Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Neurobiol Dis ; 196: 106521, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697575

RESUMEN

BACKGROUND: Lesion network mapping (LNM) is a popular framework to assess clinical syndromes following brain injury. The classical approach involves embedding lesions from patients into a normative functional connectome and using the corresponding functional maps as proxies for disconnections. However, previous studies indicated limited predictive power of this approach in behavioral deficits. We hypothesized similarly low predictiveness for overall survival (OS) in glioblastoma (GBM). METHODS: A retrospective dataset of patients with GBM was included (n = 99). Lesion masks were registered in the normative space to compute disconnectivity maps. The brain functional normative connectome consisted in data from 173 healthy subjects obtained from the Human Connectome Project. A modified version of the LNM was then applied to core regions of GBM masks. Linear regression, classification, and principal component (PCA) analyses were conducted to explore the relationship between disconnectivity and OS. OS was considered both as continuous and categorical (low, intermediate, and high survival) variable. RESULTS: The results revealed no significant associations between OS and network disconnection strength when analyzed at both voxel-wise and classification levels. Moreover, patients stratified into different OS groups did not exhibit significant differences in network connectivity patterns. The spatial similarity among the first PCA of network maps for each OS group suggested a lack of distinctive network patterns associated with survival duration. CONCLUSIONS: Compared with indirect structural measures, functional indirect mapping does not provide significant predictive power for OS in patients with GBM. These findings are consistent with previous research that demonstrated the limitations of indirect functional measures in predicting clinical outcomes, underscoring the need for more comprehensive methodologies and a deeper understanding of the factors influencing clinical outcomes in this challenging disease.


Asunto(s)
Neoplasias Encefálicas , Conectoma , Glioblastoma , Imagen por Resonancia Magnética , Humanos , Glioblastoma/mortalidad , Glioblastoma/diagnóstico por imagen , Glioblastoma/fisiopatología , Masculino , Femenino , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/diagnóstico por imagen , Persona de Mediana Edad , Conectoma/métodos , Estudios Retrospectivos , Adulto , Anciano , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
2.
Clin Neurol Neurosurg ; 241: 108305, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713964

RESUMEN

OBJECTIVE: Establish the evolution of the connectome before and after resection of motor area glioma using a comparison of connectome maps and high-definition differential tractography (DifT). METHODS: DifT was done using normalized quantitative anisotropy (NQA) with DSI Studio. The quantitative analysis involved obtaining mean NQA and fractional anisotropy (FA) values for the disrupted pathways tracing the corticospinal tract (CST), and white fiber network changes over time. RESULTS: We described the baseline tractography, DifT, and white matter network changes from two patients who underwent resection of an oligodendroglioma (Case 1) and an IDH mutant astrocytoma, grade 4 (Case 2). CASE 1: There was a slight decrease in the diffusion signal of the compromised CST in the immediate postop. The NQA and FA values increased at the 1-year follow-up (0.18 vs. 0.32 and 0.35 vs. 0.44, respectively). CASE 2: There was an important decrease in the immediate postop, followed by an increase in the follow-up. In the 1-year follow-up, the patient presented with radiation necrosis and tumor recurrence, increasing NQA from 0.18 in the preop to 0.29. Fiber network analysis: whole-brain connectome comparison demonstrated no significant changes in the immediate postop. However, in the 1-year follow up there was a notorious reorganization of the fibers in both cases, showing the decreased density of connections. CONCLUSIONS: Connectome studies and DifT constitute new potential tools to predict early reorganization changes in a patient's networks, showing the brain plasticity capacity, and helping to establish timelines for the progression of the tumor and treatment-induced changes.


Asunto(s)
Neoplasias Encefálicas , Conectoma , Imagen de Difusión Tensora , Estudios de Factibilidad , Glioma , Humanos , Imagen de Difusión Tensora/métodos , Conectoma/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/cirugía , Glioma/diagnóstico por imagen , Glioma/patología , Masculino , Persona de Mediana Edad , Adulto , Corteza Motora/diagnóstico por imagen , Corteza Motora/cirugía , Corteza Motora/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Femenino , Oligodendroglioma/cirugía , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/patología , Astrocitoma/cirugía , Astrocitoma/diagnóstico por imagen , Astrocitoma/patología
3.
Comput Biol Med ; 175: 108416, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657465

RESUMEN

In light of extensive work that has created a wide range of techniques for predicting the course of multiple sclerosis (MS) disease, this paper attempts to provide an overview of these approaches and put forth an alternative way to predict the disease progression. For this purpose, the existing methods for estimating and predicting the course of the disease have been categorized into clinical, radiological, biological, and computational or artificial intelligence-based markers. Weighing the weaknesses and strengths of these prognostic groups is a profound method that is yet in need and works directly at the level of diseased connectivity. Therefore, we propose using the computational models in combination with established connectomes as a predictive tool for MS disease trajectories. The fundamental conduction-based Hodgkin-Huxley model emerged as promising from examining these studies. The advantage of the Hodgkin-Huxley model is that certain properties of connectomes, such as neuronal connection weights, spatial distances, and adjustments of signal transmission rates, can be taken into account. It is precisely these properties that are particularly altered in MS and that have strong implications for processing, transmission, and interactions of neuronal signaling patterns. The Hodgkin-Huxley (HH) equations as a point-neuron model are used for signal propagation inside a small network. The objective is to change the conduction parameter of the neuron model, replicate the changes in myelin properties in MS and observe the dynamics of the signal propagation across the network. The model is initially validated for different lengths, conduction values, and connection weights through three nodal connections. Later, these individual factors are incorporated into a small network and simulated to mimic the condition of MS. The signal propagation pattern is observed after inducing changes in conduction parameters at certain nodes in the network and compared against a control model pattern obtained before the changes are applied to the network. The signal propagation pattern varies as expected by adapting to the input conditions. Similarly, when the model is applied to a connectome, the pattern changes could give an insight into disease progression. This approach has opened up a new path to explore the progression of the disease in MS. The work is in its preliminary state, but with a future vision to apply this method in a connectome, providing a better clinical tool.


Asunto(s)
Simulación por Computador , Modelos Neurológicos , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/diagnóstico por imagen , Progresión de la Enfermedad , Conectoma/métodos
4.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38627091

RESUMEN

Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into how the endocrine system dynamically regulates aspects of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the global efficiency of large-scale brain networks in a woman sampled every 24 h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6 and 7 A.M. and nadir between 7 and 8 P.M. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 h across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, 17ß-estradiol-the primary form of estrogen-and cortisol. Standardized regression analyses revealed widespread associations between testosterone, estradiol, and cortisol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in the Dorsal Attention Network was coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and a naturally cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence in both sexes and to a heightened degree in the male. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are associated with patterns of whole-brain functional connectivity.


Asunto(s)
Encéfalo , Ritmo Circadiano , Estradiol , Hidrocortisona , Imagen por Resonancia Magnética , Testosterona , Humanos , Masculino , Ritmo Circadiano/fisiología , Estradiol/metabolismo , Adulto , Testosterona/metabolismo , Hidrocortisona/metabolismo , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/metabolismo , Conectoma/métodos , Femenino , Adulto Joven , Vías Nerviosas/fisiología
5.
Brain Imaging Behav ; 18(2): 387-395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147273

RESUMEN

We aim to investigate the alterations in gray matter for subjective cognitive decline (SCD) and mild cognitive impairment (MCI) from the perspective of the human connectome. High-resolution T1-weighted images were acquired from 54 patients with SCD, 95 patients with MCI, and 65 healthy controls (HC). Morphological brain networks (MBN) were constructed using similarities in the distribution of gray matter volumes between regions. The strength of morphological connections and topographic metrics derived from the graph-theoretical analysis were compared. Furthermore, we assessed the relationship between the observed morphological abnormalities and disease severity. According to the results, we found a significantly decreased morphological connection between the somatomotor network and ventral attention network in SCD compared to HC and MCI compared to SCD. The graph-theoretic analysis illustrated disruptions in the whole network organization, where the normalized shortest path increased and the global efficiency (Eg) decreased in MCI compared to SCD. In addition, Montreal Cognitive Assessment scores of SCD patients had a significantly negative correlation with Eg. The primary limitations of the present study include the cross-sectional design, no enrolled AD patients, no assessment of amyloidosis, and the need for more comprehensive neuropsychological tests. Our findings indicate the abnormalities of morphological networks at early stages in the AD continuum, which could be interpreted as compensatory changes to retain a normal level of cognitive function. The present study could provide new insight into the mechanism of AD.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Conectoma , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Femenino , Masculino , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Anciano , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estudios Transversales , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología
6.
Cereb Cortex ; 33(21): 10813-10819, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37702246

RESUMEN

Pituitary adenomas (PAs) can exert pressure on the optic apparatus, leading to visual impairment. A subset of patients may observe a swift improvement in their vision following surgery. Nevertheless, the alterations in the structural connectome during the early postoperative period remain largely unexplored. The research employed probabilistic tractography, graph theoretical analysis, and statistical methods on preoperative and postoperative structural magnetic resonance imaging and diffusion tensor images from 13 PA patients. Postoperative analysis revealed an increase in global and local efficiency, signifying improved network capacity for parallel information transfer and fault tolerance, respectively. Enhanced clustering coefficient and reduced shortest path length were also observed, suggesting a more regular network organization and shortened communication steps within the brain network. Furthermore, alterations in node graphical properties were detected, implying a restructuring of the network's control points, possibly contributing to more efficient visual processing. These findings propose that rapid vision recovery post-surgery may be associated with significant reorganization of the brain's structural connectome, enhancing the efficiency and adaptability of the network, thereby facilitating improved visual processing.


Asunto(s)
Conectoma , Neoplasias Hipofisarias , Humanos , Conectoma/métodos , Imagen de Difusión Tensora/métodos , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/cirugía , Neoplasias Hipofisarias/complicaciones , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
7.
J Alzheimers Dis ; 94(4): 1577-1586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37458032

RESUMEN

BACKGROUND: Cognitive impairment is the most common clinical manifestation of ischemic leukoaraiosis (ILA), but the underlying neurobiological pathways have not been well elucidated. Recently, it was thought that ILA is a "disconnection syndrome". Disorganized brain connectome were considered the key neuropathology underlying cognitive deficits in ILA patients. OBJECTIVE: We aimed to detect the disruption of network hubs in ILA patients using a new analytical method called voxel-based eigenvector centrality (EC) mapping. METHODS: Subjects with moderate to severe white matters hyperintensities (Fazekas score ≥3) and healthy controls (HCs) (Fazekas score = 0) were included in the study. The resting-state functional magnetic resonance imaging and the EC mapping approach were performed to explore the alteration of whole-brain network connectivity in ILA patients. RESULTS: Relative to the HCs, the ILA patients exhibited poorer cognitive performance in episodic memory, information processing speed, and executive function (all ps < 0.0125). Additionally, compared with HCs, the ILA patients had lower functional connectivity (i.e., EC values) in the medial parts of default-mode network (i.e., bilateral posterior cingulate gyrus and ventral medial prefrontal cortex [vMPFC]). Intriguingly, the functional connectivity strength at the right vMPFC was positively correlated with executive function deficit in the ILA patients. CONCLUSION: The findings suggested disorganization of the hierarchy of the default-mode regions within the whole-brain network in patients with ILA and advanced our understanding of the neurobiological mechanism underlying executive function deficit in ILA.


Asunto(s)
Conectoma , Leucoaraiosis , Humanos , Función Ejecutiva , Leucoaraiosis/diagnóstico por imagen , Leucoaraiosis/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico , Conectoma/métodos
8.
Acta Neurochir (Wien) ; 165(9): 2489-2500, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37199758

RESUMEN

BACKGROUND: Understanding the structural connectivity of white matter tracts (WMT) and their related functions is a prerequisite to implementing an "a la carte" "connectomic approach" to glioma surgery. However, accessible resources facilitating such an approach are lacking. Here we present an educational method that is readily accessible, simple, and reproducible that enables the visualization of WMTs on individual patient images via an atlas-based approach. METHODS: Our method uses the patient's own magnetic resonance imaging (MRI) images and consists of three main steps: data conversion, normalization, and visualization; these are accomplished using accessible software packages and WMT atlases. We implement our method on three common cases encountered in glioma surgery: a right supplementary motor area tumor, a left insular tumor, and a left temporal tumor. RESULTS: Using patient-specific perioperative MRIs with open-sourced and co-registered atlas-derived WMTs, we highlight the critical subnetworks requiring specific surgical monitoring identified intraoperatively using direct electrostimulation mapping with cognitive monitoring. The aim of this didactic method is to provide the neurosurgical oncology community with an accessible and ready-to-use educational tool, enabling neurosurgeons to improve their knowledge of WMTs and to better learn their oncologic cases, especially in glioma surgery using awake mapping. CONCLUSIONS: Taking no more than 3-5 min per patient and irrespective of their resource settings, we believe that this method will enable junior surgeons to develop an intuition, and a robust 3-dimensional imagery of WMT by regularly applying it to their cases both before and after surgery to develop an "a la carte" connectome-based perspective to glioma surgery.


Asunto(s)
Neoplasias Encefálicas , Conectoma , Glioma , Sustancia Blanca , Humanos , Conectoma/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Procedimientos Neuroquirúrgicos/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Sustancia Blanca/patología , Mapeo Encefálico/métodos , Encéfalo/cirugía
9.
Sci Rep ; 13(1): 5847, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037859

RESUMEN

Cannabis is one of the most used and commodified illicit substances worldwide, especially among young adults. The neurobiology mechanism of cannabis is yet to be identified particularly in youth. The purpose of this study was to concurrently measure alterations in brain structural and functional connectivity in cannabis users using resting-state functional magnetic resonance images (rs-fMRI) and diffusion-weighted images (DWI) from a group of 73 cannabis users (age 22-36, 19 female) in comparison with 73 healthy controls (age 22-36, 14 female) from Human Connectome Project (HCP). Several significant differences were observed in local structural/functional network measures (e.g. degree and clustering coefficient), being prominent in the insular and frontal opercular cortex and lateral/medial temporal cortex. The rich-club organization of structural networks revealed a normal trend, distributed within bilateral frontal, temporal and occipital regions. However, minor differences were found between the two groups in the superior and inferior temporal gyri. Functional rich-club nodes were mostly located within parietal and posterior areas, with minor differences between the groups found mainly in the centro-temporal and parietal regions. Regional network measures of structural/functional networks were associated with times used cannabis (TUC) in several regions. Although the structural/functional network in both groups showed small-world property, no differences between cannabis users and healthy controls were found regarding the global network measures, showing no association with cannabis use. After FDR correction, all of the significant associations between network measures and TUC were found to be insignificant, except for the association between degree and TUC within the presubiculum region. To recap, our findings revealed alterations in local topological properties of structural and functional networks in cannabis users, although their global brain network organization remained intact.


Asunto(s)
Cannabis , Conectoma , Fumar Marihuana , Adulto Joven , Adolescente , Humanos , Femenino , Adulto , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Conectoma/métodos
10.
Schizophr Res ; 255: 110-121, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989668

RESUMEN

Brain dysconnectivity has been posited as a biological marker of schizophrenia. Emerging schizophrenia connectome research has focused on rich-club organization, a tendency for brain hubs to be highly-interconnected but disproportionately vulnerable to dysconnectivity. However, less is known about rich-club organization in individuals at clinical high-risk for psychosis (CHR-P) and how it compares with abnormalities early in schizophrenia (ESZ). Combining diffusion tensor imaging (DTI) and magnetic resonance imaging (MRI), we examined rich-club and global network organization in CHR-P (n = 41) and ESZ (n = 70) relative to healthy controls (HC; n = 74) after accounting for normal aging. To characterize rich-club regions, we examined rich-club MRI morphometry (thickness, surface area). We also examined connectome metric associations with symptom severity, antipsychotic dosage, and in CHR-P specifically, transition to a full-blown psychotic disorder. ESZ had fewer connections among rich-club regions (ps < .024) relative to HC and CHR-P, with this reduction specific to the rich-club even after accounting for other connections in ESZ relative to HC (ps < .048). There was also cortical thinning of rich-club regions in ESZ (ps < .013). In contrast, there was no strong evidence of global network organization differences among the three groups. Although connectome abnormalities were not present in CHR-P overall, CHR-P converters to psychosis (n = 9) had fewer connections among rich-club regions (ps < .037) and greater modularity (ps < .037) compared to CHR-P non-converters (n = 19). Lastly, symptom severity and antipsychotic dosage were not significantly associated with connectome metrics (ps < .012). Findings suggest that rich-club and connectome organization abnormalities are present early in schizophrenia and in CHR-P individuals who subsequently transition to psychosis.


Asunto(s)
Antipsicóticos , Conectoma , Trastornos Psicóticos , Esquizofrenia , Humanos , Adolescente , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/complicaciones , Conectoma/métodos , Imagen de Difusión Tensora/métodos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/complicaciones , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
11.
Biol Psychiatry ; 94(4): 352-360, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740206

RESUMEN

Connectomics allows mapping of cells and their circuits at the nanometer scale in volumes of approximately 1 mm3. Given that the human cerebral cortex can be 3 mm in thickness, larger volumes are required. Larger-volume circuit reconstructions of human brain are limited by 1) the availability of fresh biopsies; 2) the need for excellent preservation of ultrastructure, including extracellular space; and 3) the requirement of uniform staining throughout the sample, among other technical challenges. Cerebral cortical samples from neurosurgical patients are available owing to lead placement for deep brain stimulation. Described here is an immersion fixation, heavy metal staining, and tissue processing method that consistently provides excellent ultrastructure throughout human and rodent surgical brain samples of volumes 2 × 2 × 2 mm3 and up to 37 mm3 with one dimension ≤2 mm. This method should allow synapse-level circuit analysis in samples from patients with psychiatric and neurologic disorders.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Inmersión , Microscopía Electrónica , Coloración y Etiquetado , Encéfalo , Biopsia
12.
Cereb Cortex ; 33(3): 881-894, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35254408

RESUMEN

The approximate number system (ANS) is vital for survival and reproduction in animals and is crucial for constructing abstract mathematical abilities in humans. Most previous neuroimaging studies focused on identifying discrete brain regions responsible for the ANS and characterizing their functions in numerosity perception. However, a neuromarker to characterize an individual's ANS acuity is lacking, especially one based on whole-brain functional connectivity (FC). Here, based on the resting-state functional magnetic resonance imaging (rs-fMRI) data obtained from a large sample, we identified a distributed brain network (i.e. a numerosity network) using a connectome-based predictive modeling (CPM) analysis. The summed FC strength within the numerosity network reliably predicted individual differences in ANS acuity regarding behavior, as measured using a nonsymbolic number-comparison task. Furthermore, in an independent dataset of the Human Connectome Project (HCP), we found that the summed FC strength within the numerosity network also specifically predicted individual differences in arithmetic skills, but not domain-general cognitive abilities. Therefore, our findings revealed that the identified numerosity network could serve as an applicable neuroimaging-based biomarker of nonverbal number acuity and arithmetic skills.


Asunto(s)
Conectoma , Animales , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cognición , Neuroimagen
13.
Psychol Med ; 53(11): 5155-5166, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36046918

RESUMEN

BACKGROUND: Persistent psychological distress associated with the coronavirus disease 2019 (COVID-19) pandemic has been well documented. This study aimed to identify pre-COVID brain functional connectome that predicts pandemic-related distress symptoms among young adults. METHODS: Baseline neuroimaging studies and assessment of general distress using the Depression, Anxiety and Stress Scale were performed with 100 healthy individuals prior to wide recognition of the health risks associated with the emergence of COVID-19. They were recontacted for the Impact of Event Scale-Revised and the Posttraumatic Stress Disorder Checklist in the period of community-level outbreaks, and for follow-up distress evaluation again 1 year later. We employed the network-based statistic approach to identify connectome that predicted the increase of distress based on 136-region-parcellation with assigned network membership. Predictive performance of connectome features and causal relations were examined by cross-validation and mediation analyses. RESULTS: The connectome features that predicted emergence of distress after COVID contained 70 neural connections. Most within-network connections were located in the default mode network (DMN), and affective network-DMN and dorsal attention network-DMN links largely constituted between-network pairs. The hippocampus emerged as the most critical hub region. Predictive models of the connectome remained robust in cross-validation. Mediation analyses demonstrated that COVID-related posttraumatic stress partially explained the correlation of connectome to the development of general distress. CONCLUSIONS: Brain functional connectome may fingerprint individuals with vulnerability to psychological distress associated with the COVID pandemic. Individuals with brain neuromarkers may benefit from the corresponding interventions to reduce the risk or severity of distress related to fear of COVID-related challenges.


Asunto(s)
COVID-19 , Conectoma , Adulto Joven , Humanos , Pandemias , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Ansiedad/epidemiología , Ansiedad/psicología , Imagen por Resonancia Magnética
14.
Psychol Med ; 53(12): 5786-5799, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36177890

RESUMEN

BACKGROUND: Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM). METHODS: CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants. RESULTS: The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect. CONCLUSIONS: These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.


Asunto(s)
Trastorno por Atracón , Conectoma , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cognición , Trastorno por Atracón/psicología
15.
Brain ; 146(4): 1714-1727, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36189936

RESUMEN

Glioblastoma is characterized by diffuse infiltration into the surrounding tissue along white matter tracts. Identifying the invisible tumour invasion beyond focal lesion promises more effective treatment, which remains a significant challenge. It is increasingly accepted that glioblastoma could widely affect brain structure and function, and further lead to reorganization of neural connectivity. Quantifying neural connectivity in glioblastoma may provide a valuable tool for identifying tumour invasion. Here we propose an approach to systematically identify tumour invasion by quantifying the structural connectome in glioblastoma patients. We first recruit two independent prospective glioblastoma cohorts: the discovery cohort with 117 patients and validation cohort with 42 patients. Next, we use diffusion MRI of healthy subjects to construct tractography templates indicating white matter connection pathways between brain regions. Next, we construct fractional anisotropy skeletons from diffusion MRI using an improved voxel projection approach based on the tract-based spatial statistics, where the strengths of white matter connection and brain regions are estimated. To quantify the disrupted connectome, we calculate the deviation of the connectome strengths of patients from that of the age-matched healthy controls. We then categorize the disruption into regional disruptions on the basis of the relative location of connectome to focal lesions. We also characterize the topological properties of the patient connectome based on the graph theory. Finally, we investigate the clinical, cognitive and prognostic significance of connectome metrics using Pearson correlation test, mediation test and survival models. Our results show that the connectome disruptions in glioblastoma patients are widespread in the normal-appearing brain beyond focal lesions, associated with lower preoperative performance (P < 0.001), impaired cognitive function (P < 0.001) and worse survival (overall survival: hazard ratio = 1.46, P = 0.049; progression-free survival: hazard ratio = 1.49, P = 0.019). Additionally, these distant disruptions mediate the effect on topological alterations of the connectome (mediation effect: clustering coefficient -0.017, P < 0.001, characteristic path length 0.17, P = 0.008). Further, the preserved connectome in the normal-appearing brain demonstrates evidence of connectivity reorganization, where the increased neural connectivity is associated with better overall survival (log-rank P = 0.005). In conclusion, our connectome approach could reveal and quantify the glioblastoma invasion distant from the focal lesion and invisible on the conventional MRI. The structural disruptions in the normal-appearing brain were associated with the topological alteration of the brain and could indicate treatment target. Our approach promises to aid more accurate patient stratification and more precise treatment planning.


Asunto(s)
Conectoma , Glioblastoma , Sustancia Blanca , Humanos , Conectoma/métodos , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen de Difusión Tensora/métodos , Estudios Prospectivos , Encéfalo/patología , Sustancia Blanca/patología
16.
Brain Imaging Behav ; 16(4): 1873-1883, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35397062

RESUMEN

Neuroimaging studies have identified alterations in functional connectivity between specific brain regions in patients with unilateral hearing loss (UHL) and different influence of the side of UHL on neural plasticity. However, little is known about changes of whole-brain functional networks in patients with UHL and whether differences exist in topological organization between right-sided UHL (RUHL) and left-sided UHL (LUHL). To address this issue, we employed resting-state fMRI (rs-fMRI) and graph-theoretical approaches to investigate the topological alterations of brain functional connectomes in patients with RUHL and LUHL. Data from 44 patients with UHL (including 22 RUHL patients and 22 LUHL patients) and 37 healthy control subjects (HCs) were collected. Functional brain networks were constructed for each participant, following by graph-theoretical network analyses at connectional and global (e.g., small-worldness) levels. The correlations between brain network topologies and clinical variables were further studied. Using network-based analysis, we found a subnetwork in the visual cortex which had significantly lower connectivity strength in patients with RUHL as compared to HCs. At global level, all participants showed small-world architecture in functional brain networks, however, significantly lower normalized clustering coefficient and small-worldness were observed in patients with RUHL than in HCs. Moreover, these abnormal network metrics were demonstrated to be correlated with the clinical variables and cognitive performance of patients with RUHL. Notably, no significant alterations in the functional brain networks were found in patients with LUHL. Our findings demonstrate that RUHL (rather than LUHL) is accompanied with aberrant topological organization of the functional brain connectome, indicating different pathophysiological mechanisms between RUHL and LUHL from a viewpoint of network topology.


Asunto(s)
Encéfalo , Pérdida Auditiva Unilateral , Neuroma Acústico , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos
17.
Medicine (Baltimore) ; 101(11)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35356911

RESUMEN

ABSTRACT: Tuberous sclerosis complex (TSC) is a rare genetic disorder with multisystem involvement. TSC is characterized by benign hamartomas in multiple organs, including the brain, and its clinical phenotypes may be associated with abnormal functional connections. We aimed to use resting-state functional connectivity to provide findings of disrupted functional brain networks in TSC patients using graph theoretical analysis (GTA) and network-based statistic (NBS) analysis.Forty TSC patients (age = 24.11+/-11.44 years old) and 18 age-matched (25.13+/- 10.01 years old) healthy controls were recruited; they underwent resting-state functional magnetic resonance imaging using a 3T magnetic resonance imaging scanner. After image preprocessing and removing physiological noises, GTA was used to calculate the topological parameters of the brain network. NBS analysis was then used to determine the differences in cerebrum functional connectivity between the 2 groups.In GTA, several topological parameters, including the clustering coefficient, local efficiency, transitivity, and modularity, were better in controls than in TSC patients (P < .05). In NBS analysis, the edges of the brain networks between the groups were compared. One subnetwork showed more edges in controls than in TSC patients (P < .05), including the connections from the frontal lobe to the temporal and parietal lobe.The study results provide the findings on disrupted functional connectivity and organization in TSC patients compared with controls. The findings may help better understand the underlying physiological mechanisms of brain connection in TSC.


Asunto(s)
Conectoma , Esclerosis Tuberosa , Encéfalo/patología , Conectoma/métodos , Interpretación Estadística de Datos , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Tuberosa/diagnóstico por imagen , Esclerosis Tuberosa/patología
18.
Sci Rep ; 12(1): 3039, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197490

RESUMEN

The human brain is a highly plastic 'complex' network-it is highly resilient to damage and capable of self-reorganisation after a large perturbation. Clinically, neurological deficits secondary to iatrogenic injury have very few active treatments. New imaging and stimulation technologies, though, offer promising therapeutic avenues to accelerate post-operative recovery trajectories. In this study, we sought to establish the safety profile for 'interventional neurorehabilitation': connectome-based therapeutic brain stimulation to drive cortical reorganisation and promote functional recovery post-craniotomy. In n = 34 glioma patients who experienced post-operative motor or language deficits, we used connectomics to construct single-subject cortical networks. Based on their clinical and connectivity deficit, patients underwent network-specific transcranial magnetic stimulation (TMS) sessions daily over five consecutive days. Patients were then assessed for TMS-related side effects and improvements. 31/34 (91%) patients were successfully recruited and enrolled for TMS treatment within two weeks of glioma surgery. No seizures or serious complications occurred during TMS rehabilitation and 1-week post-stimulation. Transient headaches were reported in 4/31 patients but improved after a single session. No neurological worsening was observed while a clinically and statistically significant benefit was noted in 28/31 patients post-TMS. We present two clinical vignettes and a video demonstration of interventional neurorehabilitation. For the first time, we demonstrate the safety profile and ability to recruit, enroll, and complete TMS acutely post-craniotomy in a high seizure risk population. Given the lack of randomisation and controls in this study, prospective randomised sham-controlled stimulation trials are now warranted to establish the efficacy of interventional neurorehabilitation following craniotomy.


Asunto(s)
Craneotomía/rehabilitación , Rehabilitación Neurológica/métodos , Anciano , Afasia/etiología , Afasia/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Mapeo Encefálico , Conectoma/métodos , Femenino , Glioma/complicaciones , Glioma/cirugía , Hemiplejía/etiología , Hemiplejía/terapia , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Recuperación de la Función , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos
19.
Sci Rep ; 12(1): 2449, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165360

RESUMEN

Resting state fMRI has been employed to identify alterations in functional connectivity within or between brain regions following acute and chronic exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive component in cannabis. Most studies focused a priori on a limited number of local brain areas or circuits, without considering the impact of cannabis on whole-brain network organization. The present study attempted to identify changes in the whole-brain human functional connectome as assessed with ultra-high field (7T) resting state scans of cannabis users (N = 26) during placebo and following vaporization of cannabis. Two distinct data-driven methodologies, i.e. network-based statistics (NBS) and connICA, were used to identify changes in functional connectomes associated with acute cannabis intoxication and history of cannabis use. Both methodologies revealed a broad state of hyperconnectivity within the entire range of major brain networks in chronic cannabis users compared to occasional cannabis users, which might be reflective of an adaptive network reorganization following prolonged cannabis exposure. The connICA methodology also extracted a distinct spatial connectivity pattern of hypoconnectivity involving the dorsal attention, limbic, subcortical and cerebellum networks and of hyperconnectivity between the default mode and ventral attention network, that was associated with the feeling of subjective high during THC intoxication. Whole-brain network approaches identified spatial patterns in functional brain connectomes that distinguished acute from chronic cannabis use, and offer an important utility for probing the interplay between short and long-term alterations in functional brain dynamics when progressing from occasional to chronic use of cannabis.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Cannabis/química , Conectoma/métodos , Dronabinol/administración & dosificación , Fumar Marihuana/fisiopatología , Fumar Marihuana/psicología , Extractos Vegetales/administración & dosificación , Psicotrópicos/administración & dosificación , Adulto , Atención/efectos de los fármacos , Cognición/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Emociones/efectos de los fármacos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
20.
PLoS One ; 17(2): e0247343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35180211

RESUMEN

Magnetic Resonance Imaging (MRI) motion artefacts frequently complicate structural and diffusion MRI analyses. While diffusion imaging is easily 'scrubbed' of motion affected volumes, the same is not true for T1w or T2w 'structural' images. Structural images are critical to most diffusion-imaging pipelines thus their corruption can lead to disproportionate data loss. To enable diffusion-image processing when structural images are missing or have been corrupted, we propose a means by which synthetic structural images can be generated from diffusion MRI. This technique combines multi-tissue constrained spherical deconvolution, which is central to many existing diffusion analyses, with the Bloch equations that allow simulation of MRI intensities for given scanner parameters and magnetic resonance (MR) tissue properties. We applied this technique to 32 scans, including those acquired on different scanners, with different protocols and with pathology present. The resulting synthetic T1w and T2w images were visually convincing and exhibited similar tissue contrast to acquired structural images. These were also of sufficient quality to drive a Freesurfer-based tractographic analysis. In this analysis, probabilistic tractography connecting the thalamus to the primary sensorimotor cortex was delineated with Freesurfer, using either real or synthetic structural images. Tractography for real and synthetic conditions was largely identical in terms of both voxels encountered (Dice 0.88-0.95) and mean fractional anisotropy (intrasubject absolute difference 0.00-0.02). We provide executables for the proposed technique in the hope that these may aid the community in analysing datasets where structural image corruption is common, such as studies of children or cognitively impaired persons.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Líquido Cefalorraquídeo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Epilepsia/diagnóstico por imagen , Glioma/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anisotropía , Artefactos , Estudios de Casos y Controles , Simulación por Computador , Conectoma/métodos , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA