Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Nature ; 630(8015): 206-213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778111

RESUMEN

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Próstata , Radioisótopos , Radiofármacos , Animales , Humanos , Masculino , Ratones , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Fluoruros/química , Fluoruros/metabolismo , Glutamato Carboxipeptidasa II/química , Glutamato Carboxipeptidasa II/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Terapia Molecular Dirigida/métodos , Proyectos Piloto , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico , Radiofármacos/química , Radiofármacos/uso terapéutico , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Tirosina/metabolismo , Tirosina/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Microbiol Spectr ; 12(4): e0408123, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415659

RESUMEN

Microbial reduction of organic disulfides affects the macromolecular structure and chemical reactivity of natural organic matter. Currently, the enzymatic pathways that mediate disulfide bond reduction in soil and sedimentary organic matter are poorly understood. In this study, we examined the extracellular reduction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) by Shewanella oneidensis strain MR-1. A transposon mutagenesis screen performed with S. oneidensis resulted in the isolation of a mutant that lost ~90% of its DTNB reduction activity. Genome sequencing of the mutant strain revealed that the transposon was inserted into the dsbD gene, which encodes for an oxidoreductase involved in cytochrome c maturation. Complementation of the mutant strain with the wild-type dsbD partially restored DTNB reduction activity. Because DsbD catalyzes a critical step in the assembly of multi-heme c-type cytochromes, we further investigated the role of extracellular electron transfer cytochromes in organic disulfide reduction. The results indicated that mutants lacking proteins in the Mtr system were severely impaired in their ability to reduce DTNB. These findings provide new insights into extracellular organic disulfide reduction and the enzymatic pathways of organic sulfur redox cycling.IMPORTANCEOrganic sulfur compounds in soils and sediments are held together by disulfide bonds. This study investigates how Shewanella oneidensis breaks apart extracellular organic sulfur compounds. The results show that an enzyme involved in the assembly of c-type cytochromes as well as proteins in the Mtr respiratory pathway is needed for S. oneidensis to transfer electrons from the cell surface to extracellular organic disulfides. These findings have important implications for understanding how organic sulfur decomposes in terrestrial ecosystems.


Asunto(s)
Ecosistema , Shewanella , Ácido Ditionitrobenzoico/metabolismo , Oxidación-Reducción , Shewanella/genética , Shewanella/metabolismo , Citocromos/metabolismo , Azufre/metabolismo , Disulfuros , Compuestos de Azufre/metabolismo
3.
Infect Immun ; 92(3): e0042223, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289071

RESUMEN

Listeria monocytogenes (Lm) is a Gram-positive facultative intracellular pathogen that leads a biphasic lifecycle, transitioning its metabolism and selectively inducing virulence genes when it encounters mammalian hosts. Virulence gene expression is controlled by the master virulence regulator PrfA, which is allosterically activated by the host- and bacterially derived glutathione (GSH). The amino acid cysteine is the rate-limiting substrate for GSH synthesis in bacteria and is essential for bacterial growth. Unlike many bacteria, Lm is auxotrophic for cysteine and must import exogenous cysteine for growth and virulence. GSH is enriched in the host cytoplasm, and previous work suggests that Lm utilizes exogenous GSH for PrfA activation. Despite these observations, the import mechanism(s) for GSH remains elusive. Analysis of known GSH importers predicted a homologous importer in Lm comprised of the Ctp ABC transporter and the OppDF ATPases of the Opp oligopeptide importer. Here, we demonstrated that the Ctp complex is a high-affinity GSH/GSSG importer that is required for Lm growth at physiologically relevant concentrations. Furthermore, we demonstrated that OppDF is required for GSH/GSSG import in an Opp-independent manner. These data support a model where Ctp and OppDF form a unique complex for GSH/GSSG import that supports growth and pathogenesis. In addition, we show that Lm utilizes the inorganic sulfur sources thiosulfate and H2S for growth in a CysK-dependent manner in the absence of other cysteine sources. These findings suggest a pathoadaptive role for partial cysteine auxotrophy in Lm, where locally high GSH/GSSG or inorganic sulfur concentrations may signal arrival to distinct host niches.


Asunto(s)
Listeria monocytogenes , Animales , Cisteína/metabolismo , Disulfuro de Glutatión/genética , Disulfuro de Glutatión/metabolismo , Compuestos de Azufre/metabolismo , Glutatión , Azufre/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mamíferos
4.
Eur J Pharmacol ; 956: 175966, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37549725

RESUMEN

Aberrant innate immunity in the brain has been implicated in the pathogenesis of several central nervous system (CNS) disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and depression. Except for extraparenchymal CNS-associated macrophages, which predominantly afford protection against peripheral invading pathogens, it has been reported that microglia, a population of macrophage-like cells governing CNS immune defense in nearly all neurological diseases, are the main CNS resident immune cells. Although microglia have been recognized as the most important source of reactive oxygen species (ROS) in the CNS, ROS also may underlie microglial functions, especially M1 polarization, by modulating redox-sensitive signaling pathways. Recently, endogenous antioxidant systems, including glutathione, hydrogen sulfide, superoxide dismutase, and methionine sulfoxide reductase A, were found to be involved in regulating microglia-mediated neuroinflammation. A series of natural sulfur-containing compounds, including S-adenosyl methionine, S-methyl-L-cysteine, sulforaphane, DMS, and S-alk(enyl)-l-cysteine sulfoxide, modulating endogenous antioxidant systems have been discovered. We have summarized the current knowledge on the involvement of endogenous antioxidant systems in regulating microglial inflammatory activation and the effects of sulfur-containing compounds on endogenous antioxidant systems. Finally, we discuss the possibilities associated with compounds targeting the endogenous antioxidant system to treat neuroinflammation-associated diseases.


Asunto(s)
Antioxidantes , Microglía , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Azufre/metabolismo , Compuestos de Azufre/farmacología , Enfermedades Neuroinflamatorias , Cisteína/farmacología , Azufre/metabolismo , Azufre/farmacología
5.
Bull Exp Biol Med ; 175(2): 201-204, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37466859

RESUMEN

We studied the properties of N6-chloroadenosine phosphates (ATP, ADP, and AMP chloramines) as compounds with potentially increased antiplatelet efficacy determined by their binding to the plasma membrane of platelets. Chloramine derivatives of ATP, ADP, and AMP do not differ in their optical absorption characteristics: their absorption spectra are in the range of 220-340 nm with a maximum at 264 nm. Chloramines of adenosine phosphates are characterized by high reactivity with respect to thiol compounds. In particular, the rate constants of the reaction of N6-chloroadenosine-5'-diphosphate with N-acetylcysteine, reduced glutathione, dithiothreitol, and cysteine reach 59,000, 250,000, 340,000, and 1,250,000 M-1×sec-1, respectively, and only 1.10±0.02 M-1×sec-1 with methionine. It has been found that N6-chloradenosine-5'-triphosphate is a strong inhibitor of platelet functions: it effectively suppresses ADP-induced cell aggregation (IC50 in the whole blood is 5 µM) and inhibits aggregation of preactivated platelets and induces dissociation of their aggregates.


Asunto(s)
Cloraminas , Agregación Plaquetaria , Cloraminas/farmacología , Cloraminas/química , Cloraminas/metabolismo , Compuestos de Azufre/metabolismo , Compuestos de Azufre/farmacología , Plaquetas , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Azufre/farmacología , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología
6.
Appl Environ Microbiol ; 89(2): e0197022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688659

RESUMEN

Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.


Asunto(s)
Rhodococcus , Compuestos de Azufre , Compuestos de Azufre/metabolismo , Azufre/metabolismo , Rhodococcus/metabolismo , ARN Mensajero/metabolismo
7.
Crit Rev Food Sci Nutr ; 63(27): 8616-8638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35380479

RESUMEN

Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.


Asunto(s)
Cisteína , Compuestos de Azufre , Animales , Humanos , Compuestos de Azufre/metabolismo , Cisteína/metabolismo , Plantas/metabolismo , Azufre/metabolismo , Inflamación
8.
Free Radic Biol Med ; 192: 224-234, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174879

RESUMEN

Among natural products, ovothiol (ovo), produced by marine invertebrates, bacteria, and microalgae, is receiving increasing interest for its unique antioxidant properties. Recently, ovo has been shown to exhibit anti-inflammatory activity in an in vitro model of endothelial dysfunction and in an in vivo model of liver fibrosis. The aim of this study was to evaluate the effect of ovo and its precursor 5-thiohistidine (5-thio) in comparison with ergothioneine (erg), in human skin cells and tissues upon inflammation. We used both an in vitro and ex vivo model of human skin, represented by a keratinocytes cell line (HaCaT) and skin biopsies, respectively. We observed that ovo, 5-thio, and erg were not cytotoxic in HaCaT cells, but instead exerted a protective function against TNF-α -induced inflammation. In order to get insights on their mechanism of action, we performed western blot analysis of ERK and JNK, as well as sub-cellular localization of Nrf2, a key mediator of the anti-inflammatory response. The results indicated that the pre-treatment with ovo, 5-thio, and erg differently affected the phosphorylation of ERK and JNK. However, all the three molecules promoted the accumulation of Nrf2 in the nucleus of HaCaT cells. In addition, gene expression analysis by RTqPCR and ELISA assays performed in ex vivo human skin tissues pre-treated with thiohistidines and then inflamed with IL-1ß revealed a significant downregulation of IL-8, TNF-α and COX-2 genes and a concomitant significant decrease in the cytokines IL-6, IL-8 and TNF-α production. Moreover, the protective action of ovo and 5-thio resulted to be stronger when compared with dexamethasone, a corticosteroid drug currently used to treat skin inflammatory conditions. Our findings suggest that ovo and 5-thio can ameliorate skin damage and may be used to develop natural skin care products to prevent the inflammatory status induced by environmental stressors and aging.


Asunto(s)
Productos Biológicos , Ergotioneína , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Productos Biológicos/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dexametasona/metabolismo , Ergotioneína/metabolismo , Ergotioneína/farmacología , Histidina/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Azufre/metabolismo , Compuestos de Azufre/efectos adversos , Compuestos de Azufre/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
J Agric Food Chem ; 70(32): 9969-9979, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920882

RESUMEN

Flavor perception is a key factor in the acceptance or rejection of food. Aroma precursors such as cysteine conjugates are present in various plant-based foods and are metabolized into odorant thiols in the oral cavity. To date, the involved enzymes are unknown, despite previous studies pointing out the likely involvement of carbon-sulfur lyases (C-S lyases) from the oral microbiota. In this study, we show that saliva metabolizes allyl-cysteine into odorant thiol metabolites, with evidence suggesting that microbial pyridoxal phosphate-dependent C-S lyases are involved in the enzymatic process. A phylogenetic analysis of PatB C-S lyase sequences in four oral subspecies of Fusobacterium nucleatum was carried out and led to the identification of several putative targets. FnaPatB1 from F. nucleatum subspecies animalis, a putative C-S lyase, was characterized and showed high activity with a range of cysteine conjugates. Enzymatic and X-ray crystallographic data showed that FnaPatB1 metabolizes cysteine derivatives within a unique active site environment that enables the formation of flavor sulfur compounds. Using an enzymatic screen with a library of pure compounds, we identified several inhibitors able to reduce the C-S lyase activity of FnaPatB1 in vitro, which paves the way for controlling the release of odorant sulfur compounds from their cysteine precursors in the oral cavity.


Asunto(s)
Liasas , Compuestos de Azufre , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Cisteína/metabolismo , Fusobacterium nucleatum , Liasas/genética , Liasas/metabolismo , Filogenia , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Azufre/metabolismo
10.
Gastroenterology ; 161(5): 1423-1432.e4, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273347

RESUMEN

BACKGROUND & AIMS: Diet may contribute to the increasing incidence of colorectal cancer (CRC) before age 50 (early-onset CRC). Microbial metabolism of dietary sulfur produces hydrogen sulfide (H2S), a gastrointestinal carcinogen that cannot be easily measured at scale. As a result, evidence supporting its role in early neoplasia is lacking. METHODS: We evaluated long-term adherence to the sulfur microbial diet, a dietary index defined a priori based on increased abundance of 43 bacterial species involved with sulfur metabolism, with risk of CRC precursors among 59,013 individuals who underwent lower endoscopy in the Nurses' Health Study II (1991-2015), a prospective cohort study with dietary assessment every 4 years through validated food frequency questionnaires and an assessment of dietary intake during adolescence in 1998. The sulfur microbial diet was characterized by intake high in processed meats, foods previously linked to CRC development, and low in mixed vegetables and legumes. Multivariable logistic regression for clustered data was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: We documented 2911 cases of early-onset adenoma. After adjusting for established risk factors, higher sulfur microbial diet scores were associated with increased risk for early-onset adenomas (ORquartile [Q]4 vs Q1, 1.31; 95% CI, 1.10-1.56, Ptrend = .02), but not serrated lesions. Compared with the lowest, women in the highest quartile of sulfur microbial diet scores had significantly increased risk of early-onset adenomas with greater malignant potential (ORQ4 vs Q1, 1.65 for villous/tubulovillous histology; 95% CI, 1.12-2.43; Ptrend = .04). Similar trends for early-onset adenoma were observed based on diet consumed during adolescence. In contrast, no clear association for adenomas was identified after age 50. CONCLUSIONS: Our findings in a cohort of young women support a role for dietary interactions with gut sulfur-metabolizing bacteria in early-onset colorectal carcinogenesis, possibly beginning in adolescence.


Asunto(s)
Pólipos Adenomatosos/epidemiología , Bacterias/metabolismo , Pólipos del Colon/epidemiología , Neoplasias Colorrectales/epidemiología , Dieta/efectos adversos , Microbioma Gastrointestinal , Lesiones Precancerosas/epidemiología , Compuestos de Azufre/efectos adversos , Pólipos Adenomatosos/diagnóstico , Adulto , Edad de Inicio , Pólipos del Colon/diagnóstico , Neoplasias Colorrectales/diagnóstico , Femenino , Humanos , Sulfuro de Hidrógeno/efectos adversos , Sulfuro de Hidrógeno/metabolismo , Persona de Mediana Edad , Lesiones Precancerosas/diagnóstico , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Compuestos de Azufre/administración & dosificación , Compuestos de Azufre/metabolismo , Factores de Tiempo , Estados Unidos/epidemiología
11.
Mar Drugs ; 19(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946151

RESUMEN

Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted drug, cetuximab. Herein, we studied the anti-cancer potency of SG compared to cetuximab. Biological studies demonstrated SG and cetuximab had similar inhibition mechanisms in CCA cells by down-regulating EGFR/ERK pathway, and the combined treatment induced a greater inhibition effect. The molecular docking study revealed that SG binds to the dimerization domain of EGFR, and this was confirmed by dimerization assay, which showed that SG inhibited ligand-induced EGFR dimer formation. Synchrotron FTIR microspectroscopy was employed to examine alterations in cellular macromolecules after drug treatment. The SR-FTIR-MS elicited similar spectral signatures of SG and cetuximab, pointing towards the bands of RNA/DNA, lipids, and amide I vibrations, which were inconsistent with the changes of signaling proteins in CCA cells after drug treatment. Thus, this study demonstrates the underlined anti-cancer mechanism of SG by interfering with EGFR dimerization. In addition, we reveal that FTIR signature spectra offer a useful tool for screening anti-cancer drugs' effect.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Galactanos/farmacología , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Azufre/farmacología , Antineoplásicos/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cetuximab/farmacología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Galactanos/metabolismo , Humanos , Microespectrofotometría , Unión Proteica , Multimerización de Proteína , Transducción de Señal , Compuestos de Azufre/metabolismo , Sincrotrones
12.
J Am Chem Soc ; 143(10): 3753-3763, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33630577

RESUMEN

The lack of efficient [18F]fluorination processes and target-specific organofluorine chemotypes remains the major challenge of fluorine-18 positron emission tomography (PET). We report here an ultrafast isotopic exchange method for the radiosynthesis of novel PET agent aryl [18F]fluorosulfate enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully automated 18F-radiolabeling of 25 structurally and functionally diverse aryl fluorosulfates with excellent radiochemical yield (83-100%, median 98%) and high molar activity (280 GBq µmol-1) at room temperature in 30 s. The purification of radiotracers requires no time-consuming HPLC but rather a simple cartridge filtration. We further demonstrate the imaging application of a rationally designed poly(ADP-ribose) polymerase 1 (PARP1)-targeting aryl [18F]fluorosulfate by probing subcutaneous tumors in vivo.


Asunto(s)
Química Clic , Fluoruros/química , Radiofármacos/síntesis química , Compuestos de Azufre/química , Animales , Línea Celular Tumoral , Medios de Contraste/síntesis química , Medios de Contraste/química , Medios de Contraste/metabolismo , Teoría Funcional de la Densidad , Estabilidad de Medicamentos , Fluoruros/síntesis química , Fluoruros/metabolismo , Radioisótopos de Flúor/química , Humanos , Ratones , Neoplasias/diagnóstico por imagen , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/metabolismo , Compuestos de Azufre/síntesis química , Compuestos de Azufre/metabolismo , Trasplante Heterólogo
13.
J Toxicol Sci ; 46(2): 91-97, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33536393

RESUMEN

Methylmercury (MeHg), an environmental electrophile, binds covalently to the cysteine residues of proteins in organs, altering protein function and causing cytotoxicity. MeHg has also been shown to alter the composition of gut microbes. The gut microbiota is a complex community, the disturbance of which has been linked to the development of certain diseases. However, the relationship between MeHg and gut bacteria remains poorly understood. In this study, we showed that MeHg binds covalently to gut bacterial proteins via cysteine residues. We examined the effects of MeHg on the growth of selected Lactobacillus species, namely, L. reuteri, L. gasseri, L. casei, and L. acidophilus, that are frequently either positively or negatively correlated with human diseases. The results revealed that MeHg inhibits the growth of Lactobacillus to varying degrees depending on the species. Furthermore, the growth of L. reuteri, which was inhibited by MeHg exposure, was restored by Na2S2 treatment. By comparing mice with and without gut microbiota colonization, we found that gut bacteria contribute to the production of reactive sulfur species such as hydrogen sulfide and hydrogen persulfide in the gut. We also discovered that the removal of gut bacteria accelerated accumulation of mercury in the cerebellum, liver, and lungs of mice subsequent to MeHg exposure. These results accordingly indicate that MeHg is captured and inactivated by the hydrogen sulfide and hydrogen persulfide produced by intestinal microbes, thereby providing evidence for the role played by gut microbiota in reducing MeHg toxicity.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Compuestos de Metilmercurio/efectos adversos , Animales , Proteínas Bacterianas/metabolismo , Cerebelo/metabolismo , Cisteína/metabolismo , Femenino , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Compuestos de Metilmercurio/toxicidad , Ratones Endogámicos C57BL , Unión Proteica , Organismos Libres de Patógenos Específicos , Compuestos de Azufre/metabolismo
14.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291575

RESUMEN

Gas chromatography-mass spectrometry technique (GC-MS) is mainly recognized as a tool of first choice when volatile compounds are determined. Here, we provide the credible evidence that its application in analysis can be extended to non-volatile sulfur-containing compounds, to which methionine (Met), homocysteine (Hcy), homocysteine thiolactone (HTL), and cysteine (Cys) belong. To prove this point, the first method, based on GC-MS, for the identification and quantification of Met-related compounds in human saliva, has been elaborated. The assay involves simultaneous disulfides reduction with tris(2-carboxyethyl)phosphine (TCEP) and acetonitrile (MeCN) deproteinization, followed by preconcentration by drying under vacuum and treatment of the residue with a derivatizing mixture containing anhydrous pyridine, N-trimethylsilyl-N-methyl trifluoroacetamide (MSTFA), and trimethylchlorosilane (TMCS). The validity of the method was demonstrated based upon US FDA recommendations. The assay linearity was observed over the range of 0.5-20 µmol L-1 for Met, Hcy, Cys, and 1-20 µmol L-1 for HTL in saliva. The limit of quantification (LOQ) equals 0.1 µmol L-1 for Met, Hcy, Cys, while its value for HTL was 0.05 µmol L-1. The method was successfully applied to saliva samples donated by apparently healthy volunteers (n = 10).


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metionina/metabolismo , Saliva/metabolismo , Compuestos de Azufre/metabolismo , Humanos , Metabolómica/métodos , Reproducibilidad de los Resultados
15.
Oxid Med Cell Longev ; 2020: 8294158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062147

RESUMEN

Sulfur contributes significantly to nature chemical diversity and thanks to its particular features allows fundamental biological reactions that no other element allows. Sulfur natural compounds are utilized by all living beings and depending on the function are distributed in the different kingdoms. It is no coincidence that marine organisms are one of the most important sources of sulfur natural products since most of the inorganic sulfur is metabolized in ocean environments where this element is abundant. Terrestrial organisms such as plants and microorganisms are also able to incorporate sulfur in organic molecules to produce primary metabolites (e.g., methionine, cysteine) and more complex unique chemical structures with diverse biological roles. Animals are not able to fix inorganic sulfur into biomolecules and are completely dependent on preformed organic sulfurous compounds to satisfy their sulfur needs. However, some higher species such as humans are able to build new sulfur-containing chemical entities starting especially from plants' organosulfur precursors. Sulfur metabolism in humans is very complicated and plays a central role in redox biochemistry. The chemical properties, the large number of oxidation states, and the versatile reactivity of the oxygen family chalcogens make sulfur ideal for redox biological reactions and electron transfer processes. This review will explore sulfur metabolism related to redox biochemistry and will describe the various classes of sulfur-containing compounds spread all over the natural kingdoms. We will describe the chemistry and the biochemistry of well-known metabolites and also of the unknown and poorly studied sulfur natural products which are still in search for a biological role.


Asunto(s)
Compuestos de Azufre/metabolismo , Animales , Cisteína/metabolismo , Glutatión/metabolismo , Glicósido Hidrolasas/metabolismo , Humanos , Metionina/metabolismo , Oxidación-Reducción , Plantas/química , Plantas/metabolismo , Compuestos de Azufre/química , Taurina/biosíntesis , Taurina/química
16.
J Nutr ; 150(Suppl 1): 2506S-2517S, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000152

RESUMEN

The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 µmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine ß-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.


Asunto(s)
Aminoácidos Sulfúricos/metabolismo , Cisteína/metabolismo , Homocisteína/metabolismo , Enfermedades Metabólicas/genética , Metionina/metabolismo , Compuestos de Azufre/metabolismo , Azufre/metabolismo , Animales , Encefalopatías/etiología , Encefalopatías/metabolismo , Glutatión/metabolismo , Homocistinuria/etiología , Homocistinuria/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Enfermedades Metabólicas/terapia , Errores Innatos del Metabolismo/patología , Errores Innatos del Metabolismo/terapia , Metionina Adenosiltransferasa/metabolismo , Metilación , S-Adenosilmetionina/metabolismo , Sulfitos/metabolismo
17.
J Nutr ; 150(Suppl 1): 2524S-2531S, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000164

RESUMEN

The metabolism of methionine and cysteine in the body tissues determines the concentrations of several metabolites with various biologic activities, including homocysteine, hydrogen sulfide (H2S), taurine, and glutathione. Hyperhomocysteinemia, which is correlated with lower HDL cholesterol in blood in volunteers and animal models, has been associated with an increased risk for cardiovascular diseases. In humans, the relation between methionine intake and hyperhomocysteinemia is dependent on vitamin status (vitamins B-6 and B-12 and folic acid) and on the supply of other amino acids. However, lowering homocysteinemia by itself is not sufficient for decreasing the risk of cardiovascular disease progression. Other compounds related to methionine metabolism have recently been identified as being involved in the risk of atherosclerosis and steatohepatitis. Indeed, the metabolism of sulfur amino acids has an impact on phosphatidylcholine (PC) metabolism, and anomalies in PC synthesis due to global hypomethylation have been associated with disturbances of lipid metabolism. In addition, impairment of H2S synthesis from cysteine favors atherosclerosis and steatosis in animal models. The effects of taurine on lipid metabolism appear heterogeneous depending on the populations of volunteers studied. A decrease in the concentration of intracellular glutathione, a tripeptide involved in redox homeostasis, is implicated in the etiology of cardiovascular diseases and steatosis. Last, supplementation with betaine, a compound that allows remethylation of homocysteine to methionine, decreases basal and methionine-stimulated homocysteinemia; however, it adversely increases plasma total and LDL cholesterol. The study of these metabolites may help determine the range of optimal and safe intakes of methionine and cysteine in dietary proteins and supplements. The amino acid requirement for protein synthesis in different situations and for optimal production of intracellular compounds involved in the regulation of lipid metabolism also needs to be considered for dietary attenuation of atherosclerosis and steatosis risk.


Asunto(s)
Aterosclerosis/etiología , Cisteína/metabolismo , Hígado Graso/etiología , Metabolismo de los Lípidos , Metionina/metabolismo , Estado Nutricional , Azufre/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animales , Aterosclerosis/metabolismo , Betaína/metabolismo , Betaína/farmacología , Colesterol/sangre , Proteínas en la Dieta/química , Suplementos Dietéticos , Hígado Graso/metabolismo , Glutatión/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Hiperhomocisteinemia/etiología , Hiperhomocisteinemia/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Necesidades Nutricionales , Fosfatidilcolinas/metabolismo , Compuestos de Azufre/metabolismo , Taurina/metabolismo , Taurina/farmacología
18.
J Plant Physiol ; 251: 153223, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32645555

RESUMEN

The production of volatile organic compounds (VOCs) during programmed cell death (PCD) is still insufficiently studied and their implication in the process is not well understood. The present study demonstrates that the release of VOSCs with presumed antioxidant capacity (methanethiol, dimethylsulfide and dimethyldisulfide) accompanies the cell death in chemical-stressed tobacco BY-2 suspension cultured cells. The cells were exposed to cell death inducers of biotic nature mastoparan (MP, wasp venom) and camptothecin (CPT, alkaloid), and to the abiotic stress agent CdSO4. The VOCs emission was monitored by proton-transfer reaction mass spectrometry (PTR-MS). The three chemicals induced PCD expressing apoptotic-like phenotype. The identified VOSCs were emitted in response to MP and CPT but not in presence of Cd. The VOSCs production occurred within few hours after the administration of the elicitors, peaked up when 20-50 % of the cells were dead and further levelled off with cell death advancement. This suggests that VOSCs with antioxidant activity may contribute to alleviation of cell death-associated oxidative stress at medium severity of cell death in response to the stress factors of biotic origin. The findings provide novel information about cell death defence mechanisms in chemical-challenged BY-2 cells and show that PCD related VOSCs synthesis depends on the type of inducer.


Asunto(s)
Antioxidantes/metabolismo , Muerte Celular/fisiología , Nicotiana/fisiología , Compuestos de Azufre/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos de Cadmio/efectos adversos , Camptotecina/efectos adversos , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular/efectos adversos , Sulfatos/efectos adversos , Nicotiana/citología , Venenos de Avispas/efectos adversos
19.
J Exp Biol ; 223(Pt 4)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32102833

RESUMEN

The biological effects of oxidants, especially reactive oxygen species (ROS), include signaling functions (oxidative eustress), initiation of measures to reduce elevated ROS (oxidative stress), and a cascade of pathophysiological events that accompany excessive ROS (oxidative distress). Although these effects have long been studied in animal models with perturbed ROS, their actions under physiological conditions are less clear. I propose that some of the apparent uncertainty may be due to confusion of ROS with endogenously generated reactive sulfur species (RSS). ROS and RSS are chemically similar, but RSS are more reactive and versatile, and can be stored and reused. Both ROS and RSS signal via oxidation reactions with protein cysteine sulfur and they produce identical effector responses, but RSS appear to be more effective. RSS in the form of persulfidated cysteines (Cys-S-S) are produced endogenously and co-translationally introduced into proteins, and there is increasing evidence that many cellular proteins are persulfidated. A number of practical factors have contributed to confusion between ROS and RSS, and these are discussed herein. Furthermore, essentially all endogenous antioxidant enzymes appeared shortly after life began, some 3.8 billion years ago, when RSS metabolism dominated evolution. This was long before the rise in ROS, 600 million years ago, and I propose that these same enzymes, with only minor modifications, still effectively metabolize RSS in extant organisms. I am not suggesting that all ROS are RSS; however, I believe that the relative importance of ROS and RSS in biological systems needs further consideration.


Asunto(s)
Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Azufre/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción , Transducción de Señal
20.
Food Chem ; 311: 125958, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855775

RESUMEN

This study aims to investigate whether the heat treatment applied during the production of black onion, a novel derived product made from fresh onion, produces changes in the content of flavonoids, organosulfur compounds, organic acids, water soluble sugars and amino acids in three onion varieties ('Shallot', 'Chata' and 'Echalion'). The total flavonoid content decreased up to 12-fold in black onions compared with fresh onions while the quantities of isoalliin, the main organosulfur compound in black onions, drastically increased during the process. Moreover, the levels of fructose and glucose significantly increased during the elaboration process, contributing to the sweetness of black onions. The influence of heating on their antioxidant capacity showed a decreasing trend of the ORAC antioxidant activity of onion, while ABTS and DPPH did not show a clear tendency. These results present a comprehensive phytochemical characterization of black onions, highlighting the significant influence of the heating process on their phytochemical composition.


Asunto(s)
Antioxidantes/química , Cebollas/química , Extractos Vegetales/química , Antioxidantes/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Cebollas/metabolismo , Extractos Vegetales/metabolismo , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA