Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822457

RESUMEN

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Asunto(s)
Adenocarcinoma del Pulmón , Ciclo del Ácido Cítrico , Recombinación Homóloga , Neoplasias Pulmonares , Femenino , Humanos , Masculino , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Reprogramación Celular/genética , Regulación Neoplásica de la Expresión Génica , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Reprogramación Metabólica , Pronóstico , Microambiente Tumoral , Persona de Mediana Edad , Anciano
2.
JCI Insight ; 9(8)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483541

RESUMEN

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Asunto(s)
Compuestos de Anilina , Caprilatos , Glioblastoma , Complejo Cetoglutarato Deshidrogenasa , Sulfuros , Sulfonamidas , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Compuestos de Anilina/farmacología , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas/farmacología
3.
Redox Biol ; 67: 102932, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37883842

RESUMEN

The NDUFS4 knockout (KO) mouse phenotype resembles the human Complex I deficiency Leigh Syndrome. The irreversible succination of protein thiols by fumarate is increased in select regions of the NDUFS4 KO brain affected by neurodegeneration. We report that dihydrolipoyllysine-residue succinyltransferase (DLST), a component of the α-ketoglutarate dehydrogenase complex (KGDHC) of the tricarboxylic acid (TCA) cycle, is succinated in the affected regions of the NDUFS4 KO brain. Succination of DLST reduced KGDHC activity in the brainstem (BS) and olfactory bulb (OB) of KO mice. The defective production of KGDHC derived succinyl-CoA resulted in decreased mitochondrial substrate level phosphorylation (SLP), further aggravating the existing oxidative phosphorylation (OXPHOS) ATP deficit. Protein succinylation, an acylation modification that requires succinyl-CoA, was reduced in the KO mice. Modeling succination of a cysteine in the spatial vicinity of the DLST active site or introduction of succinomimetic mutations recapitulates these metabolic deficits. Our data demonstrate that the biochemical deficit extends beyond impaired Complex I assembly and OXPHOS deficiency, functionally impairing select components of the TCA cycle to drive metabolic perturbations in affected neurons.


Asunto(s)
Ciclo del Ácido Cítrico , Complejo Cetoglutarato Deshidrogenasa , Ratones , Animales , Humanos , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Ratones Noqueados , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo
4.
Nat Commun ; 14(1): 4851, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563123

RESUMEN

Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.


Asunto(s)
Corynebacterium glutamicum , Complejo Cetoglutarato Deshidrogenasa , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Microscopía por Crioelectrón , Fosforilación , Corynebacterium glutamicum/metabolismo
5.
Cell Death Differ ; 30(8): 1931-1942, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37419985

RESUMEN

Oxoglutarate dehydrogenase-like (OGDHL) is considered to be the isoenzyme of oxyglutarate dehydrogenase (OGDH) in the OGDH complex, which degrades glucose and glutamate. OGDHL was reported to reprogram glutamine metabolism to suppress HCC progression in an enzyme-activity-dependent manner. However, the potential subcellular localization and non-canonical function of OGDHL is poorly understood. We investigated the expression of OGDHL and its effect on HCC progression. By employing a variety of molecular biology techniques, we revealed the underlying mechanism of OGDHL-induced DNA damage in HCC cells in vitro and in vivo. AAV loaded with OGDHL exerts therapeutic effect on mouse HCC and prolongs survival time. OGDHL induces DNA damage in HCC cells in vitro and in vivo. We also observed that OGDHL possesses nuclear localization in HCC cells and OGDHL-induced DNA damage was independent of its enzymatic activity. Mechanistically, it was demonstrated that OGDHL binds to CDK4 in the nucleus to inhibit the phosphorylation of CDK4 by CAK, which in turn attenuates E2F1 signaling. Inhibition of E2F1 signaling downregulates pyrimidine and purine synthesis, thereby inducing DNA damage through dNTP depletion. We clarified the nuclear localization of OGDHL and its non-canonical function to induce DNA damage, which demonstrated that OGDHL may serve as a select potential therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Transducción de Señal , Daño del ADN , Línea Celular Tumoral , Proliferación Celular
6.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272588

RESUMEN

Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.


Asunto(s)
Miofibrillas , Sarcómeros , Animales , Miofibrillas/metabolismo , Sarcómeros/metabolismo , Drosophila/metabolismo , Actinas/metabolismo , Miosinas/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo
7.
Microbiol Spectr ; 10(6): e0267722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445153

RESUMEN

In Corynebacterium glutamicum the protein kinase PknG phosphorylates OdhI and thereby abolishes the inhibition of 2-oxoglutarate dehydrogenase activity by unphosphorylated OdhI. Our previous studies suggested that PknG activity is controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX, because ΔglnH and ΔglnX mutants showed a growth defect on glutamine similar to that of a ΔpknG mutant. We have now confirmed the involvement of GlnH and GlnX in the control of OdhI phosphorylation by analyzing the OdhI phosphorylation status and glutamate secretion in ΔglnH and ΔglnX mutants and by characterizing ΔglnX suppressor mutants. We provide evidence for GlnH being a lipoprotein and show by isothermal titration calorimetry that it binds l-aspartate and l-glutamate with moderate to low affinity, but not l-glutamine, l-asparagine, or 2-oxoglutarate. Based on a structural comparison with GlnH of Mycobacterium tuberculosis, two residues critical for the binding affinity were identified and verified. The predicted GlnX topology with four transmembrane segments and two periplasmic domains was confirmed by PhoA and LacZ fusions. A structural model of GlnX suggested that, with the exception of a poorly ordered N-terminal region, the entire protein is composed of α-helices and small loops or linkers, and it revealed similarities to other bacterial transmembrane receptors. Our results suggest that the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade serves to adapt the flux of 2-oxoglutarate between ammonium assimilation via glutamate dehydrogenase and energy generation via the tricarboxylic acid (TCA) cycle to the availability of the amino group donors l-glutamate and l-aspartate in the environment. IMPORTANCE Actinobacteria comprise a large number of species playing important roles in biotechnology and medicine, such as Corynebacterium glutamicum, the major industrial amino acid producer, and Mycobacterium tuberculosis, the pathogen causing tuberculosis. Many actinobacteria use a signal transduction process in which the phosphorylation status of OdhI (corynebacteria) or GarA (mycobacteria) regulates the carbon flux at the 2-oxoglutarate node. Inhibition of 2-oxoglutarate dehydrogenase by unphosphorylated OdhI shifts the flux of 2-oxoglutarate from the TCA cycle toward glutamate formation and, thus, ammonium assimilation. Phosphorylation of OdhI/GarA is catalyzed by the protein kinase PknG, whose activity was proposed to be controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX. In this study, we combined genetic, biochemical, and structural modeling approaches to characterize GlnH and GlnX of C. glutamicum and confirm their roles in the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade. These findings are relevant also to other Actinobacteria employing a similar control process.


Asunto(s)
Corynebacterium glutamicum , Mycobacterium tuberculosis , Proteínas de Unión Periplasmáticas , Fosforilación , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas Quinasas/metabolismo , Mycobacterium tuberculosis/genética , Transducción de Señal , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo
8.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293260

RESUMEN

Abnormal glucose metabolism is central to neurodegeneration, and considerable evidence suggests that abnormalities in key enzymes of the tricarboxylic acid (TCA) cycle underlie the metabolic deficits. Significant recent advances in the role of metabolism in cancer provide new insight that facilitates our understanding of the role of metabolism in neurodegeneration. Research indicates that the rate-limiting step of the TCA cycle, the α-ketoglutarate dehydrogenase complex (KGDHC) and its substrate alpha ketoglutarate (KG), serve as a signaling hub that regulates multiple cellular processes: (1) is the rate-limiting step of the TCA cycle, (2) is sensitive to reactive oxygen species (ROS) and produces ROS, (3) determines whether KG is used for energy or synthesis of compounds to support growth, (4) regulates the cellular responses to hypoxia, (5) controls the post-translational modification of hundreds of cell proteins in the mitochondria, cytosol, and nucleus through succinylation, (6) controls critical aspects of transcription, (7) modulates protein signaling within cells, and (8) modulates cellular calcium. The primary focus of this review is to understand how reductions in KGDHC are translated to pathologically important changes that underlie both neurodegeneration and cancer. An understanding of each role is necessary to develop new therapeutic strategies to treat neurodegenerative disease.


Asunto(s)
Complejo Cetoglutarato Deshidrogenasa , Enfermedades Neurodegenerativas , Humanos , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Ácidos Cetoglutáricos , Glucosa , Ácidos Tricarboxílicos
9.
Int Immunopharmacol ; 112: 109190, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116152

RESUMEN

Macrophages exhibited different phenotypes in response to environmental cues. To meet the needs of rapid response to stimuli, M1-activated macrophages preferred glycolysis to oxidative phosphorylation (OXPHOS) in mitochondria to quickly produce energy and obtain ample raw materials to support cell activation at the same time. Activated macrophages produced free radicals and cytokines to eradicate pathogens but also induced oxidative damage and enhanced inflammation. Grossamide (GSE), a lignanamide from Polygonum multiflorum Thunb., exhibited notable anti-inflammatory effects. In this study, the potential of GSE on macrophage polarization was explored. GSE significantly down-regulated the levels of M1 macrophage biomarkers (Cd32a, Cd80 and Cd86) while increased the levels of M2 indicators (Cd163, Mrc1 and Socs1), showing its potential to inhibit LPS-induced M1 polarization of macrophages. This ability has close a link to its effect on metabolic reprogramming of macrophage. GSE shunted nitric oxide (NO) production from arginine by up-regulation of arginase and down-regulation of inducible nitric oxide synthase, thus attenuated the inhibition of NO on OXPHOS. LPS created three breakpoints in the tricarboxylic acid cycle (TCA) cycle of macrophage as evidenced by down-regulated isocitrate dehydrogenase, accumulation of succinate and the inhibited SDH activity, significantly decreased level of oxoglutarate dehydrogenase expression and its substrate α-ketoglutarate. Thus GSE reduced oxidative stress and amended fragmented TCA cycle. As a result, GSE maintained redox (NAD+/NADH) and energy (ATP/ADP) state, reduced extracellular acidification rate and enhanced the oxygen consumption rate. In addition, GSE decreased the release of inflammatory cytokines by inhibiting the activation of the LPS/TLR4/NF-κB pathway. These findings highlighted the central role of immunometabolism of macrophages in its functional plasticity, which invited future study of mode of action of anti-inflammatory drugs from viewpoint of metabolic reprogramming.


Asunto(s)
NAD , FN-kappa B , Ratones , Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , NAD/farmacología , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Arginasa/metabolismo , Receptor Toll-Like 4/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/farmacología , Isocitrato Deshidrogenasa/uso terapéutico , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/uso terapéutico , Activación de Macrófagos , Macrófagos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Succinatos/uso terapéutico , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/farmacología , Arginina/uso terapéutico , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Difosfato/uso terapéutico , Adenosina Trifosfato/metabolismo
10.
Biochem Biophys Res Commun ; 619: 166-172, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35803057

RESUMEN

RNA N6-methyladenosine (m6A) level is closely associated with neurodevelopment and central nervous system dysfunctions including spinal cord injury (SCI). M6A level can be dynamically regulated by m6A methyltransferases and demethylases. In this text, the roles of m6A demethylase FTO alpha-ketoglutarate dependent dioxygenase (FTO) in SCI development along with its m6A-dependent regulatory mechanisms were investigated in hypoxia-induced PC12 cell injury model. The results showed that FTO was low expressed in spinal cord tissues of rats after contusive SCI and hypoxia-treated PC12 cells. FTO knockdown alleviated hypoxia-induced PC12 cell injury. FTO loss increased GADD45B expression and m6A level in PC12 cells. GADD45B knockdown weakened the protective effects of FTO depletion on hypoxia-treated PC12 cells. FTO regulated GADD45B expression in an IGF2BP2-dependent manner. In conclusion, FTO knockdown mitigated the injury of hypoxia-induced PC12 cells by up-regulating GADD45B in an IGF2BP2-dependent manner.


Asunto(s)
Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Antígenos de Diferenciación , Hipoxia , Metiltransferasas/metabolismo , Células PC12 , Proteínas de Unión al ARN/metabolismo , Ratas
11.
Cancer Res ; 81(17): 4417-4430, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34233924

RESUMEN

High-risk neuroblastoma remains therapeutically challenging to treat, and the mechanisms promoting disease aggression are poorly understood. Here, we show that elevated expression of dihydrolipoamide S-succinyltransferase (DLST) predicts poor treatment outcome and aggressive disease in patients with neuroblastoma. DLST is an E2 component of the α-ketoglutarate (αKG) dehydrogenase complex, which governs the entry of glutamine into the tricarboxylic acid cycle (TCA) for oxidative decarboxylation. During this irreversible step, αKG is converted into succinyl-CoA, producing NADH for oxidative phosphorylation (OXPHOS). Utilizing a zebrafish model of MYCN-driven neuroblastoma, we demonstrate that even modest increases in DLST expression promote tumor aggression, while monoallelic dlst loss impedes disease initiation and progression. DLST depletion in human MYCN-amplified neuroblastoma cells minimally affected glutamine anaplerosis and did not alter TCA cycle metabolites other than αKG. However, DLST loss significantly suppressed NADH production and impaired OXPHOS, leading to growth arrest and apoptosis of neuroblastoma cells. In addition, multiple inhibitors targeting the electron transport chain, including the potent IACS-010759 that is currently in clinical testing for other cancers, efficiently reduced neuroblastoma proliferation in vitro. IACS-010759 also suppressed tumor growth in zebrafish and mouse xenograft models of high-risk neuroblastoma. Together, these results demonstrate that DLST promotes neuroblastoma aggression and unveils OXPHOS as an essential contributor to high-risk neuroblastoma. SIGNIFICANCE: These findings demonstrate a novel role for DLST in neuroblastoma aggression and identify the OXPHOS inhibitor IACS-010759 as a potential therapeutic strategy for this deadly disease.


Asunto(s)
Aciltransferasas/metabolismo , Neoplasias Encefálicas/metabolismo , Neuroblastoma/metabolismo , Fosforilación Oxidativa , Animales , Apoptosis , Línea Celular Tumoral , Colágeno/química , Modelos Animales de Enfermedad , Combinación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Concentración 50 Inhibidora , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Laminina/química , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Trasplante de Neoplasias , Oxígeno/metabolismo , Proteoglicanos/química , Interferencia de ARN , Riesgo , Smegmamorpha , Resultado del Tratamiento , Ácidos Tricarboxílicos/metabolismo , Pez Cebra
12.
Biochim Biophys Acta Gen Subj ; 1865(6): 129889, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33684457

RESUMEN

BACKGROUND: The human mitochondrial alpha-ketoglutarate dehydrogenase complex (hKGDHc) converts KG to succinyl-CoA and NADH. Malfunction of and reactive oxygen species generation by the hKGDHc as well as its E1-E2 subcomplex are implicated in neurodegenerative disorders, ischemia-reperfusion injury, E3-deficiency and cancers. METHODS: We performed cryo-EM, cross-linking mass spectrometry (CL-MS) and molecular modeling analyses to determine the structure of the E2 component of the hKGDHc (hE2k); hE2k transfers a succinyl group to CoA and forms the structural core of hKGDHc. We also assessed the overall structure of the hKGDHc by negative-stain EM and modeling. RESULTS: We report the 2.9 Šresolution cryo-EM structure of the hE2k component. The cryo-EM map comprises density for hE2k residues 151-386 - the entire (inner) core catalytic domain plus a few additional residues -, while residues 1-150 are not observed due to the inherent flexibility of the N-terminal region. The structure of the latter segment was also determined by CL-MS and homology modeling. Negative-stain EM on in vitro assembled hKGDHc and previous data were used to build a putative overall structural model of the hKGDHc. CONCLUSIONS: The E2 core of the hKGDHc is composed of 24 hE2k chains organized in octahedral (8 × 3 type) assembly. Each lipoyl domain is oriented towards the core domain of an adjacent chain in the hE2k homotrimer. hE1k and hE3 are most likely tethered at the edges and faces, respectively, of the cubic hE2k assembly. GENERAL SIGNIFICANCE: The revealed structural information will support the future pharmacologically targeting of the hKGDHc.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón/métodos , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Espectrometría de Masas/métodos , Acilcoenzima A/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , NAD/metabolismo , Conformación Proteica
13.
Nucleic Acids Res ; 49(5): 2460-2487, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33550394

RESUMEN

Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.


Asunto(s)
Empalme Alternativo , Regulación de la Temperatura Corporal/genética , Intrones , Complejo Cetoglutarato Deshidrogenasa/genética , Animales , Calcio/metabolismo , Evolución Molecular , Exones , Células HEK293 , Humanos , Secuencias Repetitivas Esparcidas , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores del ARN/química , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Factores de Empalme de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Empalmosomas/metabolismo , Vertebrados/genética
14.
Cancer Med ; 10(2): 728-736, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33405394

RESUMEN

BACKGROUND: Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. However, due to the lack of reliable prognostic biomarkers for PTC, overtreatment has been on the rise. Therefore, our research aims to identify new and promising prognostic biomarkers and provide fresh perspectives for clinical decision making. METHODS: The RNA-seq data and clinical data of PTC samples were obtained from The Cancer Genome Atlas data portal. GSE64912 and GSE83520 datasets were downloaded through the GEOquery R package. The difference in the expression of oxoglutarate dehydrogenase like (OGDHL) between PTC and normal tissues was explored by the Wilcoxon test. Kaplan-Meier (KM) and Cox regression analyses were used to further explore the prognostic value of OGDHL. The tumor microenvironments of PTC patients were explored based on ssGSEA and Tumor Immune Estimation Resource online database. Gene Set Enrichment Analysis (GSEA) was performed to explore the biological processes associated with OGDHL. RESULTS: The expression level of OGDHL in PTC was significantly altered compared to that in normal tissues (p < 0.05). Various biological processes associated with OGDHL were also explored through GSEA. KM analysis suggested that the low-OGDHL group had a better overall survival [OS, p = 3.49e-03, hazard ratio (HR) = 4.567]. The receiver operating characteristic curve also indicated the favorable prognostic potential of OGDHL. Moreover, OGDHL was proved to be an independent prognostic indicator in Cox analysis (p = 1.33e-02, HR = 0.152). In the analysis of the tumor microenvironment, the low-OGDHL group showed a lower immune score and stromal score, while tumor purity was higher. The expression of OGDHL was also closely correlated with the infiltration of immune cells. CONCLUSION: Our study elucidated the influence of OGDHL on the prognosis of PTC and demonstrated its potential as a novel biomarker, which would provide new insights into the prognosis monitoring and clinical decision making in PTC patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Microambiente Tumoral/inmunología , Estudios de Casos y Controles , Biología Computacional , Estudios de Seguimiento , Humanos , Pronóstico , Curva ROC , Tasa de Supervivencia , Cáncer Papilar Tiroideo/inmunología , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/metabolismo
15.
Biochemistry (Mosc) ; 85(7): 801-807, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33040724

RESUMEN

Transcriptional factor p53 is a master regulator of energy metabolism. Energy metabolism strongly depends on thiamine (vitamin B1) and/or its natural derivatives. Thiamine diphosphate (ThDP), which is a major thiamine derivative, affects p53 binding to DNA. In order to elucidate the mechanism of regulation of thiamine-dependent metabolism by p53, we assessed putative p53-binding sites near transcription starting points in genes coding for transporters and enzymes, whose function is associated with thiamine and/or its derivatives. The predictions were validated by studying cell metabolic response to the p53 inducer cisplatin. Expression of p53 and its known target, p21, has been evaluated in cisplatin-treated and control human lung adenocarcinoma A549 cells that possess functional p53 pathway. We also investigated the activity of enzymes involved in the thiamine-dependent energy metabolism. Along with upregulating the expression of p53 and p21, cisplatin affected the activities of metabolic enzymes, whose genes were predicted as carrying the p53-binding sites. The activity of glutamate dehydrogenase GDH2 isoenzyme strongly decreased, while the activities of NADP+-dependent isocitrate dehydrogenase (IDH) and malic enzymes, as well as the activity of 2-oxoglutarate dehydrogenase complex at its endogenous ThDP level, were elevated. Simultaneously, the activities of NAD+-dependent IDH, mitochondrial aspartate aminotransferase, and two malate dehydrogenase isoenzymes, whose genes were not predicted to have the p53-binding sequences near the transcription starting points, were upregulated by cisplatin. The p53-dependent regulation of the assayed metabolic enzymes correlated with induction of p21 by p53 rather than induction of p53 itself.


Asunto(s)
Tiamina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Cisplatino/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Metabolismo Energético , Glutamato Deshidrogenasa/metabolismo , Humanos , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Oxidación-Reducción , Tiamina Pirofosfato/metabolismo
16.
Cell Commun Signal ; 18(1): 136, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32843078

RESUMEN

Metabolites produced via traditional biochemical processes affect intracellular communication, inflammation, and malignancy. Unexpectedly, acetyl-CoA, α-ketoglutarate and palmitic acid, which are chemical species of reactions catalyzed by highly abundant, gigantic enzymatic complexes, dubbed as "metabolons", have broad "nonmetabolic" signaling functions. Conserved unstructured regions within metabolons determine the yield of these metabolites. Unstructured regions tether functional protein domains, act as spatial constraints to confine constituent enzyme communication, and, in the case of acetyl-CoA production, tend to be regulated by intricate phosphorylation patterns. This review presents the multifaceted roles of these three significant metabolites and describes how their perturbation leads to altered or transformed cellular function. Their dedicated enzymatic systems are then introduced, namely, the pyruvate dehydrogenase (PDH) and oxoglutarate dehydrogenase (OGDH) complexes, and the fatty acid synthase (FAS), with a particular focus on their structural characterization and the localization of unstructured regions. Finally, upstream metabolite regulation, in which spatial occupancy of unstructured regions within dedicated metabolons may affect metabolite availability and subsequently alter cell functions, is discussed. Video abstract.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Transducción de Señal , Acetilcoenzima A/metabolismo , Animales , Ácido Graso Sintasas/química , Humanos , Proteínas Intrínsecamente Desordenadas/química , Complejo Cetoglutarato Deshidrogenasa/química , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Ácido Palmítico/metabolismo , Complejo Piruvato Deshidrogenasa/química
17.
Int J Mol Sci ; 21(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466567

RESUMEN

Genetic up-regulation of mitochondrial 2-oxoglutarate dehydrogenase is known to increase reactive oxygen species, being detrimental for cancer cells. Thiamine diphosphate (ThDP, cocarboxylase) is an essential activator of the enzyme and inhibits p53-DNA binding in cancer cells. We hypothesize that the pleiotropic regulator ThDP may be of importance for anticancer therapies. The hypothesis is tested in the present work on lung adenocarcinoma cells A549 possessing the p53-p21 pathway as fully functional or perturbed by p21 knockdown. Molecular mechanisms of ThDP action on cellular viability and their interplay with the cisplatin and p53-p21 pathways are characterized. Despite the well-known antioxidant properties of thiamine, A549 cells exhibit decreases in their reducing power and glutathione level after incubation with 5 mM ThDP, not observed in non-cancer epithelial cells Vero. Moreover, thiamine deficiency elevates glutathione in A549 cells. Viability of the thiamine deficient A549 cells is increased at a low (0.05 mM) ThDP. However, the increase is attenuated by 5 mM ThDP, p21 knockdown, specific inhibitor of the 2-oxoglutarate dehydrogenase complex (OGDHC), or cisplatin. Cellular levels of the catalytically competent ThDP·OGDHC holoenzyme are dysregulated by p21 knockdown and correlate negatively with the A549 viability. The inverse relationship between cellular glutathione and holo-OGDHC is corroborated by their comparison in the A549 and Vero cells. The similarity, non-additivity, and p21 dependence of the dual actions of ThDP and cisplatin on A549 cells manifest a common OGDHC-mediated mechanism of the viability decrease. High ThDP saturation of OGDHC compromises the redox state of A549 cells under the control of p53-p21 axes.


Asunto(s)
Adenocarcinoma/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Neoplasias Pulmonares/metabolismo , Tiamina Pirofosfato/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cisplatino/farmacología , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Tiamina/metabolismo , Células Vero
18.
Sci Rep ; 10(1): 1886, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024885

RESUMEN

The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid ß-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of ß-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.


Asunto(s)
Complejo Cetoglutarato Deshidrogenasa/metabolismo , Cetona Oxidorreductasas/metabolismo , Lisina/análogos & derivados , Niacina/metabolismo , Adipatos/química , Adipatos/metabolismo , Animales , Pruebas de Enzimas , Humanos , Lisina/química , Lisina/metabolismo , Células MCF-7 , Masculino , Niacina/química , Oxidación-Reducción , Fosforilación , RNA-Seq , Ratas
19.
Dis Markers ; 2019: 9037131, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781311

RESUMEN

BACKGROUND AND OBJECTIVE: Liver cancer is a highly malignant tumor, and patients typically have poor prognoses. Metabolic reprogramming is a hallmark of cancer, and downregulation of oxoglutarate dehydrogenase-like (OGDHL) contributes to the onset and progression of several cancers. We examined the role of altered OGDHL expression in liver cancer and determined its value as a diagnostic and prognostic indicator for patients. MATERIAL AND METHODS: R (version 3.5.1) and several R extensions were used for data mining of The Cancer Genome Atlas (TCGA) dataset (including RNAseq and clinical information) and statistical analysis. Receiver operating characteristic analysis was used to determine the diagnostic value of OGDHL. The chi-squared test was used to identify the clinical correlates of OGDHL downregulation. Survival analysis (with the log-rank test) and univariate and multivariate Cox analysis were used to evaluate the effect of OGDHL expression on overall survival (OS) and relapse-free survival. TCGA was used for analysis of gene set enrichment. RESULTS: OGDHL had lower expression in cancerous liver tissues than noncancerous adjacent tissues, and low expression correlated with more advanced patient age, histologic grade, stage, T classification, and poor survival. Patients with lower OGDHL expression had shorter OS and relapse-free survival. Multivariate Cox regression indicated that low OGDHL expression was an independent risk factor for poor prognosis. Gene set enrichment analysis indicated enrichment of the mitotic spindle, G2M checkpoint, and E2F targets in the OGDHL low expression phenotype. CONCLUSION: OGDHL has potential as a diagnostic and prognostic biomarker for liver cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Complejo Cetoglutarato Deshidrogenasa/genética , Neoplasias Hepáticas/patología , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Subunidades de Proteína , Curva ROC , Tasa de Supervivencia
20.
Nat Commun ; 10(1): 4108, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511525

RESUMEN

Recent advance in cancer research sheds light on the contribution of mitochondrial respiration in tumorigenesis, as they efficiently produce ATP and oncogenic metabolites that will facilitate cancer cell growth. Here we show that a stabilizing factor for mitochondrial supercomplex assembly, COX7RP/COX7A2L/SCAF1, is abundantly expressed in clinical breast and endometrial cancers. Moreover, COX7RP overexpression associates with prognosis of breast cancer patients. We demonstrate that COX7RP overexpression in breast and endometrial cancer cells promotes in vitro and in vivo growth, stabilizes mitochondrial supercomplex assembly even in hypoxic states, and increases hypoxia tolerance. Metabolomic analyses reveal that COX7RP overexpression modulates the metabolic profile of cancer cells, particularly the steady-state levels of tricarboxylic acid cycle intermediates. Notably, silencing of each subunit of the 2-oxoglutarate dehydrogenase complex decreases the COX7RP-stimulated cancer cell growth. Our results indicate that COX7RP is a growth-regulatory factor for breast and endometrial cancer cells by regulating metabolic pathways and energy production.


Asunto(s)
Neoplasias de la Mama/patología , Carcinogénesis/patología , Neoplasias Endometriales/metabolismo , Hipoxia/patología , Mitocondrias/metabolismo , Neoplasias de la Mama/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Complejo IV de Transporte de Electrones/metabolismo , Neoplasias Endometriales/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA