Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.234
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Med Chem ; 67(18): 16635-16648, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39289797

RESUMEN

Aza-BODIPYs represent a class of fluorophores in which the π-conjugated system is rigidified and stabilized by a boron atom. A promising strategy to enhance their fluorescence properties involves replacing the boron atom with a metal ion. Here, we describe the synthesis and characterization of a water-soluble derivative where the metal is a gallium(III) ion, termed WazaGaY (water-soluble aza-GaDIPY). Water solubility is ensured by two ammonium substituents, inducing a bathochromic shift and a significant increase in quantum yield compared to that of the dimethylamino analog. The cellular behavior of WazaGaY-1 was observed across different tumor cells. In vivo, the distribution and safety profiles were determined, and tumor uptake was assessed in various tumor types. Following intravenous injection, WazaGaY-1 enabled clear discrimination of tumors engrafted subcutaneously in mice with high tumor-to-muscle ratios (ranging from 7 to 20), even in the absence of specific conjugation. Its potential as a contrast agent for fluorescence-guided surgery was confirmed.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Compuestos de Boro/química , Compuestos de Boro/síntesis química , Humanos , Ratones , Línea Celular Tumoral , Imagen Óptica , Compuestos Aza/química , Solubilidad , Femenino , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Galio/química , Distribución Tisular
2.
J Med Chem ; 67(19): 17429-17453, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39331123

RESUMEN

Mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a serine/threonine kinase that acts as an immune checkpoint downstream of T-cell receptor stimulation. MAP4K1 activity is enhanced by prostaglandin E2 (PGE2) and transforming growth factor beta (TGFß), immune modulators commonly present in the tumor microenvironment. Therefore, its pharmacological inhibition is an attractive immuno-oncology concept for inducing therapeutic T-cell responses in cancer patients. Here, we describe the systematic optimization of azaindole-based lead compound 1, resulting in the discovery of potent and selective MAP4K1 inhibitor 38 (BAY-405) that displays nanomolar potency in biochemical and cellular assays as well as in vivo exposure after oral dosing. BAY-405 enhances T-cell immunity and overcomes the suppressive effect of PGE2 and TGFß. Treatment of tumor-bearing mice shows T-cell-dependent antitumor efficacy. MAP4K1 inhibition in conjunction with PD-L1 blockade results in a superior antitumor impact, illustrating the complementarity of the single agent treatments.


Asunto(s)
Inhibidores de Proteínas Quinasas , Linfocitos T , Animales , Humanos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Indoles/farmacología , Indoles/química , Línea Celular Tumoral , Descubrimiento de Drogas , Compuestos Aza/farmacología , Compuestos Aza/química , Compuestos Aza/síntesis química , Femenino , Relación Estructura-Actividad , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Ratones Endogámicos C57BL
3.
Org Biomol Chem ; 22(36): 7332-7336, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39177499

RESUMEN

Azacoumarins are a relatively unexplored group of coumarin fluorophores, despite their excellent light-emitting properties. In this report, we detail the creation and production of a fluorescent probe (PYCB) based on azacoumarin for detecting H2O2. The probe utilizes a carboxy benzyl boronic pinacol ester as the recognition unit and displays a turn-on fluorescence response at 460 nm upon exposure to H2O2. The probe shows excellent sensitivity and selectivity to H2O2, with a detection limit of 0.385 µM. PYCB also exhibited strong pH stability and selectivity for H2O2 over other reactive oxygen species (ROS). Additionally, MTT assay results demonstrated the excellent biocompatibility of PYCB in MCF-7 cell lines. Fluorescence imaging of PYCB-treated MCF-7 cells revealed enhanced blue fluorescence corresponding to varying concentrations of exogenous H2O2.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Peróxido de Hidrógeno , Imagen Óptica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Peróxido de Hidrógeno/análisis , Humanos , Cumarinas/química , Cumarinas/síntesis química , Células MCF-7 , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Compuestos Aza/química , Compuestos Aza/síntesis química
4.
Org Biomol Chem ; 22(36): 7349-7353, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39189436

RESUMEN

Formaldehyde (FA) is an endogenous one-carbon metabolite and an environmental pollutant and carcinogen. Elevated FA levels are associated with many diseases. Methods for the convenient and in situ detection of FA levels are of great significance for understanding FA's biofunctions and signalling pathways. Herein, the NAP-FAP2 series of fluorescent probes for FA detection were developed based on FA-promoted C-N cleavage of 3-nitrophenylazanyl N-arylcarbamate via FA-induced intramolecularity, where the aryl group is the fluorophore 1,8-naphthalimide-4-yl. The 3-nitrophenylazanyl containing reactive group also functions as a fluorescence quenching group via a photo-induced electron transfer mechanism to generate turn-on fluorescence response upon reaction with FA. The probes were applied to explore FA level changes in erastin-induced ferroptosis, and it was found that the FA level increases intracellularly, but not in the endoplasmic reticulum, suggesting that the FA level increases in ferroptosis are not derived from lipid peroxidation.


Asunto(s)
Carbamatos , Colorantes Fluorescentes , Formaldehído , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Formaldehído/análisis , Formaldehído/química , Humanos , Carbamatos/química , Estructura Molecular , Compuestos Aza/química , Carbono/química
5.
Angew Chem Int Ed Engl ; 63(34): e202407307, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38868977

RESUMEN

Small organic photothermal agents (PTAs) with absorption bands located in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable for effectively combating deep-seated tumors. However, the rarely reported NIR-II absorbing PTAs still suffer from a low molar extinction coefficient (MEC, ϵ), inadequate chemostability and photostability, as well as the high light power density required during the therapeutic process. Herein, we developed a series of boron difluoride bridged azafulvene dimer acceptor-integrated small organic PTAs. The B-N coordination bonds in the π-conjugated azafulvene dimer backbone endow it the strong electron-withdrawing ability, facilitating the vigorous donor-acceptor-donor (D-A-D) structure PTAs with NIR-II absorption. Notably, the PTA namely OTTBF shows high MEC (7.21×104 M-1 cm-1), ultrahigh chemo- and photo-stability. After encapsulated into water-dispersible nanoparticles, OTTBF NPs can achieve remarkable photothermal conversion effect under 1064 nm irradiation with a light density as low as 0.7 W cm-2, which is the lowest reported NIR-II light power used in PTT process as we know. Furthermore, OTTBF NPs have been successfully applied for in vitro and in vivo deep-seated cancer treatments under 1064 nm laser. This study provides an insight into the future exploration of versatile D-A-D structured NIR-II absorption organic PTAs for biomedical applications.


Asunto(s)
Compuestos de Boro , Rayos Láser , Terapia Fototérmica , Compuestos de Boro/química , Ratones , Animales , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Dimerización , Estructura Molecular , Línea Celular Tumoral , Compuestos Aza/química , Ensayos de Selección de Medicamentos Antitumorales , Supervivencia Celular/efectos de los fármacos , Rayos Infrarrojos , Proliferación Celular/efectos de los fármacos
6.
Chem Rev ; 124(12): 7907-7975, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38809666

RESUMEN

The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.


Asunto(s)
Antineoplásicos , Compuestos Heterocíclicos , Organofosfonatos , Organofosfonatos/química , Organofosfonatos/síntesis química , Organofosfonatos/farmacología , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/farmacología , Humanos , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Compuestos Aza/química , Compuestos Aza/síntesis química , Compuestos Aza/farmacología , Animales
7.
Org Biomol Chem ; 22(17): 3425-3438, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38590227

RESUMEN

We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.


Asunto(s)
Antineoplásicos , Butirilcolinesterasa , Proliferación Celular , Inhibidores de la Colinesterasa , Cumarinas , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Butirilcolinesterasa/metabolismo , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Línea Celular Tumoral , Relación Estructura-Actividad , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Aza/química , Compuestos Aza/farmacología , Compuestos Aza/síntesis química , Relación Dosis-Respuesta a Droga , Neuronas/efectos de los fármacos
8.
J Biomol Struct Dyn ; 42(7): 3507-3519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37855303

RESUMEN

Lung Cancer is the one that causes more fatalities in the world compared to other cancers, and its uniqueness is that it can be found in both males and females. However, recent data has shown that males are more affected due to lifestyle habits like smoking, tobacco consumption and inhaling polluted air. The World Health Organization has kept lung cancer on its priority list as it causes 1.8 million deaths worldwide each year, and the predictions show that the cases are going to increase year by year, and by 2050, there can be 3.8 million new cases and 3.2 million deaths, and the global health system is not prepared for it. Also, finding drug candidates that can help shrink cancerous cells and lead to their death is essential to reduce global mortality. The system needs drug compounds that can inhibit multiple paths together not to enter drug resistance quickly and to reduce costs. Our study identified a compound named Variolin B (DB08694) that belongs to the organic compounds class of pyrrolopyridines. The identified compound can inhibit multiple proteins, drastically reducing the global burden. Variolin B was identified as a potential candidate against lung cancer using the multisampling algorithm such as HTVS, SP, and XP, followed by MM\GBSA calculations showing the docking score of -9.245 Kcal/mol to -5.92 Kcal/mol. Also, we have validated it with ADMET predictions and molecular fingerprinting to analyse the interaction patterns. Further, the study was extended to molecular dynamics simulations for 100 ns to understand the complex stability and simulative interactions. The complex's overall molecular dynamics simulation helped us understand that the identified candidate is stable with the lowest deviation and fluctuations.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Compuestos Aza , Neoplasias Pulmonares , Pirimidinas , Femenino , Masculino , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neoplasias Pulmonares/tratamiento farmacológico
9.
Eur J Med Chem ; 261: 115804, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37729693

RESUMEN

A number of new disubstituted 6-azaindoles have been designed and synthesized bearing a crucial structural modification in respect to an analogous antiproliferative hit compound. The synthesis was performed using 2-amino-3-nitro-4-picoline, that was suitably modified and converted to 7-chloro-3-iodo-6-azaindole and this central scaffold was used for successive Suzuki-type couplings, to result in the target compounds. The evaluation of the cytotoxic activity was performed against four human cancer cell lines, as well as a normal human fibroblast strain. Certain compounds possessed strong anticancer activity without affecting normal cells. At subcytotoxic concentrations for cancer cells, these compounds displayed an anti-proliferative effect by arresting the cells at the G2/M phase of the cell cycle, which could be associated with the observed decrease in the phosphorylation levels of the MEK1- ERK1/2 pathway and/or the activation of the p53-p21WAF1 axis.


Asunto(s)
Antineoplásicos , Compuestos Aza , Humanos , Antineoplásicos/química , Compuestos Aza/farmacología , Ciclo Celular , División Celular , Proliferación Celular , Línea Celular Tumoral , Apoptosis
10.
Bioorg Med Chem Lett ; 74: 128925, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944852

RESUMEN

A series of 1-oxa-4-azaspiro[4,5]deca-6,9-diene-3,8-dione derivatives containing structural fragments of conjugated dienone have been synthesized previously by our group, however the Michael addition reaction between conjugated dienone and nucleophilic groups in the body may generate harmful and adverse effects. To reduce harmful side effects, the authors started with p-aminophenol to make 1-oxo-4- azaspirodecanedione derivatives, then utilized the Michael addition and cyclopropanation to eliminate α, ß unsaturated olefinic bond and lower the Michael reactivity of the compounds in vivo for optimization. At the same time, heteroatoms are put into the molecules in order to improve the hydrophilicity of the molecules and the binding sites of the molecules and the target molecules, establishing the groundwork for improved antitumor activity. The majority of the compounds had moderate to potent activity against A549 human lung cancer cells, MDA-MB-231 breast cancer cells, and Hela human cervical cancer cells. Among them, the compound 6d showed the strongest effect on A549 cell line with IC50 of 0.26 µM; the compound 8d showed the strongest cytotoxicity on MDA-MB-231 cell line with IC50 of 0.10 µM; and the compound 6b showed the strongest activity on Hela cell line with IC50 of 0.18 µM.


Asunto(s)
Antineoplásicos , Compuestos Aza/farmacología , Compuestos de Espiro/farmacología , Antineoplásicos/química , Compuestos Aza/química , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Estructura Molecular , Compuestos de Espiro/síntesis química , Relación Estructura-Actividad
12.
Radiat Res ; 198(3): 271-296, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834822

RESUMEN

The recent interaction cross-section-based formulation for radiation-induced direct cellular inactivation, mild and severe sublethal damage, DNA-repair and cell survival have been developed to accurately describe cellular repair, misrepair and apoptosis in TP53 wild-type and mutant cells. The principal idea of this new non-homologous repairable-homologous repairable (RHR) damage formulation is to separately describe the mild damage that can be rapidly handled by the most basic repair processes including the non-homologous end joining (NHEJ), and more complex damage requiring longer repair times and high-fidelity homologous recombination (HR) repair. Taking the interaction between these two key mammalian DNA repair processes more accurately into account has significantly improved the method as indicated in the original publication. Based on the principal mechanisms of 7 repair and 8 misrepair processes presently derived, it has been possible to quite accurately describe the probability that some of these repair processes when unsuccessful can induce cellular apoptosis with increasing doses of γrays, boron ions and PRIMA-1. Interestingly, for all LETs studied (≈0.3-160 eV/nm) the increase in apoptosis saturates when the cell survival reaches about 10% and the fraction of un-hit cells is well below the 1% level. It is shown that most of the early cell kill for low-to-medium LETs are due to apoptosis since the cell survival as well as the non-apoptotic cells agree very well at low doses and other death processes dominate beyond D > 1 Gy. The low-dose apoptosis is due to the fact that the full activation of the checkpoint kinases ATM and Chk2 requires >8 and >18 DSBs per cell to phosphorylate p53 at serine 15 and 20. Therefore, DNA repair is not fully activated until well after 1/2 Gy, and the cellular response may be apoptotic by default before the low-dose hyper sensitivity (LDHS) is replaced by an increased radiation tolerance as the DNA repair processes get maximal efficiency. In effect, simultaneously explaining the LDHS and inverse dose rate phenomena. The partial contributions by the eight newly derived misrepair processes was determined so they together accurately described the experimental apoptosis induction data for γ rays and boron ions. Through these partial misrepair contributions it was possible to predict the apoptotic response based solely on carefully analyzed cell survival data, demonstrating the usefulness of an accurate DNA repair-based cell survival approach. The peak relative biological effectiveness (RBE) of the boron ions was 3.5 at 160 eV/nm whereas the analogous peak relative apoptotic effectiveness (RAE) was 3.4 but at 40 eV/nm indicating the clinical value of the lower LET light ions (15 ≤ LET ≤ 55 eV/nm, 2 ≤ Z ≤5) in therapeutic applications to maximize tumor apoptosis and senescence. The new survival expressions were also applied on mouse embryonic fibroblasts with key knocked-out repair genes, showing a good agreement between the principal non-homologous and homologous repair terms and also a reasonable prediction of the associated apoptotic induction. Finally, the formulation was used to estimate the increase in DNA repair and apoptotic response in combination with the mutant p53 reactivating compound PRIMA-1 and γ rays, indicating a 10-2 times increase in apoptosis with 5 µM of the compound reaching apoptosis levels not far from peak apoptosis boron ions in a TP53 mutant cell line. To utilize PRIMA-1 induced apoptosis and cellular sensitization for reactive oxygen species (ROS), concomitant biologically optimized radiation therapy is proposed to maximize the complication free tumor cure for the multitude of TP53 mutant tumors seen in the clinic. The experimental data also indicated the clinically very important high-absorbed dose ROS effect of PRIMA-1.


Asunto(s)
Transferencia Lineal de Energía , Neoplasias , Animales , Apoptosis , Compuestos Aza , Boro , Compuestos Bicíclicos Heterocíclicos con Puentes , Daño del ADN , Reparación del ADN , Fibroblastos/efectos de la radiación , Rayos gamma , Iones , Mamíferos , Ratones , Especies Reactivas de Oxígeno , Reparación del ADN por Recombinación , Proteína p53 Supresora de Tumor/genética
13.
Curr Med Chem ; 29(42): 6336-6358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35538801

RESUMEN

For over 50 years of azapeptide synthetic techniques, developments have renewed the field of peptidomimetic therapeutics. Azapeptides are close surrogates of natural peptides: they contain a substitution of the amino acid α-carbon by a nitrogen atom. Goserelin (1989) and Atazanavir (2003) are two well-known, FDA-approved azapeptide-based drugs for the treatment of cancers and HIV infection, providing evidence for the successful clinical implementation of this class of therapeutic. This review highlights the azapeptides in recent medicinal chemistry applications and synthetic milestones. We describe the current techniques for azapeptide bond formation by introducing azapeptide coupling reagents and chain elongation methods both in solution and solid-phase strategies.


Asunto(s)
Compuestos Aza , Infecciones por VIH , Peptidomiméticos , Humanos , Compuestos Aza/química , Sulfato de Atazanavir , Goserelina , Péptidos/química , Aminoácidos/química , Carbono , Nitrógeno
14.
Plant Physiol ; 189(4): 2029-2043, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604091

RESUMEN

Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.


Asunto(s)
Aciltransferasas , Cichorium intybus , Aciltransferasas/genética , Aciltransferasas/metabolismo , Alquenos , Compuestos Aza , Cichorium intybus/genética , Cichorium intybus/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
15.
Chem Commun (Camb) ; 58(10): 1442-1453, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991152

RESUMEN

Formaldehyde (FA), a reactive carbonyl species, is classified as Group 1 carcinogen by International Agency for Research on Cancer (IARC) in 2004. In addition, clinical studies have implicated that elevated levels of FA have been associated with different kinds of diseases, such as neurodegenerative diseases, diabetes, and chronic liver and heart disorders. However, in addition to the direct inhalation of FA in the environment, most organisms can also produce FA endogenously by demethylases and oxidases during the metabolism of amino acids and xenobiotics. Since FA plays an important role in physiological and pathological processes, developing reliable and efficient methods to monitor FA levels in biological samples is crucial. Reaction-based fluorescent/chemiluminescent probes have provided robust methods for FA detection and real-time visualization in living organisms. In this highlight, we will summarize the major developments in the structure design and applications of FA probes in recent years. Three main strategies for designing FA probes have been discussed and grouped by different reaction mechanisms. In addition, some miscellaneous reaction mechanisms have also been discussed. We also highlight novel applications of these probes in biological systems, which offer powerful tools to discover the diverse functions of FA in physiology and pathology processes.


Asunto(s)
Colorantes Fluorescentes/química , Formaldehído/análisis , Mediciones Luminiscentes/métodos , Compuestos Aza/química , Línea Celular , Humanos , Hidrazinas/química , Microscopía Fluorescente
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120817, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35030417

RESUMEN

In this article, Density Functional Theory based calculations, including dispersion corrections, PBE0(D3BJ)/Def2-TZVP(-f), were performed to elucidate the photophysics of the [Ru(bpy)2(HAT)]2+ complex in water. In addition, the thermodynamics of the charge and electron transfer excited state reactions of this complex with oxygen, nitric oxide and Guanosine-5'-monophosphate nucleotide (GMP) were investigated. The first singlet excite state, S1, strongly couples with the second and third triplet excited states (T2 and T3) giving rise to a high intersystem crossing rate of 6.26 × 1011 s-1 which is ∼106 greater than the fluorescence rate decay. The thermodynamics of the excited reactions revealed that all electron transfer reactions investigated are highly favorable, due mainly to the high stability of the triply charged radical cation 2PS•3+ species formed after the electron has been transferred. Excited state electron transfer from the GMP nucleotide to the complex is also highly favorable (ΔGsol = -92.6 kcal/mol), showing that this complex can be involved in the photooxidation of DNA, in line with experimental findings. Therefore, the calculations allow to conclude that the [Ru(bpy)2(HAT)]2+ complex can act in Photodynamic therapy through both mechanisms type I and II, through electron transfer from and to the complex and triplet-triplet energy transfer, generating ROS, RNOS and through DNA photooxidation. In addition, the work also opens a perspective of using this complex for the in-situ generation of the singlet nitroxyl (1NO-) species, which can have important applications for the generation of HNO and may have, therefore, important impact for physiological studies involving HNO.


Asunto(s)
Compuestos Organometálicos , Rutenio , 2,2'-Dipiridil , Compuestos Aza , Crisenos , Electrones
17.
Org Biomol Chem ; 20(5): 963-979, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35018952

RESUMEN

To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.


Asunto(s)
Compuestos Aza/síntesis química , Compuestos Heterocíclicos/síntesis química , Peptidomiméticos/síntesis química , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Humanos , Conformación Proteica en Hélice alfa
18.
Eur J Med Chem ; 227: 113880, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34656041

RESUMEN

Lysine methyltransferases are important regulators of epigenetic signaling and are emerging as a novel drug target for drug discovery. This work demonstrates the positioning of novel 1,5-oxaza spiroquinone scaffold into selective SET and MYND domain-containing proteins 2 methyltransferases inhibitors. Selectivity of the scaffold was identified by epigenetic target screening followed by SAR study for the scaffold. The optimization was performed iteratively by two-step optimization consisting of iterative synthesis and computational studies (docking, metadynamics simulations). Computational binding studies guided the important interactions of the spiro[5.5]undeca scaffold in pocket 1 and Lysine channel and suggested extension of tail length for the improvement of potency (IC50: up to 399 nM). The effective performance of cell proliferation assay for chosen compounds (IC50: up to 11.9 nM) led to further evaluation in xenograft assay. The potent compound 24 demonstrated desirable in vivo efficacy with growth inhibition rate of 77.7% (4 fold decrease of tumor weight and 3 fold decrease of tumor volume). Moreover, mirosomal assay and pharmacokinetic profile suggested further developability of this scaffold through the identification of major metabolites (dealkylation at silyl group, reversible hydration product, the absence of toxic quinone fragments) and enough exposure of the testing compound 24 in plasma. Such spiro[5.5]undeca framework or ring system was neither been reported nor suggested as a modulator of methyltransferases. The chemo-centric target positioning and structural novelty can lead to potential pharmacological benefit.


Asunto(s)
Compuestos Aza/farmacología , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Quinonas/farmacología , Compuestos de Espiro/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Compuestos Aza/síntesis química , Compuestos Aza/química , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Epigénesis Genética/genética , Femenino , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Masculino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Quinonas/síntesis química , Quinonas/química , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad
19.
Chem Commun (Camb) ; 58(4): 573-576, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34913446

RESUMEN

Fluorophores with different emission wavelengths were efficiently quenched by a tert-butyl terminated tetrazylmethyl group and activated by an isonitrile-tetrazine click-to-release reaction. Nucleic acid templated chemistry significantly accelerated this bioorthogonal cleavage. Moreover, two mutually orthogonal fluorogenic cleavage reactions were simultaneously conducted in live cells for the first time.


Asunto(s)
Compuestos Aza/química , Derivados del Benceno/química , Colorantes Fluorescentes/química , Nitrilos/química , Imagen Óptica , Línea Celular Tumoral , Humanos , Estructura Molecular
20.
Chem Biol Drug Des ; 100(6): 1017-1024, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34233091

RESUMEN

A series of biheterocyclic assemblies comprising of 1,2,5-oxadiazole and azasydnone scaffolds were synthesized and biologically evaluated as novel nitric oxide (NO)-donor and antiplatelet agents. Depending on functional substituents at the biheterocyclic core, all studied compounds demonstrated good NO-donor profiles releasing NO in a wide range of concentrations (19.2%-195.1%) according to a Griess assay. (1,2,5-Oxadiazolyl)azasydnones showed excellent antiplatelet activity in the case of ADP and adrenaline used as inducers completely suppressing the aggregate formation even at the lowest test concentration of 0.0375 µmol/ml, which is a rather unique feature. Moreover, studied biheterocycles possess a selective mechanism of inhibition of platelet aggregation mediated only by ADP and adrenaline, which are considered to be the main inducers causing thrombus formation. In addition, (1,2,5-oxadiazolyl)azasydnones were found to be completely non-toxic to hybrid endothelial cells EaHy 926. Studies of hydrolytic degradation of the synthesized compounds afforded benzoic acid as a sole detectable decomposition product, which is considered advantageous in drug design. Therefore, (1,2,5-oxadiazolyl)azasydnones represent a novel class of promising drug candidates with improved antiplatelet profile and reduced toxicity enabling their huge potential in medicinal chemistry and drug design.


Asunto(s)
Células Endoteliales , Inhibidores de Agregación Plaquetaria , Adenosina Difosfato/farmacología , Epinefrina/farmacología , Donantes de Óxido Nítrico/farmacología , Oxadiazoles , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Compuestos Aza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA