Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.380
Filtrar
1.
Cells ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727293

RESUMEN

BACKGROUND: Since cytokine receptor-like factor 1 (CRLF1) has been implicated in tissue regeneration, we hypothesized that CRLF1 released by mesenchymal stem cells can promote the repair of osteochondral defects. METHODS: The degree of a femoral osteochondral defect repair in rabbits after intra-articular injections of bone marrow-derived mesenchymal stem cells (BMSCs) that were transduced with empty adeno-associated virus (AAV) or AAV containing CRLF1 was determined by morphological, histological, and micro computer tomography (CT) analyses. The effects of CRLF1 on chondrogenic differentiation of BMSCs or catabolic events of interleukin-1beta-treated chondrocyte cell line TC28a2 were determined by alcian blue staining, gene expression levels of cartilage and catabolic marker genes using real-time PCR analysis, and immunoblot analysis of Smad2/3 and STAT3 signaling. RESULTS: Intra-articular injections of BMSCs overexpressing CRLF1 markedly improved repair of a rabbit femoral osteochondral defect. Overexpression of CRLF1 in BMSCs resulted in the release of a homodimeric CRLF1 complex that stimulated chondrogenic differentiation of BMSCs via enhancing Smad2/3 signaling, whereas the suppression of CRLF1 expression inhibited chondrogenic differentiation. In addition, CRLF1 inhibited catabolic events in TC28a2 cells cultured in an inflammatory environment, while a heterodimeric complex of CRLF1 and cardiotrophin-like Cytokine (CLC) stimulated catabolic events via STAT3 activation. CONCLUSION: A homodimeric CRLF1 complex released by BMSCs enhanced the repair of osteochondral defects via the inhibition of catabolic events in chondrocytes and the stimulation of chondrogenic differentiation of precursor cells.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Células Madre Mesenquimatosas , Animales , Conejos , Células Madre Mesenquimatosas/metabolismo , Condrogénesis/genética , Condrocitos/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Citocinas/genética , Fémur/patología , Transducción de Señal , Línea Celular , Trasplante de Células Madre Mesenquimatosas
2.
Sci Rep ; 14(1): 10182, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702382

RESUMEN

Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Condrogénesis , Campos Electromagnéticos , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Supervivencia Celular/efectos de la radiación
3.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727280

RESUMEN

Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.


Asunto(s)
Amnios , Diferenciación Celular , Condrogénesis , Humanos , Amnios/citología , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos
4.
Sci Rep ; 14(1): 11991, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796487

RESUMEN

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Asunto(s)
Alginatos , Reactores Biológicos , Condrogénesis , Hidrogeles , Células Madre Mesenquimatosas , Microesferas , Ingeniería de Tejidos , Alginatos/química , Ingeniería de Tejidos/métodos , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Cartílago/metabolismo , Cartílago/citología , Andamios del Tejido/química , Matriz Extracelular Descelularizada/química , Factor de Crecimiento Transformador beta1/metabolismo , Diferenciación Celular , Células Cultivadas , Factor de Crecimiento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
5.
Biomaterials ; 309: 122616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38776592

RESUMEN

The gel microsphere culture system (GMCS) showed various advantages for mesenchymal stem cell (MSC) expansion and delivery, such as high specific surface area, small and regular shape, extensive adjustability, and biomimetic properties. Although various technologies and materials have been developed to promote the development of gel microspheres, the differences in the biological status of MSCs between the GMCS and the traditional Petri dish culture system (PDCS) are still unknown, hindering gel microspheres from becoming a culture system as widely used as petri dishes. In the previous study, an excellent "all-in-one" GMCS has been established for the expansion of human adipose-derived MSCs (hADSCs), which showed convenient cell culture operation. Here, we performed transcriptome and proteome sequencing on hADSCs cultured on the "all-in-one" GMCS and the PDCS. We found that hADSCs cultured in the GMCS kept in an undifferentiation status with a high stemness index, whose transcriptome profile is closer to the adipose progenitor cells (APCs) in vivo than those cultured in the PDCS. Further, the high stemness status of hADSCs in the GMCS was maintained through regulating cell-ECM interaction. For application, bilayer scaffolds were constructed by osteo- and chondro-differentiation of hADSCs cultured in the GMCS and the PDCS. The effect of osteochondral regeneration of the bilayer scaffolds in the GMCS group was better than that in the PDCS group. This study revealed the high stemness and excellent functionality of MSCs cultured in the GMCS, which promoted the application of gel microspheres in cell culture and tissue regeneration.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Células Madre Mesenquimatosas , Microesferas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Animales , Matriz Extracelular/metabolismo , Células Cultivadas , Andamios del Tejido/química , Geles/química , Condrogénesis , Osteogénesis , Técnicas de Cultivo de Célula/métodos
6.
Am J Sports Med ; 52(7): 1707-1718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702986

RESUMEN

BACKGROUND: The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration. HYPOTHESIS: Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR. STUDY DESIGN: Controlled laboratory study. METHODS: BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation. RESULTS: BMSCs labeled with 100 µg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model. CONCLUSION: Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model. CLINICAL RELEVANCE: This study provides an alternative strategy for improving TBI healing after RCR.


Asunto(s)
Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Lesiones del Manguito de los Rotadores , Andamios del Tejido , Cicatrización de Heridas , Animales , Lesiones del Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/terapia , Células Madre Mesenquimatosas/fisiología , Ratas , Masculino , Manguito de los Rotadores/cirugía , Trasplante de Células Madre Mesenquimatosas , Nanopartículas Magnéticas de Óxido de Hierro , Diferenciación Celular , Condrogénesis
7.
Biofabrication ; 16(3)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697073

RESUMEN

Osteochondral tissue (OC) repair remains a significant challenge in the field of musculoskeletal tissue engineering. OC tissue displays a gradient structure characterized by variations in both cell types and extracellular matrix components, from cartilage to the subchondral bone. These functional gradients observed in the native tissue have been replicated to engineer OC tissuein vitro. While diverse fabrication methods have been employed to create these microenvironments, emulating the natural gradients and effective regeneration of the tissue continues to present a significant challenge. In this study, we present the design and development of CMC-silk interpenetrating (IPN) hydrogel with opposing dual biochemical gradients similar to native tissue with the aim to regenerate the complete OC unit. The gradients of biochemical cues were generated using an in-house-built extrusion system. Firstly, we fabricated a hydrogel that exhibits a smooth transition of sulfated carboxymethyl cellulose (sCMC) and TGF-ß1 (SCT gradient hydrogel) from the upper to the lower region of the IPN hydrogel to regenerate the cartilage layer. Secondly, a hydrogel with a hydroxyapatite (HAp) gradient (HAp gradient hydrogel) from the lower to the upper region was fabricated to facilitate the regeneration of the subchondral bone layer. Subsequently, we developed a dual biochemical gradient hydrogel with a smooth transition of sCMC + TGF-ß1 and HAp gradients in opposing directions, along with a blend of both biochemical cues in the middle. The results showed that the dual biochemical gradient hydrogels with biochemical cues corresponding to the three zones (i.e. cartilage, interface and bone) of the OC tissue led to differentiation of bone-marrow-derived mesenchymal stem cells to zone-specific lineages, thereby demonstrating their efficacy in directing the fate of progenitor cells. In summary, our study provided a simple and innovative method for incorporating gradients of biochemical cues into hydrogels. The gradients of biochemical cues spatially guided the differentiation of stem cells and facilitated tissue growth, which would eventually lead to the regeneration of the entire OC tissue with a smooth transition from cartilage (soft) to bone (hard) tissues. This promising approach is translatable and has the potential to generate numerous biochemical and biophysical gradients for regeneration of other interface tissues, such as tendon-to-muscle and ligament-to-bone.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Animales , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Condrogénesis/efectos de los fármacos , Cartílago/citología , Cartílago/fisiología , Diferenciación Celular/efectos de los fármacos , Huesos/citología , Durapatita/química , Durapatita/farmacología
8.
Colloids Surf B Biointerfaces ; 239: 113959, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772085

RESUMEN

Cartilage repair remains a major challenge in clinical trials. These current cartilage repair materials can not effectively promote chondrocyte generation, limiting their practical application in cartilage repair. In this work, we develop an implantable scaffold of RADA-16 peptide hydrogel incorporated with TGF-ß1 to provide a microenvironment for stem cell-directed differentiation and chondrocyte adhesion growth. The longest release of growth factor TGF-ß1 release can reach up to 600 h under physiological conditions. TGF-ß1/RADA-16 hydrogel was demonstrated to be a lamellar porous structure. Based on the cell culture with hBMSCs, TGF-ß1/RADA-16 hydrogel showed excellent ability to promote cell proliferation, directed differentiation into chondrocytes, and functional protein secretion. Within 14 days, 80% of hBMSCs were observed to be directed to differentiate into vigorous chondrocytes in the co-culture of TGF-ß1/RADA-16 hydrogels with hBMSCs. Specifically, these newly generated chondrocytes can secrete and accumulate large amounts of collagen II within 28 days, which can effectively promote the formation of cartilage tissue. Finally, the exploration of RADA-16 hydrogel-based scaffolds incorporated with TGF-ß1 bioactive species would further greatly promote the practical clinical trials of cartilage remediation, which might have excellent potential to promote cartilage regeneration in areas of cartilage damage.


Asunto(s)
Cartílago , Diferenciación Celular , Condrocitos , Hidrogeles , Regeneración , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Regeneración/efectos de los fármacos , Andamios del Tejido/química , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/citología , Condrocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/fisiología , Cartílago/metabolismo , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Células Cultivadas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Animales , Condrogénesis/efectos de los fármacos , Péptidos
9.
Connect Tissue Res ; 65(3): 237-252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739041

RESUMEN

PURPOSE/AIM OF STUDY: During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS: ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS: shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Vía de Señalización Wnt , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/citología , Diferenciación Celular/efectos de los fármacos , Animales , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Condrogénesis/efectos de los fármacos , Línea Celular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo
10.
J Mater Chem B ; 12(22): 5360-5376, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38700242

RESUMEN

Articular cartilage tissue has limited self-repair capabilities, with damage frequently progressing to irreversible degeneration. Engineered tissues constructed through bioprinting and embedded with stem cell aggregates offer promising therapeutic alternatives. Aggregates of bone marrow mesenchymal stromal cells (BMSCs) demonstrate enhanced and more rapid chondrogenic differentiation than isolated cells, thus facilitating cartilage repair. However, it remains a key challenge to precisely control biochemical microenvironments to regulate cellular adhesion and cohesion within bioprinted matrices simultaneously. Herein, this work reports a bioprintable hydrogel matrix with high cellular adhesion and aggregation properties for cartilage repair. The hydrogel comprises an enhanced cell-adhesive gelatin methacrylate and a cell-cohesive chitosan methacrylate (CHMA), both of which are subjected to photo-initiated crosslinking. By precisely adjusting the CHMA content, the mechanical stability and biochemical cues of the hydrogels are finely tuned to promote cellular aggregation, chondrogenic differentiation and cartilage repair implantation. Multi-layer constructs encapsulated with BMSCs, with high cell viability reaching 91.1%, are bioprinted and photo-crosslinked to support chondrogenic differentiation for 21 days. BMSCs rapidly form aggregates and display efficient chondrogenic differentiation both on the hydrogels and within bioprinted constructs, as evidenced by the upregulated expression of Sox9, Aggrecan and Collagen 2a1 genes, along with high protein levels. Transplantation of these BMSC-laden bioprinted hydrogels into cartilaginous defects demonstrates effective hyaline cartilage repair. Overall, this cell-responsive hydrogel scaffold holds immense promise for applications in cartilage tissue engineering.


Asunto(s)
Bioimpresión , Condrogénesis , Hidrogeles , Células Madre Mesenquimatosas , Regeneración , Condrogénesis/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Células Madre Mesenquimatosas/citología , Regeneración/efectos de los fármacos , Cartílago Articular , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Diferenciación Celular/efectos de los fármacos , Ingeniería de Tejidos , Metacrilatos/química , Supervivencia Celular/efectos de los fármacos , Cartílago/metabolismo , Cartílago/citología , Células Cultivadas , Humanos
11.
J Mater Chem B ; 12(22): 5513-5524, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38745541

RESUMEN

BACKGROUND: In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS: The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS: Compared to the TGF-ß3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION: Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.


Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Tabique Nasal , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tabique Nasal/citología , Tabique Nasal/química , Animales , Porcinos , Células Cultivadas , Andamios del Tejido/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Ingeniería de Tejidos , Cordón Umbilical/citología
12.
Chemosphere ; 359: 142299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761826

RESUMEN

Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1ß, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.


Asunto(s)
Condrogénesis , Larva , Gas Mostaza , Proteínas Proto-Oncogénicas c-fos , Factor de Transcripción AP-1 , Pez Cebra , Animales , Gas Mostaza/toxicidad , Larva/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Condrogénesis/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
13.
Biomed Mater ; 19(4)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38729192

RESUMEN

In this study, we coated electrospun polycaprolactone (PCL) fibers with polydopamine (PDA) to modify their hydrophobicity and fabricated a matrix for culturing mesenchymal stem cells (MSCs). Additionally, we incorporated Arg-Gly-Asp (RGD) peptides into PDA to enhance MSCs culture performance on PCL fibers. PDA and RGD were successfully coated in one step by immersing the electrospun fibers in a coating solution, without requiring an additional surface activation process. The characteristics of functionalized PCL fibers were analyzed by scanning electron microscopy with energy-dispersive x-ray analysis, Fourier transform infrared spectroscopy, water contact angle measurement, and fluorescence measurements using a carboxylic-modified fluorescent microsphere. MSCs cultured on the modified PCL fibers demonstrated enhanced cell adhesion, proliferation, and osteogenic- and chondrogenic differentiation. This study provides insight into potential applications for scaffold fabrication in MSCs-based tissue engineering, wound dressing, implantation, and a deeper understanding of MSCs behaviorin vitro.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Proliferación Celular , Indoles , Células Madre Mesenquimatosas , Osteogénesis , Poliésteres , Polímeros , Ingeniería de Tejidos , Andamios del Tejido , Células Madre Mesenquimatosas/citología , Humanos , Polímeros/química , Indoles/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Poliésteres/química , Osteogénesis/efectos de los fármacos , Células Cultivadas , Oligopéptidos/química , Oligopéptidos/farmacología , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Condrogénesis/efectos de los fármacos , Técnicas de Cultivo de Célula , Interacciones Hidrofóbicas e Hidrofílicas
14.
Elife ; 122024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690987

RESUMEN

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Asunto(s)
Condrocitos , Microtia Congénita , Proteínas Quinasas Dependientes de AMP Cíclico , Transducción de Señal , Animales , Condrocitos/metabolismo , Microtia Congénita/genética , Microtia Congénita/metabolismo , Ratones , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Humanos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Condrogénesis/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética
15.
BMC Musculoskelet Disord ; 25(1): 253, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561728

RESUMEN

BACKGROUND: The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS: CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS: The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION: The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Animales , Ratones , Cartílago Articular/metabolismo , Antígeno CD146/metabolismo , Diferenciación Celular , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea/metabolismo , Condrogénesis , ARN Mensajero/metabolismo , Fenómenos Magnéticos , Lípidos
16.
Bone Joint J ; 106-B(5 Supple B): 32-39, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688500

RESUMEN

Aims: The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI). Methods: This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain. Results: A total of 12 hips from 11 patients were included (ten males, one female, mean age 26.8 years (SD 5.0), mean follow-up 6.2 years (SD 5.2 months)). The mean postoperative MOCART score was 66.3 (SD 16.3). None of the patients required conversion to total hip arthroplasty. Two patients had anterior impingement. External hip rotation was moderately limited in four patients. There was a correlation between MOCART and follow-up time (rs = -0.61; p = 0.035), but not with initial cartilage damage, age, BMI, or imaging time delay before surgery. PROMs improved significantly: OHS from 37.4 to 42.7 (p = 0.014) and COMI from 4.1 to 1.6 (p = 0.025). There was no correlation between MOCART and PROMs. Conclusion: Based on the reported mid-term results, we consider AMIC as an encouraging treatment option for large cartilage lesions of the hip. Nonetheless, the clinical evidence of AMIC in FAI patients remains to be determined, ideally in the context of randomized controlled trials.


Asunto(s)
Cartílago Articular , Condrogénesis , Pinzamiento Femoroacetabular , Humanos , Pinzamiento Femoroacetabular/cirugía , Pinzamiento Femoroacetabular/diagnóstico por imagen , Femenino , Masculino , Adulto , Estudios Retrospectivos , Cartílago Articular/cirugía , Trasplante Autólogo , Resultado del Tratamiento , Medición de Resultados Informados por el Paciente , Rango del Movimiento Articular , Adulto Joven , Imagen por Resonancia Magnética , Estudios de Seguimiento
17.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563479

RESUMEN

Osteoarthritis (OA) is a long-term, persistent joint disorder characterized by bone and cartilage degradation, resulting in tightness, pain, and restricted movement. Current attempts in cartilage regeneration are cell-based therapies using stem cells. Multipotent stem cells, such as mesenchymal stem cells (MSCs), and pluripotent stem cells, such as embryonic stem cells (ESCs), have been used to regenerate cartilage. However, since the discovery of human-induced pluripotent stem cells (hiPSCs) in 2007, it was seen as a potential source for regenerative chondrogenic therapy as it overcomes the ethical issues surrounding the use of ESCs and the immunological and differentiation limitations of MSCs. This literature review focuses on chondrogenic differentiation and 3D bioprinting technologies using hiPSCS, suggesting them as a viable source for successful tissue engineering. METHODS: A literature search was conducted using scientific search engines, PubMed, MEDLINE, and Google Scholar databases with the terms 'Cartilage tissue engineering' and 'stem cells' to retrieve published literature on chondrogenic differentiation and tissue engineering using MSCs, ESCs, and hiPSCs. RESULTS: hiPSCs may provide an effective and autologous treatment for focal chondral lesions, though further research is needed to explore the potential of such technologies. CONCLUSIONS: This review has provided a comprehensive overview of these technologies and the potential applications for hiPSCs in regenerative medicine.


Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Medicina Regenerativa/métodos , Cartílago/metabolismo , Cartílago/citología , Bioimpresión/métodos , Impresión Tridimensional , Regeneración
18.
Biomater Adv ; 160: 213849, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599041

RESUMEN

Spheroids derived from human mesenchymal stem cells (hMSCs) are of limited use for cartilage regeneration, as the viability of the cells progressively decreases during the period required for chondrogenic differentiation (21 days). In this work, spheroids based on hMSCs and a lactose-modified chitosan (CTL) were formed by seeding cells onto an air-dried coating of CTL. The polymer coating can inhibit cell adhesion and it is simultaneously incorporated into spheroid structure. CTL-spheroids were characterized from a morphological and biological perspective, and their properties were compared with those of spheroids obtained by seeding the cells onto a non-adherent surface (agar gel). Compared to the latter, smaller and more viable spheroids form in the presence of CTL as early as 4 days of culture. At this time point, analysis of stem cells differentiation in spheroids showed a remarkable increase in collagen type-2 (COL2A1) gene expression (~700-fold compared to day 0), whereas only a 2-fold increase was observed in the control spheroids at day 21. These results were confirmed by histological and transmission electron microscopy (TEM) analyses, which showed that in CTL-spheroids an early deposition of collagen with a banding structure already occurred at day 7. Overall, these results support the use of CTL-spheroids as a novel system for cartilage regeneration, characterized by increased cell viability and differentiation capacity within a short time-frame. This will pave the way for approaches aimed at increasing the success rate of procedures and reducing the time required for tissue regeneration.


Asunto(s)
Diferenciación Celular , Quitosano , Condrogénesis , Lactosa , Células Madre Mesenquimatosas , Esferoides Celulares , Quitosano/farmacología , Quitosano/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Humanos , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/citología , Lactosa/farmacología , Lactosa/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética
19.
Biomater Adv ; 160: 213857, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657287

RESUMEN

Articular cartilage injury impairs joint function and necessitates orthopedic intervention to restore the structure and function of the cartilage. Extracellular matrix (ECM) scaffolds derived from bone marrow mesenchymal stem cells (BMSCs) can effectively promote cell adhesion, proliferation, and chondrogenesis. However, pre-shaped ECM scaffolds have limited applicability due to their poor fit with the irregular surface of most articular cartilage defects. In this study, we fabricated an injectable active ECM hydrogel from autologous BMSCs-derived ECM by freeze-drying, liquid nitrogen milling, and enzymatic digestion. Moreover, our in vitro and in vivo results demonstrated that the prepared hydrogel enhanced chondrocyte adhesion and proliferation, chondrogenesis, cartilage regeneration, and integration with host tissue, respectively. These findings indicate that active ECM components can provide trophic support for cell proliferation and differentiation, restoring the structure and function of damaged cartilage.


Asunto(s)
Cartílago Articular , Condrocitos , Condrogénesis , Matriz Extracelular , Hidrogeles , Células Madre Mesenquimatosas , Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Animales , Células Madre Mesenquimatosas/citología , Cartílago Articular/fisiología , Cartílago Articular/lesiones , Hidrogeles/química , Andamios del Tejido/química , Condrocitos/trasplante , Ingeniería de Tejidos/métodos , Proliferación Celular , Diferenciación Celular , Conejos , Adhesión Celular , Humanos , Inyecciones
20.
Stem Cell Res Ther ; 15(1): 124, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679735

RESUMEN

BACKGROUND: Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro. METHODS: rhBMP-2 and hBM-MSCs were tested in an in vivo subcutaneous implantation model to assess their ability to form mature bone and undergo multilineage differentiation. Then, the hBM-MSCs were treated in vitro with rhBMP-2 for short-term or long-term cell-culture periods, alone or in combination with osteogenic, adipogenic or chondrogenic media, aiming to determine the role of rhBMP-2 in these differentiation processes. RESULTS: The data indicate that hBM-MSCs respond to rhBMP-2 in the short term but fail to differentiate in long-term culture conditions; these cells overexpress the rhBMP-2 target genes DKK1, HEY-1 and SOST osteogenesis inhibitors. However, in combination with other differentiation signals, rhBMP-2 acts as a potentiator of multilineage differentiation, not only of osteogenesis but also of adipogenesis and chondrogenesis, both in vitro and in vivo. CONCLUSIONS: Altogether, our data indicate that rhBMP-2 alone is unable to induce in vitro osteogenic terminal differentiation of hBM-MSCs, but synergizes with other signals to potentiate multiple differentiation phenotypes. Therefore, rhBMP-2 triggers on hBM-MSCs different specific phenotype differentiation depending on the signalling environment.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Proteínas Recombinantes , Humanos , Adipogénesis/efectos de los fármacos , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA