Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Dev Cell ; 57(2): 260-276.e9, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35077680

RESUMEN

Metabolic flexibility is a hallmark of many cancers where mitochondrial respiration is critically involved, but the molecular underpinning of mitochondrial control of cancer metabolic reprogramming is poorly understood. Here, we show that reverse electron transfer (RET) through respiratory chain complex I (RC-I) is particularly active in brain cancer stem cells (CSCs). Although RET generates ROS, NAD+/NADH ratio turns out to be key in mediating RET effect on CSC proliferation, in part through the NAD+-dependent Sirtuin. Mechanistically, Notch acts in an unconventional manner to regulate RET by interacting with specific RC-I proteins containing electron-transporting Fe-S clusters and NAD(H)-binding sites. Genetic and pharmacological interference of Notch-mediated RET inhibited CSC growth in Drosophila brain tumor and mouse glioblastoma multiforme (GBM) models. Our results identify Notch as a regulator of RET and RET-induced NAD+/NADH balance, a critical mechanism of metabolic reprogramming and a metabolic vulnerability of cancer that may be exploited for therapeutic purposes.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Notch/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Respiración de la Célula/fisiología , Modelos Animales de Enfermedad , Drosophila , Transporte de Electrón/fisiología , Complejo I de Transporte de Electrón/fisiología , Electrones , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Mitocondrias/metabolismo , NAD/metabolismo , Células Madre Neoplásicas/fisiología , Especies Reactivas de Oxígeno/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768769

RESUMEN

Human amylin or islet amyloid polypeptide (hIAPP) is synthesized in the pancreatic ß-cells and has been shown to contribute to the pathogenesis of type 2 diabetes (T2D) in vitro and in vivo. This study compared amylin oligomerization/expression and signal transduction under endoplasmic reticulum (ER) stress and oxidative stress. pCMV-hIAPP-overexpressing INS-1E cells presented different patterns of amylin oligomerization/expression under ER stress and oxidative stress. Amylin oligomerization/expression under ER stress showed three amylin oligomers of less than 15 kDa size in pCMV-hIAPP-overexpressing cells, while one band was detected under oxidative stress. Under ER stress conditions, HIF1α, p-ERK, CHOP, Cu/Zn-SOD, and Bax were significantly increased in pCMV-hIAPP-overexpressing cells compared to the pCMV-Entry-expressing cells (control), whereas p-Akt, p-mTOR, Mn-SOD, catalase, and Bcl-2 were significantly decreased. Under oxidative stress conditions, HIF1α, p-ERK, CHOP, Mn-SOD, catalase, and Bcl-2 were significantly reduced in pCMV-hIAPP-overexpressing cells compared to the control, whereas p-mTOR, Cu/Zn-SOD, and Bax were significantly increased. In mitochondrial oxidative phosphorylation (OXPHOS), the mitochondrial complex I and complex IV were significantly decreased under ER stress conditions and significantly increased under oxidative stress conditions in pCMV-hIAPP-overexpressing cells compared to the control. The present study results demonstrate that amylin undergoes oligomerization under ER stress in pCMV-hIAPP-overexpressing cells. In addition, human amylin overexpression under ER stress in the pancreatic ß cells may enhance amylin protein aggregation, resulting in ß-cell dysfunction.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/biosíntesis , Polipéptido Amiloide de los Islotes Pancreáticos/química , Estrés Oxidativo , Animales , Catalasa/metabolismo , Línea Celular , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/fisiología , Complejo IV de Transporte de Electrones/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Transducción de Señal/fisiología , Superóxido Dismutasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción CHOP/metabolismo , Proteína X Asociada a bcl-2/metabolismo
3.
Sci Rep ; 11(1): 10969, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040028

RESUMEN

Altered function of mitochondrial respiratory chain in brain cells is related to many neurodegenerative diseases. NADH Dehydrogenase (Ubiquinone) Fe-S protein 4 (Ndufs4) is one of the subunits of mitochondrial complex I and its mutation in human is associated with Leigh syndrome. However, the molecular biological role of Ndufs4 in neuronal function is poorly understood. In this study, upon Ndufs4 expression confirmation in NeuN-positive neurons, and GFAP-positive astrocytes in WT mouse hippocampus, we found significant decrease of mitochondrial respiration in Ndufs4-KO mouse hippocampus. Although there was no change in the number of NeuN positive neurons in Ndufs4-KO hippocampus, the expression of synaptophysin, a presynaptic protein, was significantly decreased. To investigate the detailed mechanism, we silenced Ndufs4 in Neuro-2a cells and we observed shorter neurite lengths with decreased expression of synaptophysin. Furthermore, western blot analysis for phosphorylated extracellular regulated kinase (pERK) revealed that Ndufs4 silencing decreases the activity of ERK signalling. These results suggest that Ndufs4-modulated mitochondrial activity may be involved in neuroplasticity via regulating synaptophysin expression.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/fisiología , Sinaptofisina/biosíntesis , Adenosina Trifosfato/biosíntesis , Animales , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuritas/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Especificidad de Órganos , Sinaptofisina/genética
4.
Biochem Pharmacol ; 160: 14-23, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30537467

RESUMEN

Pharmaceuticals and their by-products are increasingly a matter of concern, because of their unknown impacts on human health and ecosystems. The lack of information on these transformation products, which toxicity may exceed that of their parent molecules, makes their detection and toxicological evaluation impossible. Recently we characterized the Pyridinium of furosemide (PoF), a new transformation product of furosemide, the most widely used diuretic and an emerging pollutant. Here, we reveal PoF toxicity in SH-SY5Y cells leading to alpha-synuclein accumulation, reactive oxygen species generation, and apoptosis. We also showed that its mechanism of action is mediated through specific inhibition of striatal respiratory chain complex I, both in vitro by direct exposure of striatum mitochondria to PoF, and in vivo, in striatal mitochondria isolated from mice exposed to PoF for 7 days in drinking water and sacrificed 30 days later. Moreover, in mice, PoF induced neurodegenerative diseases hallmarks like phospho-Serine129 alpha-synuclein, tyrosine hydroxylase decrease in striatum, Tau accumulation in hippocampus. Finally, we uncovered PoF as a new metabolite of furosemide present in urine of patients treated with this drug by LC/MS. As a physiopathologically relevant neurodegeneration inducer, this new metabolite warrants further studies in the framework of public health and environment protection.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Furosemida/farmacología , Mitocondrias/efectos de los fármacos , Sistema Nervioso/efectos de los fármacos , Anciano , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/fisiología , Femenino , Furosemida/metabolismo , Furosemida/orina , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/fisiología , Estructura Molecular , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Consumo de Oxígeno/efectos de los fármacos , Compuestos de Piridinio/química , Compuestos de Piridinio/metabolismo , Compuestos de Piridinio/farmacología , Especies Reactivas de Oxígeno/metabolismo
5.
Redox Biol ; 17: 207-212, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704825

RESUMEN

The aim of this work was to develop a cryopreservation method of small liver biopsies for in situ mitochondrial function assessment. Herein we describe a detailed protocol for tissue collection, cryopreservation, high-resolution respirometry using complex I and II substrates, calculation and interpretation of respiratory parameters. Liver biopsies from cow and rat were sequentially frozen in a medium containing dimethylsulfoxide as cryoprotectant and stored for up to 3 months at -80 °C. Oxygen consumption rate studies of fresh and cryopreserved samples revealed that most respiratory parameters remained unchanged. Additionally, outer mitochondrial membrane integrity was assessed adding cytochrome c, proving that our cryopreservation method does not harm mitochondrial structure. In sum, we present a reliable way to cryopreserve small liver biopsies without affecting mitochondrial function. Our protocol will enable the transport and storage of samples, extending and facilitating mitochondrial function analysis of liver biopsies.


Asunto(s)
Criopreservación , Hígado/metabolismo , Mitocondrias Hepáticas/genética , Consumo de Oxígeno/genética , Animales , Biopsia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/fisiología , Hígado/fisiología , Mitocondrias Hepáticas/fisiología , Membranas Mitocondriales/metabolismo , Consumo de Oxígeno/fisiología , Ratas
6.
PLoS One ; 12(11): e0188087, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29136012

RESUMEN

Knockout of the mitochondrial complex I protein, NDUFS4, profoundly increases sensitivity of mice to volatile anesthetics. In mice carrying an Ndufs4lox/lox gene, adeno-associated virus expressing Cre recombinase was injected into regions of the brain postulated to affect sensitivity to volatile anesthetics. These injections generated otherwise phenotypically wild type mice with region-specific, postnatal inactivation of Ndufs4, minimizing developmental effects of gene loss. Sensitivities to the volatile anesthetics isoflurane and halothane were measured using loss of righting reflex (LORR) and movement in response to tail clamp (TC) as endpoints. Knockdown (KD) of Ndufs4 in the vestibular nucleus produced resistance to both anesthetics for movement in response to TC. Ndufs4 loss in the central and dorsal medial thalami and in the parietal association cortex increased anesthetic sensitivity to both TC and LORR. Knockdown of Ndufs4 only in the parietal association cortex produced striking hypersensitivity for both endpoints, and accounted for half the total change seen in the global KO (Ndufs4(KO)). Excitatory synaptic transmission in the parietal association cortex in slices from Ndufs4(KO) animals was hypersensitive to isoflurane compared to control slices. We identified a direct neural circuit between the parietal association cortex and the central thalamus, consistent with a model in which isoflurane sensitivity is mediated by a thalamic signal relayed through excitatory synapses to the parietal association cortex. We postulate that the thalamocortical circuit is crucial for maintenance of consciousness and is disrupted by the inhibitory effects of isoflurane/halothane on mitochondria.


Asunto(s)
Anestésicos por Inhalación/farmacología , Corteza Cerebral/efectos de los fármacos , Complejo I de Transporte de Electrón/fisiología , Tálamo/efectos de los fármacos , Animales , Corteza Cerebral/fisiología , Complejo I de Transporte de Electrón/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Tálamo/fisiología
7.
J Bioenerg Biomembr ; 48(4): 413-23, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27525823

RESUMEN

Propofol (2,6-diisopropylphenol) is an anaesthetic widely used for human sedation. Due to its intrinsic antioxidant properties, rapid induction of anaesthesia and fast recovery, it is employed in paediatric anaesthesia and in the intensive care of premature infants. Recent studies have pointed out that exposure to anaesthesia in the early stage of life might be responsible of long-lasting cognitive impairment. The apoptotic neurodegeneration induced by general anaesthetics (GA) involves mitochondrial impairment due to the inhibition of the OXPHOS machinery. In the present work, we aim to identify the main mitochondrial respiratory chain target of propofol toxicity and to evaluate the possible protective effect of CoQ10 supplementation. The propofol effect on the mitochondrial functionality was assayed in isolated mitochondria and in two cell lines (HeLa and T67) by measuring oxygen consumption rate. The protective effect of CoQ10 was assessed by measuring cells viability, NADH-oxidase activity and ATP/ADP ratio in cells treated with propofol. Our results show that propofol reduces cellular oxygen consumption rate acting mainly on mitochondrial Complex I. The kinetic analysis of Complex I inhibition indicates that propofol interferes with the Q module acting as a non-competitive inhibitor with higher affinity for the free form of the enzyme. Cells supplemented with CoQ10 are more resistant to propofol toxicity. Propofol exposure induces cellular damages due to mitochondrial impairment. The site of propofol inhibition on Complex I is the Q module. CoQ10 supplementation protects cells against the loss of energy suggesting its possible therapeutic role to minimizing the detrimental effects of general anaesthesia.


Asunto(s)
Complejo I de Transporte de Electrón/fisiología , Mitocondrias/efectos de los fármacos , Propofol/toxicidad , Ubiquinona/análogos & derivados , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Suplementos Dietéticos , Células HeLa , Humanos , Hipnóticos y Sedantes/toxicidad , Mitocondrias/química , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ubiquinona/efectos de los fármacos , Ubiquinona/farmacología
8.
Aging Male ; 19(3): 187-191, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27187822

RESUMEN

Mitochondrial defects have been related to obesity and prostate cancer. We investigated if Mexican-Mestizo men presenting this type of cancer, exhibited somatic mutations of ATP6 and/or ND3.Body mass index (BMI) was determined; the degree of prostate cancer aggressiveness was demarcated by the Gleason score. DNA from tumor tissue and from blood leukocytes was amplified by the polymerase chain reaction and ATP6 and ND3 were sequenced. We included 77 men: 20 had normal BMI, 38 were overweight and 19 had obesity; ages ranged from 52 to 83. After sequencing ATP6 and ND3, from DNA obtained from leukocytes and tumor tissue, we did not find any somatic mutations. All changes observed, in both genes, were polymorphisms. In ATP6 we identified, in six patients, two non-synonymous nucleotide changes and in ND3 we observed that twelve patients presented non-synonymous polymorphisms. To our knowledge, this constitutes the first report where the complete sequences of the ATP6 and ND3 have been analyzed in Mexican-Mestizo men with prostate cancer and diverse BMI. Our results differ with those reported in Caucasian populations, possibly due to ethnic differences.


Asunto(s)
Complejo I de Transporte de Electrón/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Obesidad/genética , Sobrepeso/genética , Polimorfismo Genético , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Complejo I de Transporte de Electrón/genética , Humanos , Masculino , México , Persona de Mediana Edad , ATPasas de Translocación de Protón Mitocondriales/genética , Metástasis de la Neoplasia/genética , Obesidad/complicaciones , Sobrepeso/complicaciones , Neoplasias de la Próstata/complicaciones , Neoplasias de la Próstata/patología
9.
Clin Cancer Res ; 22(11): 2791-801, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26783287

RESUMEN

PURPOSE: We delineated the functions of the hypoxia-inducible factor-1α (HIF1α) target NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) in clear cell renal cell carcinoma (ccRCC) and characterized NDUFA4L2 as a novel molecular target for ccRCC treatment. EXPERIMENTAL DESIGN: We evaluated normal kidney and ccRCC patient microarray and RNAseq data from Oncomine and The Cancer Genome Atlas for NDUFA4L2 mRNA levels and the clinical implications of high NDUFA4L2 expression. In addition, we examined normal kidney and ccRCC patient tissue samples, human ccRCC cell lines, and murine models of ccRCC for NDUFA4L2 mRNA and protein expression. Utilizing short hairpin RNA, we performed NDUFA4L2 knockdown experiments and analyzed the proliferation, clonogenicity, metabolite levels, cell structure, and autophagy in ccRCC cell lines in culture. RESULTS: We found that NDUFA4L2 mRNA and protein are highly expressed in ccRCC samples but undetectable in normal kidney tissue samples, and that NDUFA4L2 mRNA expression correlates with tumor stage and lower overall survival. In addition, we demonstrated that NDUFA4L2 is an HIF1α target in ccRCC and that NDUFA4L2 knockdown has a profound antiproliferative effect, alters metabolic pathways, and causes major stress in cultured RCC cells. CONCLUSIONS: Collectively, our data show that NDUFA4L2 is a novel molecular target for ccRCC treatment. Clin Cancer Res; 22(11); 2791-801. ©2016 AACR.


Asunto(s)
Carcinoma de Células Renales/enzimología , Complejo I de Transporte de Electrón/fisiología , Neoplasias Renales/enzimología , Animales , Autofagia , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular , Expresión Génica , Técnicas de Silenciamiento del Gen , Neoplasias Renales/patología , Masculino , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/enzimología , Mitocondrias/patología
10.
Free Radic Biol Med ; 90: 261-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26627937

RESUMEN

We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins.


Asunto(s)
Apoptosis/efectos de los fármacos , Azadirachta/química , Limoninas/farmacología , Neoplasias/patología , Fosforilación Oxidativa , Caspasas/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , ADN Mitocondrial/análisis , Dinaminas , Complejo I de Transporte de Electrón/fisiología , GTP Fosfohidrolasas/análisis , Células HCT116 , Humanos , Proteínas Asociadas a Microtúbulos/análisis , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/análisis , Neoplasias/tratamiento farmacológico , Proteína p53 Supresora de Tumor/fisiología
11.
Biochim Biophys Acta ; 1847(6-7): 526-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25687896

RESUMEN

Mitochondrial ATP production is mediated by the oxidative phosphorylation (OXPHOS) system, which consists of four multi-subunit complexes (CI-CIV) and the FoF1-ATP synthase (CV). Mitochondrial disorders including Leigh Syndrome often involve CI dysfunction, the pathophysiological consequences of which still remain incompletely understood. Here we combined experimental and computational strategies to gain mechanistic insight into the energy metabolism of isolated skeletal muscle mitochondria from 5-week-old wild-type (WT) and CI-deficient NDUFS4-/- (KO) mice. Enzyme activity measurements in KO mitochondria revealed a reduction of 79% in maximal CI activity (Vmax), which was paralleled by 45-72% increase in Vmax of CII, CIII, CIV and citrate synthase. Mathematical modeling of mitochondrial metabolism predicted that these Vmax changes do not affect the maximal rates of pyruvate (PYR) oxidation and ATP production in KO mitochondria. This prediction was empirically confirmed by flux measurements. In silico analysis further predicted that CI deficiency altered the concentration of intermediate metabolites, modestly increased mitochondrial NADH/NAD+ ratio and stimulated the lower half of the TCA cycle, including CII. Several of the predicted changes were previously observed in experimental models of CI-deficiency. Interestingly, model predictions further suggested that CI deficiency only has major metabolic consequences when its activity decreases below 90% of normal levels, compatible with a biochemical threshold effect. Taken together, our results suggest that mouse skeletal muscle mitochondria possess a substantial CI overcapacity, which minimizes the effects of CI dysfunction on mitochondrial metabolism in this otherwise early fatal mouse model.


Asunto(s)
Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Piruvatos/metabolismo , Animales , Biología Computacional , Complejo I de Transporte de Electrón/fisiología , Metabolismo Energético , Enfermedad de Leigh , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Teóricos , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno
12.
Cancer Res ; 74(22): 6474-85, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25237066

RESUMEN

The kinase Fer and its spermatogenic meiotic variant, FerT, are coexpressed in normal testes and cancerous tumors, but whether they exert related roles in spermatogenic or malignant cells has not been known. Here, we show that Fer and FerT reside in the mitochondria of spermatogenic cells and are harnessed to the reprogrammed mitochondria of colon carcinoma cells. Both kinases bound complex I of the mitochondrial electron transport chain (ETC) in spermatogenic and in colon carcinoma cells, and silencing of either Fer or FerT was sufficient to impair the activity of this complex. Directed mitochondrial accumulation of FerT in nonmalignant NIH3T3 cells increased their ETC complex I activity, ATP production, and survival, contingent upon stress conditions caused by nutrient and oxygen deprivation. Strikingly, directed mitochondrial accumulation of FerT endowed nonmalignant cells with tumor-forming ability. Thus, recruitment of a meiotic mitochondrial component to cancer cell mitochondria highlights a pivotal role for reprogrammed mitochondria in tumorigenesis.


Asunto(s)
Neoplasias del Colon/etiología , Proteínas Tirosina Quinasas/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Células Cultivadas , Complejo I de Transporte de Electrón/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Células 3T3 NIH
13.
EMBO J ; 33(4): 341-55, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24473149

RESUMEN

Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.


Asunto(s)
Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Mitocondrias Musculares/ultraestructura , Atrofia Muscular/prevención & control , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas c-ret/fisiología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Autofagia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Complejo I de Transporte de Electrón/fisiología , Genes Letales , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Humanos , Neuroblastoma/patología , Neuronas/ultraestructura , Consumo de Oxígeno , Enfermedad de Parkinson , Fenotipo , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-ret/genética , Pupa , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
14.
Am J Physiol Heart Circ Physiol ; 305(8): H1131-40, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23955717

RESUMEN

Superoxide (O2(·-)) production by the NADPH oxidases is implicated in the pathogenesis of many cardiovascular diseases, including hypertension. We have previously shown that activation of NADPH oxidases increases mitochondrial O2(·-) which is inhibited by the ATP-sensitive K(+) channel (mitoKATP) inhibitor 5-hydroxydecanoic acid and that scavenging of mitochondrial or cytoplasmic O2(·-) inhibits hypertension. We hypothesized that mitoKATP-mediated mitochondrial O2(·-) potentiates cytoplasmic O2(·-) by stimulation of NADPH oxidases. In this work we studied Nox isoforms as a potential target of mitochondrial O2(·-). We tested contribution of reverse electron transfer (RET) from complex II to complex I in mitochondrial O2(·-) production and NADPH oxidase activation in human aortic endothelial cells. Activation of mitoKATP with low dose of diazoxide (100 nM) decreased mitochondrial membrane potential (tetramethylrhodamine methyl ester probe) and increased production of mitochondrial and cytoplasmic O2(·-) measured by site-specific probes and mitoSOX. Inhibition of RET with complex II inhibitor (malonate) or complex I inhibitor (rotenone) attenuated the production of mitochondrial and cytoplasmic O2(·-). Supplementation with a mitochondria-targeted SOD mimetic (mitoTEMPO) or a mitochondria-targeted glutathione peroxidase mimetic (mitoEbselen) inhibited production of mitochondrial and cytoplasmic O2(·-). Inhibition of Nox2 (gp91ds) or Nox2 depletion with small interfering RNA but not Nox1, Nox4, or Nox5 abolished diazoxide-induced O2(·-) production in the cytoplasm. Treatment of angiotensin II-infused mice with RET inhibitor dihydroethidium (malate) significantly reduced blood pressure. Our study suggests that mitoKATP-mediated mitochondrial O2(·-) stimulates cytoplasmic Nox2, contributing to the development of endothelial oxidative stress and hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Células Endoteliales/fisiología , Glicoproteínas de Membrana/fisiología , NADPH Oxidasas/fisiología , Estrés Oxidativo/fisiología , Superóxidos , Animales , Aorta/citología , Presión Sanguínea/efectos de los fármacos , Respiración de la Célula/fisiología , Células Cultivadas , Diazóxido/farmacología , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/fisiología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NADPH Oxidasa 2 , Canales de Potasio/metabolismo , Vasodilatadores/farmacología
15.
J Neuroinflammation ; 10: 45, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23561827

RESUMEN

BACKGROUND: Cyclooxygenase-2 (COX-2) is induced in inflammatory cells in response to cytokines and pro-inflammatory molecules, suggesting that COX-2 has a role in the inflammatory process. The objective of the current study was to examine whether celecoxib, a selective COX-2 inhibitor, could ameliorate lipopolysaccharide (LPS)-induced brain inflammation, dopaminergic neuronal dysfunction and sensorimotor behavioral impairments. METHODS: Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in rat pups on postnatal Day 5 (P5), and celecoxib (20 mg/kg) or vehicle was administered (i.p.) five minutes after LPS injection. Sensorimotor behavioral tests were carried out 24 h after LPS exposure, and brain injury was examined on P6. RESULTS: Our results showed that LPS exposure resulted in impairment in sensorimotor behavioral performance and injury to brain dopaminergic neurons, as indicated by loss of tyrosine hydroxylase (TH) immunoreactivity, as well as decreases in mitochondria activity in the rat brain. LPS exposure also led to increases in the expression of α-synuclein and dopamine transporter proteins and enhanced [3H]dopamine uptake. Treatment with celecoxib significantly reduced LPS-induced sensorimotor behavioral disturbances and dopaminergic neuronal dysfunction. Celecoxib administration significantly attenuated LPS-induced increases in the numbers of activated microglia and astrocytes and in the concentration of IL-1ß in the neonatal rat brain. The protective effect of celecoxib was also associated with an attenuation of LPS-induced COX-2+ cells, which were double labeled with TH + (dopaminergic neuron) or glial fibrillary acidic protein (GFAP) + (astrocyte) cells. CONCLUSION: Systemic LPS administration induced brain inflammatory responses in neonatal rats; these inflammatory responses included induction of COX-2 expression in TH neurons and astrocytes. Application of the COX-2 inhibitor celecoxib after LPS treatment attenuated the inflammatory response and improved LPS-induced impairment, both biochemically and behaviorally.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Lipopolisacáridos/toxicidad , Actividad Motora/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Pirazoles/farmacología , Sulfonamidas/farmacología , Animales , Animales Recién Nacidos , Western Blotting , Celecoxib , Complejo I de Transporte de Electrón/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunohistoquímica , Inflamación/inducido químicamente , Inflamación/psicología , Interleucina-1beta/análisis , Interleucina-1beta/metabolismo , Masculino , Mitocondrias/metabolismo , Equilibrio Postural/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/metabolismo
16.
J Clin Invest ; 123(3): 1068-81, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23426180

RESUMEN

Despite advances in clinical therapy, metastasis remains the leading cause of death in breast cancer patients. Mutations in mitochondrial DNA, including those affecting complex I and oxidative phosphorylation, are found in breast tumors and could facilitate metastasis. This study identifies mitochondrial complex I as critical for defining an aggressive phenotype in breast cancer cells. Specific enhancement of mitochondrial complex I activity inhibited tumor growth and metastasis through regulation of the tumor cell NAD+/NADH redox balance, mTORC1 activity, and autophagy. Conversely, nonlethal reduction of NAD+ levels by interfering with nicotinamide phosphoribosyltransferase expression rendered tumor cells more aggressive and increased metastasis. The results translate into a new therapeutic strategy: enhancement of the NAD+/NADH balance through treatment with NAD+ precursors inhibited metastasis in xenograft models, increased animal survival, and strongly interfered with oncogene-driven breast cancer progression in the MMTV-PyMT mouse model. Thus, aberration in mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, while therapeutic normalization of the NAD+/NADH balance can inhibit metastasis and prevent disease progression.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Complejo I de Transporte de Electrón/fisiología , Neoplasias Pulmonares/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , NAD/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Acrilamidas/farmacología , Animales , Autofagia , Proteína 5 Relacionada con la Autofagia , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Proliferación Celular , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Progresión de la Enfermedad , Complejo I de Transporte de Electrón/biosíntesis , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Complejos Multiproteicos , NAD/fisiología , Trasplante de Neoplasias , Niacina/farmacología , Niacinamida/farmacología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas/farmacología , Transporte de Proteínas , Proteínas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Serina-Treonina Quinasas TOR
17.
Mol Biol Cell ; 23(22): 4373-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22993213

RESUMEN

Saccharomyces cerevisiae NDI1 codes for the internal mitochondrial ubiquinone oxidoreductase, which transfers electrons from NADH to ubiquinone in the respiratory chain. Previously we found that Ndi1 is a yeast homologue of the protein apoptosis-inducing factor-homologous mitochondrion-associated inducer of death and displays potent proapoptotic activity. Here we show that S. cerevisiae NDI1 is involved in apoptosis induced by various stimuli tested, including H(2)O(2), Mn, and acetate acid, independent of Z-VAD-fmk (a caspase inhibitor) inhibition. Although Ndi1 also participates in respiration, its proapoptotic property is separable from the ubiquinone oxidoreductase activity. During apoptosis, the N-terminal of Ndi1 is cleaved off in the mitochondria, and this activated form then escapes out to execute its apoptotic function. The N-terminal cleavage appears to be essential for the manifestation of the full apoptotic activity, as the uncleaved form of Ndi1 exhibits much less growth-inhibitory activity. Our results thus indicate an important role of Ndi1 in the switch of life and death fates in yeast: during normal growth, Ndi1 assimilates electrons to the electron transport chain and initiates the respiration process to make ATP, whereas under stresses, it cleaves the toxicity-sequestering N-terminal cap, is released from the mitochondria, and becomes a cell killer.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejo I de Transporte de Electrón/fisiología , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/citología , Acetatos/farmacología , Adenosina Trifosfato/biosíntesis , Citoplasma/metabolismo , Transporte de Electrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Peróxido de Hidrógeno/farmacología , Manganeso/farmacología , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Adv Exp Med Biol ; 748: 107-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22729856

RESUMEN

Recent experimental evidence has replaced the random diffusion model of electron transfer with a model of supramolecular organisation based on specific interactions between individual respiratory complexes. These supercomplexes are detected by blue-native electrophoresis and are found to be functionally relevant by flux control analysis; moreover, they have been isolated and characterised by single-particle electron microscopy. The supramolecular association of individual complexes strongly depends on membrane lipid amount and composition and is affected by lipid peroxidation; it also seems to be modulated by membrane potential and protein phosphorylation. Supercomplex association confers several new properties with respect to the non-associated respiratory complexes to the respiratory chain: the most obvious is substrate channelling, specifically addressing Coenzyme Q and cytochrome c to interact directly with the partner enzymes without the need of a less efficient random diffusion step; in addition, supramolecular association may provide a further rate advantage by conferring long-range conformational changes to the individual complexes. Additional properties are stabilisation of Complex I, as evidenced by the destabilising effect on Complex I of mutations in either Complex III or Complex IV, and prevention of excessive generation of reactive oxygen species. On the basis of the properties described above, we hypothesise that an oxidative stress acts primarily by disassembling supercomplex associations thereby establishing a vicious circle of oxidative stress and energy failure, ultimately leading to cell damage and disease. We provide evidence that in physiological ageing and in some disease states, characterised by oxidative stress and mitochondrial damage, such as heart failure, neurodegenerative disorders and cancer, a loss of supercomplex association occurs, in line with our working hypothesis.


Asunto(s)
Transporte de Electrón , Mitocondrias/metabolismo , Complejos Multienzimáticos/fisiología , Fosforilación Oxidativa , Envejecimiento/metabolismo , Animales , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/fisiología , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/fisiología , Humanos , Potencial de la Membrana Mitocondrial
19.
FASEB J ; 26(4): 1413-22, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22179525

RESUMEN

The purpose of this study was to determine whether (-)-epicatechin (mainly found in cocoa) could attenuate detraining effects in the hindlimb muscles of mice. Thirty-two male mice were randomized into 4 groups: control, trained, trained with 14 d of detraining and vehicle (DT-14-W), and trained with 14 d of detraining and (-)-epicatechin [DT-14-(-)-Epi]. DT-14-(-)-Epi received (-)-epicatechin (1.0 mg/kg 2 ×/d), whereas water was given to the DT-14-W group. The latter 3 groups performed 5 wk of endurance training 5 ×/wk. Hindlimb muscles were harvested, and Western blots, as well as enzyme analyses, were performed. Training significantly increased capillary-to-fiber ratio (≈ 78.8%), cytochrome-c oxidase (≈ 35%), and activity (≈ 144%) compared to controls. These adaptations returned to control levels for the DT-14-W group, whereas the DT-14-(-)-Epi group was able to maintain capillary-to-fiber ratio (≈ 44%), CcO protein expression (≈ 45%), and activity (≈ 108%) above control levels. In addition, the increase in capillarity was related to decreased protein expression of thrombospondin-1, an antiangiogenic regulator. Furthermore, there were no significant differences in endurance capacity between the trained and DT-14-(-)-Epi groups. Our data suggest that (-)-epicatechin may be a suitable compound to maintain exercise-induced improved capillarity and mitochondrial capacity, even when exercise regimens are discontinued.


Asunto(s)
Adaptación Fisiológica/fisiología , Catequina/farmacología , Condicionamiento Físico Animal/fisiología , Resistencia Física/efectos de los fármacos , Animales , Catequina/química , Complejo I de Transporte de Electrón/fisiología , Complejo III de Transporte de Electrones/fisiología , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/fisiología , Miembro Posterior/anatomía & histología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Distribución Aleatoria , Trombospondina 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Oncogene ; 30(38): 3985-4003, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21625217

RESUMEN

Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.


Asunto(s)
Apoptosis , ADN Mitocondrial/genética , Complejo II de Transporte de Electrones/fisiología , Complejo I de Transporte de Electrón/fisiología , Mitocondrias/metabolismo , Mutación , Neoplasias/genética , Animales , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA