation. The singlet-oxygen generation rate of Ce6-biotin was slightly increased compared to Ce6. Flow cytometry and confocal laser scanning microscopy results confirmed Ce6-biotin had higher binding affinity toward biotin-receptor-positive HeLa human cervical carcinoma cells than its precursor, Ce6. Due to the BR-targeting ability of Ce6-biotin, it exhibited stronger cytotoxicity to HeLa cells upon laser irradiation. The IC50 against HeLa cells of Ce6-biotin and Ce6 were 1.28 µM and 2.31 µM, respectively. Furthermore, both Ce6-biotin and Ce6 showed minimal dark toxicity. The selectively enhanced therapeutic efficacy and low dark toxicity suggest that Ce6-biotin is a promising PS for BR-positive-tumor-targeting photodynamic therapy.


Asunto(s)
Antineoplásicos/farmacología , Biotina/farmacología , Clorofilidas/farmacología , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/química , Biotina/análogos & derivados , Supervivencia Celular/efectos de los fármacos , Clorofilidas/química , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/química
9.
ACS Appl Mater Interfaces ; 13(42): 49671-49681, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34652897

RESUMEN

As a kind of high linear energy transfer (LET) radiation, internal conversion electrons are emitted from some radionuclides, such as 125I, triggering severe DNA damage to tumor cells when transported into the nucleus. Herein, we develop a curcumin-loaded nanomicelle composed of a photosensitizer chlorin e6 (Ce6) and amphiphilic poly(ethylene glycol) (poly(maleic anhydride-alt-1-octadecene)-poly(ethylene glycol) (C18-PMH-PEG)) to deliver 125I into the nucleus under 660 nm laser irradiation, leading to the optimized imaging-guided internal conversion electron therapy of cancer. Ce6-containing nanomicelles (Ce6-C18-PEG) self-assemble with nucleus-targeted curcumin (Cur), obtaining Ce6-C18-PEG/Cur nanoparticles. After labeling Cur with 125I, Ce6-C18-PEG/Cur enables single-photon emission computed tomography and fluorescence imaging of the tumor, serving as a guide for follow-up laser irradiation. Notably, the 660 nm laser-triggered photodynamic reaction of Ce6 optimizes the delivery of Ce6-C18-PEG/125I-Cur at various stages, including tumor accumulation, cellular uptake, and lysosome escape, causing plenty of 125I-Cur to enter the nucleus. By this strategy, Ce6-C18-PEG/125I-Cur showed optimal antitumor efficacy and high biosafety in mice treated with local 660 nm laser irradiation using efficient energy deposition of internally converted electrons over short distances. Therefore, our work provides a novel strategy to optimize 125I delivery for tumor treatment.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/efectos de los fármacos , Clorofilidas/farmacología , Curcumina/química , Electrones , Nanopartículas/química , Fármacos Fotosensibilizantes/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorofilidas/química , Femenino , Radioisótopos de Yodo , Rayos Láser , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Micelas , Imagen Óptica , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química
10.
Int Immunopharmacol ; 100: 108164, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34562845

RESUMEN

Photodynamic therapy (PDT) is an emerging anti-tumor strategy.Photosensitizer chlorin e6 (Ce6) can induce photodynamic effect to selectively damage lung cancer cells.In order to further improve its tumor targeting ability, macrophages can be applied as carrier to deliver Ce6 to lung cancer.Tumor associated macrophages (TAM) are important immunocytes in lung cancer immune microenvironment. TAM play crucial role in tumor promotion due to the Immunosuppressive property, reprogramming phenotype of TAM therefore has become a promising strategy.Based on this, in the present study, we suppose that TAM can be used as carrier to deliver Ce6 to lung cancer and be reprogrammed to M1 phenotype by photodynamic action to mediate anti-lung cancer efficacy.The results showed TAM could load with Ce6 and keep viability in the absence of near infrared irradiation (NIR).Moreover, Its viability decreased little within 10 h after NIR.Ce6-loaded TAM could deliver Ce6 to lung cancer cells and retain some drugs in TAM per se.After NIR, phagocytosis of macrophages was enhanced. The expressions of GBP5, iNOS and MHC-II was up-regulated, which indicated TAM were polarized to M1 phenotype.Finally, the study also found the reprogrammed macrophages could inhibit the proliferation and promote the apoptosis of lung cancer cells.These results suggested that macrophages could deliver Ce6 to lung cancer and exhibit anti-lung cancer effect through photodynamic reprogramming.This study provides a novel approach for combining photodynamic action with anti-tumor immunotherapy.


Asunto(s)
Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Clorofilidas/farmacología , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Fotoquimioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Macrófagos Asociados a Tumores/metabolismo , Animales , Apoptosis , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Proliferación Celular , Clorofilidas/metabolismo , Técnicas de Cocultivo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Fagocitosis , Fenotipo , Células RAW 264.7 , Fármacos Sensibilizantes a Radiaciones/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología
11.
Nanotechnology ; 32(45)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34352746

RESUMEN

Purpose. To overcome the insufficiency of conventional photodynamic therapy (PDT) for treating metastatic melanoma, the combination of smart nanoparticles and PDT with immunotherapy was used to achieve a higher efficiency by accumulating more photosensitizers in tumor areas and triggering stronger immune responses against tumors after PDT.Methods. In this study, we designed a nanoliposome co-encapsulation of chlorin E6 (Ce6) and SB-3CT to realize significant antitumoral proliferation and metastasis efficacy after laser irradiation in A375 cells. The morphology, size distribution, and loading efficiency of Ce6-SB3CT@Liposome (Lip-SC) were characterized. The reactive oxygen species (ROS) generation and cytotoxicity were evaluated in A375 cells, and the mechanisms of natural killer (NK) cell-mediated killing were assessed.Results. Lip-SC showed good stability and was well-dispersed with a diameter of approximately 140 nm in phosphate-buffered saline. The nanoliposomes could accumulate in tumor areas and induce apoptosis in cancer cells upon 660 nm light irradiation, which could trigger an immune response and induce the expression of NK group 2 member D (NKG2D) ligands. The subsequently released SB-3CT could further activate NK cells effectively and strengthen the immune system by inhibiting the shedding of soluble NKG2D ligands.Discussion. Taken together, the synergistic effects of SB-3CT on nanoliposomes for Ce6-mediated PDT were analyzed in detail to provide a new platform for future anti-melanoma treatment.


Asunto(s)
Clorofilidas/administración & dosificación , Inhibidores de la Metaloproteinasa de la Matriz/administración & dosificación , Melanoma/terapia , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Fotoquimioterapia/métodos , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Clorofilidas/química , Clorofilidas/farmacología , Femenino , Humanos , Inmunoterapia , Células Asesinas Naturales/metabolismo , Liposomas , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Melanoma/metabolismo , Ratones , Nanopartículas , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Biomolecules ; 11(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439782

RESUMEN

Chlorophyllides can be found in photosynthetic organisms. Generally, chlorophyllides have a-, b-, c-, d-, and f-type derivatives, and all chlorophyllides have a tetrapyrrole structure with a Mg ion at the center and a fifth isocyclic pentanone. Chlorophyllide a can be synthesized from protochlorophyllide a, divinyl chlorophyllide a, or chlorophyll. In addition, chlorophyllide a can be transformed into chlorophyllide b, chlorophyllide d, or chlorophyllide f. Chlorophyllide c can be synthesized from protochlorophyllide a or divinyl protochlorophyllide a. Chlorophyllides have been extensively used in food, medicine, and pharmaceutical applications. Furthermore, chlorophyllides exhibit many biological activities, such as anti-growth, antimicrobial, antiviral, antipathogenic, and antiproliferative activity. The photosensitivity of chlorophyllides that is applied in mercury electrodes and sensors were discussed. This article is the first detailed review dedicated specifically to chlorophyllides. Thus, this review aims to describe the definition of chlorophyllides, biosynthetic routes of chlorophyllides, purification of chlorophyllides, and applications of chlorophyllides.


Asunto(s)
Técnicas Biosensibles/métodos , Química Farmacéutica/métodos , Clorofila/análogos & derivados , Clorofilidas/síntesis química , Aditivos Alimentarios/química , Protoclorofilida/metabolismo , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/biosíntesis , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Técnicas Biosensibles/instrumentación , Clorofila/biosíntesis , Clorofila/farmacología , Clorofilidas/biosíntesis , Clorofilidas/farmacología , Técnicas Electroquímicas , Aditivos Alimentarios/metabolismo , Humanos , Luz , Estructura Molecular , Fotosíntesis/fisiología , Plantas/química , Plantas/metabolismo
13.
J Mater Chem B ; 9(32): 6357-6363, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34286817

RESUMEN

With minimal invasiveness and spatiotemporal therapeutic effects, photodynamic therapy is one of the most promising candidates for cancer treatment. Here, we developed a facile self-assembled nanogel using photosensitizer-grafted polysaccharides called chlorin e6-bearing pullulan. Chlorin e6 is used as a photosensitizer in cancer therapy. The anti-cancer effect of photodynamic therapy with our nanogel system was 780 times higher than that of the commercially available photosensitizer Photofrin. Finally, we demonstrated that actively growing cancer cell spheroids can be completely suppressed after treatment. Our system could efficiently induce tumor regression in tumor xenograft mice.


Asunto(s)
Clorofilidas/química , Clorofilidas/farmacología , Glucanos/química , Nanogeles , Fotoquimioterapia , Animales , Transporte Biológico , Línea Celular Tumoral , Humanos , Ratones , Neoplasias Experimentales , Esferoides Celulares , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nanotechnology ; 32(36)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34137736

RESUMEN

Photodynamic therapy (PDT) has been emerged as an alternative therapeutic modality in treatment of several malignant tumors. However, the therapeutic efficacy of PDT is often limited by the solubility of photosensitizers, tumor hypoxia and lack of target specificity to cancer cells. In this study, we developed a folate-conjugated fluorinated polymeric micelle (PFFA) to deliver the hydrophobic photosensitizer (chlorin e6, Ce6) to overcome these limitations. The fluorinated micelles exhibit the low critical micelle concentration, good long-term stability, higher oxygen-carrying capacity and better singlet oxygen generation efficiency compared to non-fluorinated micelles, indicating the potential to improve the PDT efficacy in hypoxic conditions. Cytotoxicity of PDT effect and cellular uptake demonstrate the higher cell growth inhibition to HeLa cells upon irradiation attributed to the selective internalization of Ce6-loaded PFFA micelles (PFFA-Ce6). All results demonstrate the PFFA-Ce6 micelles with targeting function and oxygen-carrying capacity can serve as a promising drug delivery system for hydrophobic photosensitizers and improvement on PDT efficacy.


Asunto(s)
Clorofilidas/farmacología , Ácido Fólico/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Flúor/química , Ácido Fólico/química , Células HeLa , Humanos , Micelas , Oxígeno/metabolismo
15.
PLoS One ; 16(4): e0250565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930043

RESUMEN

The purity of chlorophylls plays one of the key role for the production of chlorophyllides. We have designed a facile method for chlorophyll purification by twice solvent extraction. Twice extraction causes the loss of chlorophylls, but the purity of total chlorophylls can be enhanced 182%. Then, the purified chlorophylls can be converted to relatively pure chlorophyllides facilely. The results show that higher purity of chlorophyllides could be obtained when purified chlorophylls (ethanol-hexane extract) was used as starting materials than that of crude chlorophylls (ethanol-only extract). In biocompatibility test, the results showed that the prepared chlorophyllides can be applied as biomaterials. When the prepared chlorophyllides were applied to anticancer tests, they were active both in MCF7 and MDA-MB-231 (multidrug resistant breast cancer cells) cell lines. In addition, the results suggested that the prepared chlorophyllides could be a potential candidate of combination therapy with doxorubicin to breast cancers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Clorofila/aislamiento & purificación , Clorofilidas/farmacología , Resistencia a Múltiples Medicamentos/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Clorofila/química , Clorofila/farmacología , Clorofilidas/biosíntesis , Clorofilidas/química , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Células MCF-7 , Linfocitos T Citotóxicos/efectos de los fármacos
16.
Biol Trace Elem Res ; 199(12): 4475-4488, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33624221

RESUMEN

Glutathione-related enzymes belong to the protection mechanism of the cells against harmful oxidative damage and chemicals. Glutathione S-transferase (GST) is frequently over-expressed in various cancer cells and is involved in drug resistance. Chlorophyllin is an antioxidant molecule interfering with the GST P1-1 activity. The purpose of this study is to evaluate the short- and long-term protective effects of chlorophyllin as an antioxidant molecule on DNA damage, antioxidant enzyme activities, trace elements, and minerals in chemically induced breast cancer model in vivo. In our study, N-methyl-N-nitrosourea (MNU) was used for inducing breast carcinogenesis in female Sprague-Dawley rats. A total of 36 rats were divided into groups as short term and long term. Each group was divided into four sub-groups as control group received physiological saline solution (n = 3), Chl group (n = 5) received chlorophyllin, MNU group (n = 5) was administered MNU, and Chl + MNU group (n = 5) was treated with both chlorophyllin and MNU. Results illustrated that chlorophyllin had a significant anti-genotoxic effect in the short term, and glutathione-related enzyme activities were protected by chlorophyllin treatment in MNU-induced breast cancer model. Additionally, MNU administration impaired mineral and trace element levels including Na, Mg, K, Fe, Zn, and Co in the liver, kidney, spleen, heart, and tumor tissues; however, adverse effects of MNU were recovered upon chlorophyllin treatment in the indicated tissues of the rats. In conclusion, chlorophyllin can be used as an antioxidant molecule to ameliorate adverse effects of MNU by enhancing antioxidant enzyme activities and regulating trace element and mineral balance in several organs and tumor tissue in the breast cancer model.


Asunto(s)
Clorofilidas , Neoplasias , Animales , Antioxidantes , Clorofilidas/farmacología , Femenino , Metilnitrosourea/toxicidad , Ratas , Ratas Sprague-Dawley
17.
Comb Chem High Throughput Screen ; 24(10): 1618-1627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33380297

RESUMEN

OBJECTIVES: The issue of food-additive-toxicity causing several health hazards needs to be therapeutically managed with an immediate effect. Alloxan, a food additive, is used for whitening and shining flour. It is capable of inducing genotoxicity, diabetes, and associated mitochondrial dysfunction. Therefore, to explore a non-toxic, phyto-based compound that can delay the onset of diabetes and prevent the multitude of damage associated, Chlorophyllin (CHL) was selected for our study, having been reported to exhibit anti-cancer, anti-diabetes, and antiinflammatory responses. Therefore, the objective of the present study is to evaluate the protective role of CHL in controlling genotoxicity, glucose imbalance, and associated cytochrome c mediated mitochondrial signaling dysfunction against food-additive-induced genotoxicity, diabetic state, and its complexities in mice model in vivo. METHODS: Mice were pre-treated with CHL through oral gavage before they were exposed to alloxan. Diabetic markers, anti-oxidant enzyme profile, chromosomal study, mitochondrial functioning factors, and expression of proteins were checked against food-additive injected mice. RESULTS: The results revealed that CHL pre-treatment could delay the onset of diabetes, restrict alloxan-induced elevation of blood glucose, reduce DNA-damage and chromosomal aberration, optimize enzymatic profile (glucokinase, pyruvate, insulin), and modulates protein expression (insulin, IRS1, IRS2, GLUT2). Further, CHL-pre-treatment could stabilize mitochondrial-membrane-potential, intracellular calcium ion, ATP/ADP ratio, ATPase activity, thereby maintaining optimum functioning of cytochrome-c, bcl2, and caspase3 mitochondrial protein. CONCLUSION: Therefore, the present study reports, for the first time, the screening of phytobased bioactive CHL for preventing/limiting the extent of food-additive-induced genotoxicity and mitochondrial dysfunction and serves as an advanced therapeutic tool in the management of diabetes.


Asunto(s)
Clorofilidas/farmacología , Citocromos c/antagonistas & inhibidores , Modelos Animales de Enfermedad , Mitocondrias/efectos de los fármacos , Fitoquímicos/farmacología , Administración Oral , Aloxano , Animales , Clorofilidas/administración & dosificación , Clorofilidas/química , Citocromos c/metabolismo , Análisis Citogenético , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/tratamiento farmacológico , Aditivos Alimentarios/efectos adversos , Ratones , Mitocondrias/metabolismo , Estructura Molecular , Fitoquímicos/administración & dosificación , Fitoquímicos/química
18.
Tissue Cell ; 67: 101406, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32835939

RESUMEN

BACKGROUND: The osteoblast differentiation of bone marrow-derived stem cells (BMSCs) is impaired in multiple myeloma (MM). We investigated the effects of sodium copper chlorophyllin (SCC) on osteoblast differentiation ability of BMSCs from MM. METHODS: Clinical bone marrow samples were collected. Fluorescence Activated Cell Sorter (FACS) was used to identify surface markers of BMSCs. BMSCs were treated with different concentrations of SCC and cell viability was detected by MTT assay. Relative mRNA and protein expressions of transforming growth factor-ß1 (TGF-ß1), SMAD2/3, osteogenic differentiation indicators (RUNX2 and OCN) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Alkaline phosphatase (ALP) was stained for activity detection. Formation of calcium nodus of BMSCs was examined by Alizarin Red S staining. RESULTS: CD90 and CD105 were high-expressed, but CD34 and CD45 were not expressed in BMSCs. BMSCs in MM group showed a lower expression of TGF-ß1 and a lower degree of osteogenic differentiation. SCC enhanced activities of BMSCs, ALP activity, and formation of calcium nodus, activated TGF-ß1, SMAD2/3 pathway and increased RUNX2 and OCN expressions in BMSCs. Silencing TGF-ß1 reversed the effects of SCC on BMSCs in MM. CONCLUSION: SCC could effectively improve the proliferation and osteogenic differentiation of BMSCs in MM through regulating TGF-ß1.


Asunto(s)
Células de la Médula Ósea/metabolismo , Clorofilidas/farmacología , Células Madre Mesenquimatosas/metabolismo , Mieloma Múltiple/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fosfatasa Alcalina/metabolismo , Biomarcadores/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Silenciador del Gen/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Mieloma Múltiple/patología , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
19.
ACS Infect Dis ; 6(5): 882-890, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32233455

RESUMEN

Human enteroviruses (HEVs) pose an ongoing threat to global public health. Particularly, enterovirus-A71 (EV-A71), the main pathogen causing hand-foot-and-mouth disease (HFMD), has caused ongoing outbreaks globally in recent years associated with severe neurological manifestations and several deaths. Currently, no effective antivirals are available for the prevention or treatment of EV-A71 infection. In this study, we found that sodium copper chlorophyllin (CHL), a health food additive and an over-the-counter anticancer medicine or treatment to reduce the odor of urine or feces, exhibited potent inhibitory activity against infection by divergent EV-A71 and coxsackievirus-A16 (CV-A16) isolates at a low micromolar concentration with excellent safety. The antiviral activity of each was confirmed by colorimetric viral infection and qRT-PCR assays. A series of mechanistic studies showed that CHL did not target the host cell but blocked the entry of EV-A71 and CV-A16 into the host cell at the postattachment stage. In the mouse model, CHL could significantly reduce the viral titer in the lungs and muscles. Since CHL has been used in clinics for many years with excellent safety, it has the potential to be further developed into a prophylactic or therapeutic to prevent or treat HFMD caused by EV-A71 or CV-A16 infection.


Asunto(s)
Antivirales/farmacología , Clorofilidas/farmacología , Enterovirus Humano A/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Infecciones por Enterovirus/tratamiento farmacológico , Enfermedad de Boca, Mano y Pie
20.
Artículo en Inglés | MEDLINE | ID: mdl-31561900

RESUMEN

Sodium copper chlorophyllin (CHL) is a food colorant that exhibits many beneficial properties, including potential for use in radiotherapy. Nevertheless, genotoxicity studies investigating radioprotective properties against γ-radiation on human cells are rather scarce. The aim of this study was to assess the cytotoxicity, genotoxicity and induction of malondialdehyde formation on CHL pre-treated whole blood cells after an absorbed dose of 5 Gy γ-radiation. Irradiated whole blood cells pre-treated with 100, 500, and 1000 µg/mL CHL showed less DNA-strand breaks (10.92 ± 0.74%, 10.69 ± 0.68%, and 8.81 ± 0.69%, respectively) than untreated irradiated cells (12.58 ± 0.88%). At the same time, the level of malondialdehyde was lower in CHL pre-treated samples with 100, 500, and 1000 µg/mL CHL (14.11 ± 0.43, 16.35 ± 2.82, and 13.08 ± 1.03 µmol/L, respectively) compared to untreated irradiated samples (24.11 ± 0.25 µmol/L). Regarding cytotoxicity, no changes were observed in the samples tested. Another important finding is that CHL had no cyto/genotoxic properties toward human blood cells. Taken together, since CHL had no cyto/genotoxic effects and showed good radioprotective properties in human blood cells, further studies should be conducted in order to find its possible application in radiotherapy.


Asunto(s)
Clorofilidas/farmacología , Daño del ADN/efectos de los fármacos , Colorantes de Alimentos/farmacología , Linfocitos/efectos de los fármacos , Protectores contra Radiación/farmacología , Adulto , Células Cultivadas , Roturas del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Rayos gamma , Humanos , Peroxidación de Lípido/efectos de los fármacos , Linfocitos/química , Linfocitos/efectos de la radiación , Masculino , Malondialdehído/análisis , Estructura Molecular , Protección Radiológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA