Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.890
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Vet Sci ; 25(5): e68, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39363656

RESUMEN

IMPORTANCE: A relatively new therapeutic agent for osteoarthritis (OA), polydeoxyribonucleotide (PDRN), shows potential in treating human OA due to its regenerative and anti-inflammatory effects. However, studies on PDRN for canine OA are limited, and no study has investigated their use with mesenchymal stem cells (MSCs) conventionally used for OA treatment. OBJECTIVE: This study aimed to evaluate the potential of PDRN and explore its combined effect with adipose tissue-derived MSCs (AdMSCs) in treating canine OA. METHODS: To study the impact of PDRN, canine chondrocytes, synoviocytes, and AdMSCs were exposed to various PDRN concentrations, and viability was assessed using cell counting kit-8. The OA model was created by treating chondrocytes and synoviocytes with lipopolysaccharide, followed by treatment under three different conditions: PDRN alone, AdMSCs alone, and a combination of PDRN and AdMSCs. Using real-time quantitative polymerase chain reaction, the anti-inflammatory effects and mechanisms were investigated by quantitatively assessing pro-inflammatory cytokines, collagen degradation markers, adenosine A2a receptor (ADORA2A), and nuclear factor-kappa B. RESULTS: PDRN alone and combined with AdMSCs significantly reduced the expression of pro-inflammatory cytokines and collagen degradation markers in an OA model. PDRN promoted AdMSC proliferation and upregulated ADORA2A expression. AdMSCs exhibited comprehensive anti-inflammatory effects through paracrine effects, and both substances reduced inflammatory gene expression through different mechanisms, potentially enhancing therapeutic effects. CONCLUSIONS AND RELEVANCE: The results indicate that PDRN is a safe and effective anti-inflammatory material that can be used independently or as an adjuvant for AdMSCs. Although additional research is necessary, this study is significant because it provides a foundation for future research at the cellular level.


Asunto(s)
Tejido Adiposo , Antiinflamatorios , Enfermedades de los Perros , Células Madre Mesenquimatosas , Osteoartritis , Polidesoxirribonucleótidos , Animales , Perros , Polidesoxirribonucleótidos/farmacología , Osteoartritis/veterinaria , Osteoartritis/terapia , Células Madre Mesenquimatosas/efectos de los fármacos , Antiinflamatorios/farmacología , Tejido Adiposo/citología , Enfermedades de los Perros/terapia , Enfermedades de los Perros/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Sinoviocitos/efectos de los fármacos
2.
Stem Cell Res Ther ; 15(1): 359, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390589

RESUMEN

BACKGROUND: The phenomenon of intercellular mitochondrial transfer from mesenchymal stromal cells (MSCs) has shown promise for improving tissue healing after injury and has potential for treating degenerative diseases like osteoarthritis (OA). Recently MSC to chondrocyte mitochondrial transfer has been documented, but the mechanism of transfer is unknown. Full-length connexin 43 (Cx43, encoded by GJA1) and the truncated, internally translated isoform GJA1-20k have been implicated in mitochondrial transfer between highly oxidative cells, but have not been explored in orthopaedic tissues. Here, our goal was to investigate the role of Cx43 in MSC to chondrocyte mitochondrial transfer. In this study, we tested the hypotheses that (a) mitochondrial transfer from MSCs to chondrocytes is increased when chondrocytes are under oxidative stress and (b) MSC Cx43 expression mediates mitochondrial transfer to chondrocytes. METHODS: Oxidative stress was induced in immortalized human chondrocytes using tert-Butyl hydroperoxide (t-BHP) and cells were evaluated for mitochondrial membrane depolarization and reactive oxygen species (ROS) production. Human bone-marrow derived MSCs were transduced for mitochondrial fluorescence using lentiviral vectors. MSC Cx43 expression was knocked down using siRNA or overexpressed (GJA1 + and GJA1-20k+) using lentiviral transduction. Chondrocytes and MSCs were co-cultured for 24 h in direct contact or separated using transwells. Mitochondrial transfer was quantified using flow cytometry. Co-cultures were fixed and stained for actin and Cx43 to visualize cell-cell interactions during transfer. RESULTS: Mitochondrial transfer was significantly higher in t-BHP-stressed chondrocytes. Contact co-cultures had significantly higher mitochondrial transfer compared to transwell co-cultures. Confocal images showed direct cell contacts between MSCs and chondrocytes where Cx43 staining was enriched at the terminal ends of actin cellular extensions containing mitochondria in MSCs. MSC Cx43 expression was associated with the magnitude of mitochondrial transfer to chondrocytes; knocking down Cx43 significantly decreased transfer while Cx43 overexpression significantly increased transfer. Interestingly, GJA1-20k expression was highly correlated with incidence of mitochondrial transfer from MSCs to chondrocytes. CONCLUSIONS: Overexpression of GJA1-20k in MSCs increases mitochondrial transfer to chondrocytes, highlighting GJA1-20k as a potential target for promoting mitochondrial transfer from MSCs as a regenerative therapy for cartilage tissue repair in OA.


Asunto(s)
Condrocitos , Conexina 43 , Células Madre Mesenquimatosas , Mitocondrias , Estrés Oxidativo , Humanos , Conexina 43/metabolismo , Conexina 43/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Condrocitos/metabolismo , Condrocitos/citología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Comunicación Celular , Técnicas de Cocultivo
3.
J Cell Mol Med ; 28(19): e18267, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39392081

RESUMEN

Intervertebral disc degeneration (IDD)-induced cervical and lumbar herniations are debilitating diseases. The function of intervertebral disc (IVD) mainly depends on the cartilage endplate (CEP), which provides support and waste removal. Therefore, IDD stems from the degeneration of CEP. Our study shows that the expression of lactotransferrin (LTF), an iron-binding protein, is significantly decreased in degenerated human and rat CEP tissues. In addition, we found that LTF knockdown promoted calcification, senescence, and extracellular matrix (ECM) degradation in human endplate chondrocytes. Furthermore, the in vivo experiment results confirmed that the JAK2/STAT3 pathway inhibitor AG490 significantly reversed these effects. In addition to investigating the role and mechanism of LTF in CEP degeneration, this study provides a theoretical basis and experimental evidence to improve IDD treatment.


Asunto(s)
Condrocitos , Matriz Extracelular , Degeneración del Disco Intervertebral , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/genética , Humanos , Matriz Extracelular/metabolismo , Ratas , Condrocitos/metabolismo , Condrocitos/patología , Cartílago/metabolismo , Cartílago/patología , Masculino , Senescencia Celular , Femenino , Ratas Sprague-Dawley , Persona de Mediana Edad , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Adulto
4.
Cell Mol Biol (Noisy-le-grand) ; 70(9): 37-43, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380280

RESUMEN

Osteoarthritis (OA) is a very common chronic joint condition marked by inflammation and cartilage loss. mTOR is a well-known mediator of inflammation, cell survival, and aging; however, its role in OA has not been determined. To explore the role of mTORC2 in OA-and associated pathological changes, we examined the contribution of mTORC2-mediated Akt, rictor and IκB-α/NF-κB p65 pathway in interleukin (IL)-1ß-treated human chondrocytes. We focused on the protein expression of proinflammatory cytokines and catabolic and apoptotic factors, including TNF-α, IL-6, iNOS, MMP13, Bax, and caspase3, which may occur through this signalling pathway in IL-1ß-treated chondrocytes. Chondrocytes were cultured and treated with either 2 ng/mL IL­1ß alone or in combination with increasing concentrations of JR-AB2-011 (50, 100, or 250 µM), a selective mTORC2 inhibitor. The protein levels of phosphorylated (p)­Akt, Akt, rictor, p-NF-κB p65, NF-κB p65, IκB-α, p-IκB-α, iNOS, MMP13, Bax, and caspase3 were evaluated by Western blotting. In IL-1ß-stimulated chondrocytes, mTORC2 activity was increased with increased phosphorylation of Akt and expression of rictor. IL-1ß increased the expression of p-IκBα, p-NF-κB p65, NF-κB p65, IL-6, TNF-α, iNOS, Bax, and caspase3 proteins and decreased the expression of IκB-α. All of these IL-1ß-induced alterations were prevented by JR-AB2-011. The main novel finding in the present study is that selective mTORC2 inhibition by JR-AB2-011 prevents the inflammatory, catabolic, and apoptotic responses induced by IL-1ß via modulation of IκB-α/NF-κB activity. Therefore, we demonstrated a previously unknown function of mTORC2 inhibition that seems to be a potential therapeutic target for OA.


Asunto(s)
Apoptosis , Condrocitos , Inflamación , Interleucina-1beta , Diana Mecanicista del Complejo 2 de la Rapamicina , Inhibidor NF-kappaB alfa , Transducción de Señal , Factor de Transcripción ReIA , Humanos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Interleucina-1beta/metabolismo , Apoptosis/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal/efectos de los fármacos , Inhibidor NF-kappaB alfa/metabolismo , Factor de Transcripción ReIA/metabolismo , Células Cultivadas , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Imidazoles , Quinoxalinas
5.
Cell Mol Life Sci ; 81(1): 419, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367925

RESUMEN

Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFß1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFß1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Fibronectinas , Células Madre Mesenquimatosas , Mutación , Humanos , Condrogénesis/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Proliferación Celular/genética , Femenino
6.
BMC Musculoskelet Disord ; 25(1): 769, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354427

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by chronic inflammation and progressive cartilage degradation, ultimately leading to joint dysfunction and disability. Oleocanthal (OC), a bioactive phenolic compound derived from extra virgin olive oil, has garnered significant attention due to its potent anti-inflammatory properties, which are comparable to those of non-steroidal anti-inflammatory drugs (NSAIDs). This study pioneers the investigation into the effects of OC on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway in OA, aiming to validate its efficacy as a functional food-based therapeutic intervention. METHODS: To simulate cartilage tissue in vitro, human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes. An inflammatory OA-like environment was induced in these chondrocytes using lipopolysaccharide (LPS) to mimic the pathological conditions of OA. The therapeutic effects of OC were evaluated by treating these inflamed chondrocytes with various concentrations of OC. The study focused on assessing key inflammatory markers, catabolic enzymes, and mitochondrial function to elucidate the protective mechanisms of OC. Mitochondrial function, specifically mitochondrial membrane potential (ΔΨm), was assessed using Rhodamine 123 staining, a fluorescent dye that selectively accumulates in active mitochondria. The integrity of ΔΨm serves as an indicator of mitochondrial and bioenergetic function. Additionally, Western blotting was employed to analyze protein expression levels, while real-time polymerase chain reaction (RT-PCR) was used to quantify gene expression of inflammatory cytokines and catabolic enzymes. Flow cytometry was utilized to measure cell viability and apoptosis, providing a comprehensive evaluation of OC's therapeutic effects on chondrocytes. RESULTS: The results demonstrated that OC significantly downregulated PAR-2 expression in a dose-dependent manner, leading to a substantial reduction in pro-inflammatory cytokines, including TNF-α, IL-1ß, and MCP-1. Furthermore, OC attenuated the expression of catabolic markers such as SOX4 and ADAMTS5, which are critically involved in cartilage matrix degradation. Importantly, OC was found to preserve mitochondrial membrane potential (ΔΨm) in chondrocytes subjected to inflammatory stress, as evidenced by Rhodamine 123 staining, indicating a protective effect on cellular bioenergetics. Additionally, OC modulated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Receptor Activator of Nuclear Factor Kappa-Β (RANK) pathway, suggesting a broader therapeutic action against the multifactorial pathogenesis of OA. CONCLUSIONS: This study is the first to elucidate the modulatory effects of OC on the PAR-2 mediated inflammatory pathway in OA, revealing its potential as a multifaceted therapeutic agent that not only mitigates inflammation but also protects cartilage integrity. The preservation of mitochondrial function and modulation of the RANKL/RANK pathway further underscores OC's comprehensive therapeutic potential in counteracting the complex pathogenesis of OA. These findings position OC as a promising candidate for integration into nutritional interventions aimed at managing OA. However, further research is warranted to fully explore OC's therapeutic potential across different stages of OA and its long-term effects in musculoskeletal disorders.


Asunto(s)
Antiinflamatorios , Condrocitos , Monoterpenos Ciclopentánicos , Células Madre Mesenquimatosas , Osteoartritis , Receptor PAR-2 , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Osteoartritis/metabolismo , Osteoartritis/tratamiento farmacológico , Receptor PAR-2/metabolismo , Antiinflamatorios/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Monoterpenos Ciclopentánicos/farmacología , Células Cultivadas , Alimentos Funcionales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Lipopolisacáridos/farmacología , Aldehídos , Fenoles
8.
Bone Res ; 12(1): 57, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394187

RESUMEN

The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.


Asunto(s)
Diferenciación Celular , Humanos , Animales , Epigénesis Genética , Osteoblastos/metabolismo , Osteoblastos/citología , Huesos/metabolismo , Huesos/citología , Condrocitos/metabolismo , Condrocitos/citología , Osteoclastos/metabolismo , Osteoclastos/citología , Reprogramación Celular/fisiología , Reprogramación Metabólica
9.
Nat Commun ; 15(1): 7712, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231947

RESUMEN

Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl ß-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3ß/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl ß-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.


Asunto(s)
Cartílago Articular , Senescencia Celular , Condrocitos , Ácidos Grasos Monoinsaturados , Osteoartritis , Animales , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Masculino , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Osteoartritis/prevención & control , Ratones , Senescencia Celular/efectos de los fármacos , Humanos , Ácidos Grasos Monoinsaturados/farmacología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Femenino
10.
Bone Res ; 12(1): 50, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231936

RESUMEN

Osteoarthritis (OA) is the most common form of arthritic disease, and phenotypic modification of chondrocytes is an important mechanism that contributes to the loss of cartilage homeostasis. This study identified that Fascin actin-bundling protein 1 (FSCN1) plays a pivotal role in regulating chondrocytes phenotype and maintaining cartilage homeostasis. Proteome-wide screening revealed markedly upregulated FSCN1 protein expression in human OA cartilage. FSCN1 accumulation was confirmed in the superficial layer of OA cartilage from humans and mice, primarily in dedifferentiated-like chondrocytes, associated with enhanced actin stress fiber formation and upregulated type I and III collagens. FSCN1-inducible knockout mice exhibited delayed cartilage degeneration following experimental OA surgery. Mechanistically, FSCN1 promoted actin polymerization and disrupted the inhibition of Decorin on TGF-ß1, leading to excessive TGF-ß1 production and ALK1/Smad1/5 signaling activation, thus, accelerated chondrocyte dedifferentiation. Intra-articular injection of FSCN1-overexpressing adeno-associated virus exacerbated OA progression in mice, which was mitigated by an ALK1 inhibitor. Moreover, FSCN1 inhibitor NP-G2-044 effectively reduced extracellular matrix degradation in OA mice, cultured human OA chondrocytes, and cartilage explants by suppressing ALK1/Smad1/5 signaling. These findings suggest that targeting FSCN1 represents a promising therapeutic approach for OA.


Asunto(s)
Proteínas Portadoras , Condrocitos , Proteínas de Microfilamentos , Osteoartritis , Animales , Humanos , Masculino , Ratones , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Condrocitos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Osteoartritis/patología , Osteoartritis/metabolismo , Osteoartritis/genética , Fenotipo , Receptores Odorantes , Transducción de Señal
11.
J Orthop Surg Res ; 19(1): 550, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252111

RESUMEN

Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration, destruction, and excessive ossification of articular cartilage. The prevalence of OA is rising annually, concomitant with the aging global population and increasing rates of obesity. This condition imposes a substantial and escalating burden on individual health, healthcare systems, and broader social and economic frameworks. The etiology of OA is multifaceted and not fully understood. Current research suggests that the death of chondrocytes, encompassing mechanisms such as cellular apoptosis, pyroptosis, autophagy, ferroptosis and cuproptosis, contributes to both the initiation and progression of the disease. These cell death pathways not only diminish the population of chondrocytes but also exacerbate joint damage through the induction of inflammation and other deleterious processes. This paper delineates the morphological characteristics associated with various modes of cell death and summarizes current research results on the molecular mechanisms of different cell death patterns in OA. The objective is to review the advancements in understanding chondrocyte cell death in OA, thereby offering novel insights for potential clinical interventions.


Asunto(s)
Muerte Celular , Condrocitos , Progresión de la Enfermedad , Osteoartritis , Condrocitos/patología , Humanos , Osteoartritis/patología , Osteoartritis/terapia , Muerte Celular/fisiología , Apoptosis/fisiología , Cartílago Articular/patología , Autofagia/fisiología , Animales , Piroptosis/fisiología , Ferroptosis/fisiología
12.
Int J Rheum Dis ; 27(9): e15323, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221886

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative disease. We explored the role and regulatory mechanisms of lncRNA-FAS-AS1 in OA progression. METHODS: We exposed human immortalized chondrocytes to IL-1ß for 24 h to induce an OA cell model. The target molecule levels were assessed using western blot and quantitative real-time PCR (RT-qPCR). Cell viability and apoptosis were measured using CCK-8 and flow cytometry. The m6A modification of FAS-AS1 was determined using MeRIP. We examined the binding relationships between FAS-AS1, Fragile X mental retardation 1 (FMR1), and A disintegrin and metalloproteinase 8 (ADAM8) using RIP and RNA pull-down. The OA animal model was established by separating the medial collateral ligament and medial meniscus. Safranin-O staining and Mankin's scale were employed to evaluate pathological changes within the cartilage. RESULTS: FAS-AS1, METTL14, and ADAM8 were upregulated, and the JAK/STAT3 signaling pathway was activated in OA mice and IL-1ß-induced chondrocytes. FAS-AS1 knockdown inhibited extracellular matrix degradation in IL-1ß-induced chondrocytes; however, ADAM8 overexpression reversed this effect. FAS-AS1 maintained the stability of ADAM8 mRNA by recruiting FMR1. METTL14 knockdown repressed FAS-AS1 expression in an m6A-dependent manner. FAS-AS1 overexpression reversed the inhibitory effects of METTL14 knockdown on JAK/STAT3 signaling and cartilage damage in the OA model both in vitro and in vivo. CONCLUSION: METTL14-mediated FAS-AS1 promotes OA progression through the FMR1/ADAM8/JAK/STAT3 axis.


Asunto(s)
Proteínas ADAM , Condrocitos , Progresión de la Enfermedad , Proteínas de la Membrana , ARN Largo no Codificante , Factor de Transcripción STAT3 , Transducción de Señal , Regulación hacia Arriba , Animales , Humanos , Masculino , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Adenosina/análogos & derivados , Apoptosis , Artritis Experimental/metabolismo , Artritis Experimental/genética , Artritis Experimental/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Línea Celular , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/patología , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
13.
Zhongguo Zhen Jiu ; 44(9): 1046-53, 2024 Sep 12.
Artículo en Chino | MEDLINE | ID: mdl-39318296

RESUMEN

OBJECTIVE: To observe the effects of electroacupuncture (EA) at "Jiaji" (EX-B 2) on extracellular matrix (ECM) of chondrocytes and inflammatory reaction in rabbits with Modic changes (MC) of cartilage endplate, and to explore the mechanism of EA in treating MC of endplate cartilage. METHODS: Eighteen male New Zealand white rabbits were randomly divided into a sham operation group, a model group and an EA group, 6 rabbits in each group. Based on the autoimmune theory, MC model was established by embedding autogenous nucleus pulposus in the rabbits of the model group and the EA group, based on autoimmunity. After successful modeling, EA was applied at bilateral "Jiaji" (EX-B 2) of L5 and L6 in the EA group, with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity, 20 min a time, once a day, 1-day interval was taken after continuous 6-day intervention, for 4 weeks totally. Before and after modeling, as well as before and after intervention, the comprehensive response score was observed. After modeling and intervention, magnetic resonance imaging (MRI) was used to observe the signal intensity of intervertebral disc and cartilage endplate. After intervention, the morphology of chondrocytes of cartilage endplate was observed by HE staining; the positive expression of a disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS5) and Aggrecan in the cartilage endplate was detected by immunohistochemistry; the levels of inflammatory factors i.e. interleukin-1ß (1L-1ß) and tumor necrosis factor-α (TNF-α) in the cartilage endplate were detected by ELISA; the protein expression of ADAMTS5, Aggrecan, matrix metalloproteinase-13 (MMP-13), IL-1ß and TNF-α in the cartilage endplate was detected by Western blot. RESULTS: Compared with the sham operation group, in the model group, the comprehensive response score was decreased (P<0.01); L5/L6 intervertebral disc and the cancellous bones of endplate vertebral body showed low signal and unclear boundary; the chondrocytes of the cartilage endplate increased significantly, the cells were enlarged and hypertrophic, and the nuclei were wrinkled and clustered; the positive expression of ADAMTS5 as well as the levels of IL-1ß and TNF-α were increased (P<0.01), while the positive expression of Aggrecan was decreased (P<0.01) in the cartilage endplate; the protein expression of ADAMTS5, MMP-13, IL-1ß and TNF-α was increased (P<0.01), while that of Aggrecan was decreased (P<0.01) in the cartilage endplate. Compared with the model group, in the EA group, the comprehensive response score was increased (P<0.01); the signal of L5/L6 intervertebral disc and the cancellous bones of endplate vertebral body was enhanced; the chondrocytes of the cartilage endplate were reduced, the nuclei were slightly crumpled and scattered; the positive expression of ADAMTS5 as well as the levels of IL-1ß and TNF-α were decreased (P<0.05, P<0.01), while the positive expression of Aggrecan was increased (P<0.01) in the cartilage endplate; the protein expression of ADAMTS5, MMP-13, IL-1ß and TNF-α was decreased (P<0.05, P<0.01), while that of Aggrecan was increased (P<0.05) in the cartilage endplate. CONCLUSION: EA at "Jiaji" (EX-B 2) can delay the MC of cartilage endplate. The mechanism may be related to inhibiting the degradation of ECM of chondrocytes and the secretion of inflammatory factors, and repairing the degeneration of endplate cartilage.


Asunto(s)
Puntos de Acupuntura , Condrocitos , Electroacupuntura , Matriz Extracelular , Animales , Conejos , Masculino , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Cartílago/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Inflamación/terapia , Inflamación/metabolismo , Agrecanos/metabolismo , Agrecanos/genética , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo
14.
Nutrients ; 16(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275306

RESUMEN

The extracellular matrix of cartilage primarily constitutes of collagen and aggrecan. Cartilage degradation starts with aggrecan loss in osteoarthritis (OA). Vitamin D (VD) plays an essential role in several inflammation-related diseases and can protect the collagen in cartilage during OA. The present study focused on the role of VD in aggrecan turnover of human articular chondrocytes treated with tumor necrosis factor α (TNF-α) and the possible mechanism. Treatment with different doses of VD and different periods of intervention with TNF-α and TGF-ß1 receptor (TGFßR1) inhibitor SB525334 were investigated. The viability of human chondrocytes and extracellular secretion of TGF-ß1 were measured. The expression of intracellular TGFßR1 and VD receptor was examined. Transcriptional and translational levels of aggrecan and the related metabolic factors were analyzed. The results showed that TNF-α markedly reduced the viability, TGFßR1 expressions and aggrecan levels of human chondrocytes, and increased disintegrin and metalloproteinase with thrombospondin motifs. The alterations were partially inhibited by VD treatment. Furthermore, the effects of VD were blocked by the TGFßR1 inhibitor SB525334 in TNF-α-treated cells. VD may prevent proteoglycan loss due to TNF-α via TGF-ß1 signaling in human chondrocytes.


Asunto(s)
Agrecanos , Cartílago Articular , Condrocitos , Proteoglicanos , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa , Vitamina D , Humanos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Agrecanos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vitamina D/farmacología , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Cartílago Articular/metabolismo , Cartílago Articular/efectos de los fármacos , Células Cultivadas , Supervivencia Celular/efectos de los fármacos , Osteoartritis/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Calcitriol/metabolismo
15.
Stem Cell Res Ther ; 15(1): 308, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285485

RESUMEN

BACKGROUND: Articular cartilage degeneration can result from injury, age, or arthritis, causing significant joint pain and disability without surgical intervention. Currently, the only FDA cell-based therapy for articular cartilage injury is Autologous Chondrocyte Implantation (ACI); however, this procedure is costly, time-intensive, and requires multiple treatments. Mesenchymal stromal cells (MSCs) are an attractive alternative autologous therapy due to their availability and ability to robustly differentiate into chondrocytes for transplantation with good safety profiles. However, treatment outcomes are variable due to donor-to-donor variability as well as intrapopulation heterogeneity and unstandardized MSC manufacturing protocols. Process improvements that reduce cell heterogeneity while increasing donor cell numbers with improved chondrogenic potential during expansion culture are needed to realize the full potential of MSC therapy. METHODS: In this study, we investigated the potential of MSC metabolic modulation during expansion to enhance their chondrogenic commitment by varying the nutrient composition, including glucose, pyruvate, glutamine, and ascorbic acid in culture media. We tested the effect of metabolic modulation in short-term (one passage) and long-term (up to seven passages). We measured metabolic state, cell size, population doubling time, and senescence and employed novel tools including micro-magnetic resonance relaxometry (µMRR) relaxation time (T2) to characterize the effects of AA on improved MSC expansion and chondrogenic potential. RESULTS: Our data show that the addition of 1 mM L-ascorbic acid-2-phosphate (AA) to cultures for one passage during MSC expansion prior to initiation of differentiation improves chondrogenic differentiation. We further demonstrate that AA treatment reduced the proportion of senescent cells and cell heterogeneity also allowing for long-term expansion that led to a > 300-fold increase in yield of MSCs with enhanced chondrogenic potential compared to untreated cells. AA-treated MSCs with improved chondrogenic potential showed a robust shift in metabolic profile to OXPHOS and higher µMRR T2 values, identifying critical quality attributes that could be implemented in MSC manufacturing for articular cartilage repair. CONCLUSIONS: Our results suggest an improved MSC manufacturing process that can enhance chondrogenic potential by targeting MSC metabolism and integrating process analytic tools during expansion.


Asunto(s)
Cartílago Articular , Condrocitos , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Cartílago Articular/metabolismo , Humanos , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/efectos de los fármacos , Diferenciación Celular , Células Cultivadas , Proliferación Celular , Trasplante de Células Madre Mesenquimatosas/métodos , Animales
16.
Front Endocrinol (Lausanne) ; 15: 1450007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290327

RESUMEN

Oxytocin (OT) is a posterior pituitary hormone that, in addition to its role in regulating childbirth and lactation, also exerts direct regulatory effects on the skeleton through peripheral OT and oxytocin receptor (OTR). Bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes, and adipocytes all express OT and OTR. OT upregulates RUNX2, BMP2, ALP, and OCN, thereby enhancing the activity of BMSCs and promoting their differentiation towards OB rather than adipocytes. OT also directly regulates OPG/RANKL to inhibit adipocyte generation, increase the expression of SOX9 and COMP, and enhance chondrocyte differentiation. OB can secrete OT, exerting influence on the surrounding environment through autocrine and paracrine mechanisms. OT directly increases OC formation through the NκB/MAP kinase signaling pathway, inhibits osteoclast proliferation by triggering cytoplasmic Ca2+ release and nitric oxide synthesis, and has a dual regulatory effect on OCs. Under the stimulation of estrogen, OB synthesizes OT, amplifying the biological effects of estrogen and OT. Mediated by estrogen, the OT/OTR forms a feedforward loop with OB. Apart from estrogen, OT also interacts with arginine vasopressin (AVP), prostaglandins (PGE2), leptin, and adiponectin to regulate bone metabolism. This review summarizes recent research on the regulation of bone metabolism by OT and OTR, aiming to provide insights into their clinical applications and further research.


Asunto(s)
Huesos , Oxitocina , Receptores de Oxitocina , Oxitocina/metabolismo , Humanos , Animales , Huesos/metabolismo , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/genética , Osteoblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoclastos/metabolismo , Condrocitos/metabolismo , Osteogénesis/fisiología
17.
Ann Clin Lab Sci ; 54(4): 466-473, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39293849

RESUMEN

OBJECTIVE: Osteoporosis is a common bone disease. miR-26b regulates OA-induced osteogenesis and induces osteoporosis. miR-26b is elevated in bone marrow stromal cells (BMSCs) during bone formation; however, we haven't fully revealed whether it is directly involved in this process, which was the aim of this study. METHODS: An oophorectomized rat model of osteoporosis was used. BMSCs were detected by electron microscopy of exosomes, and mir-26b levels were detected by RT-PCR. The correlation between mir-26b and sirt2 was detected by bioinformatics and luciferase activity analysis. Bone microstructure and cartilage moisture content were also measured. The proliferation ability of mir-26b and sirt2 on chondrocytes was detected by cell viability test and flow cytometry. RESULTS: Western blotting further proved that the surface markers of isolated granular exosomes were positive for CD63 and CD81. Further analysis showed that exosomes' diameters ranged from 50 to 150 nm. Mir-26b is elevated in BMSC, and its mimics can promote proliferation. Luciferase showed that mir-26b targets sirt2 and the effect of elevated mir-26b on chondrocytes was completely reversed by silencing sirt2. The proliferation ability of C28/I2 chondrocytes in Mir MICs group was lower than other two groups, while that in Mir inhibition group had stronger proliferation ability than in the Mir NC group. mir-26b was highly expressed in BMSC, indicating that mir-26b comes from secretion of BMSC. CONCLUSION: Mir-26 is highly expressed in OP. mir-26b can therefore target sirt2 to promote proliferation and inhibit apoptosis of OP chondrocytes. It may offer a possibility of a treatment of OP in the future.


Asunto(s)
Proliferación Celular , Condrocitos , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Animales , MicroARNs/genética , MicroARNs/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/patología , Osteoporosis/genética , Osteoporosis/metabolismo , Ratas , Exosomas/metabolismo , Ratas Sprague-Dawley , Femenino , Sirtuina 2/metabolismo , Sirtuina 2/genética
18.
Bone Res ; 12(1): 53, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242551

RESUMEN

Intervertebral disc degeneration (IDD) is a major cause of discogenic pain, and is attributed to the dysfunction of nucleus pulposus, annulus fibrosus, and cartilaginous endplate (CEP). Osteopontin (OPN), a glycoprotein, is highly expressed in the CEP. However, little is known on how OPN regulates CEP homeostasis and degeneration, contributing to the pathogenesis of IDD. Here, we investigate the roles of OPN in CEP degeneration in a mouse IDD model induced by lumbar spine instability and its impact on the degeneration of endplate chondrocytes (EPCs) under pathological conditions. OPN is mainly expressed in the CEP and decreases with degeneration in mice and human patients with severe IDD. Conditional Spp1 knockout in EPCs of adult mice enhances age-related CEP degeneration and accelerates CEP remodeling during IDD. Mechanistically, OPN deficiency increases CCL2 and CCL5 production in EPCs to recruit macrophages and enhances the activation of NLRP3 inflammasome and NF-κB signaling by facilitating assembly of IRAK1-TRAF6 complex, deteriorating CEP degeneration in a spatiotemporal pattern. More importantly, pharmacological inhibition of the NF-κB/NLRP3 axis attenuates CEP degeneration in OPN-deficient IDD mice. Overall, this study highlights the importance of OPN in maintaining CEP and disc homeostasis, and proposes a promising therapeutic strategy for IDD by targeting the NF-κB/NLRP3 axis.


Asunto(s)
Inflamasomas , Degeneración del Disco Intervertebral , Macrófagos , Ratones Noqueados , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Osteopontina , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Cartílago/patología , Cartílago/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Inflamasomas/metabolismo , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Macrófagos/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Osteopontina/metabolismo , Osteopontina/deficiencia , Osteopontina/genética
19.
Sci Rep ; 14(1): 21414, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271714

RESUMEN

Low back pain (LBP) is largely attributed to intervertebral disc degeneration (IVDD), of which the endplate changes are an important component. However, the alterations in cell fate and properties within the endplates during degeneration remain unknown. Here, we firstly performed the single-cell RNA-sequencing analysis (scRNA-seq) of the cells focusing on degenerative human endplates. By unsupervised clustering of the 8,534 single-cell based on the gene expression, we identified nine distinct cell types. We employed Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, and the single-cell regulatory network inference and clustering (SCENIC) to determine the enriched pathways and transcriptional activities across seven chondrocyte subpopulations. Furthermore, two cell fates of chondrocyte differentiation were found by trajectory analysis, one was enriched in inflammation-related genes, and the other was related to extracellular matrix (ECM). Additionally, the intercellular interactions of macrophages (MA) and chondrocytes, T cells/natural killer cells (T/NK) and chondrocytes were examined by ligand-receptor pairs analysis, showing the important regulative function of FN1 from MA and CD74 from T/NK during endplate degeneration. Overall, our findings provide novel perspectives on the endplate degeneration at the single-cell level and a whole-transcriptome size.


Asunto(s)
Diferenciación Celular , Condrocitos , Degeneración del Disco Intervertebral , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Análisis de la Célula Individual/métodos , Condrocitos/metabolismo , Condrocitos/patología , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Femenino , Masculino , Redes Reguladoras de Genes , Persona de Mediana Edad , Macrófagos/metabolismo , Adulto , Disco Intervertebral/patología , Disco Intervertebral/metabolismo
20.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273085

RESUMEN

Inflammation models are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis. TNFα (tumor necrosis factor alpha) plays an important role in the inflammatory process. Current inflammation models lack uniformity and make comparisons difficult. Therefore, this study aimed to systematically investigate whether the effects of TNFα are concentration-dependent and whether chondrocyte expansion has an effect on the inflammatory model. Bovine chondrocytes were enzymatically isolated, expanded to passages 1-3, and transferred into a 3D pellet culture. Chondrocyte pellets were stimulated with recombinant bovine TNFα at different concentrations for 48 h to induce inflammation. Gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein (COMP)), catabolic (matrix metalloproteinases (MMP3, MMP13)), dedifferentiation (collagen 1) markers, inflammation markers (interleukin-6 (IL-6), nuclear factor kappa B (NFkB), cyclooxygenase-2 (COX), prostaglandin-E-synthase-2 (PTGES2)), and the apoptosis marker caspase 3 was determined. At the protein level, concentrations of IL-6, nitric oxide (NO), and sulfated glycosaminoglycans (GAG) were evaluated. Statistical analysis was performed using the independent t-test, and significance was defined as p < 0.05. In general, TNFα caused a decrease in anabolic markers and an increase in the expression of catabolic and inflammatory markers. There was a concentration-dependent threshold of 10 ng/mL to induce significant inflammatory effects. Most of the markers analyzed showed TNFα concentration-dependent effects (COMP, PRG4, AGN, Col1, MMP3, and NFkB). There was a statistical influence of selected gene expression markers from different passages on the TNFα chondrocyte inflammation model, including Col2, MMP13, IL-6, NFkB, COX2, and PTGES2. Considering the expression of collagen 2 and MMP3, passage 3 chondrocytes showed a higher sensitivity to TNFα stimulation compared to passages 1 and 2. On the other hand, MMP13, IL-6, NFkB, and caspase 3 gene expression were lower in P3 chondrocytes compared to the other passages. On the protein level, inflammatory effects showed a similar pattern, with cytokine effects starting at 10 ng/mL and differences between the passages. TNFα had a detrimental effect on cartilage, with a clear threshold observed at 10 ng/mL. Although TNFα effects showed concentration-dependent patterns, this was not consistent for all markers. The selected passage showed a clear influence, especially on inflammation markers. Further experiments were warranted to explore the effects of TNFα concentration and passage in long-term stimulation.


Asunto(s)
Condrocitos , Inflamación , Factor de Necrosis Tumoral alfa , Animales , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Bovinos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Inflamación/metabolismo , Inflamación/patología , Células Cultivadas , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA