Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.169
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Geochem Health ; 46(8): 268, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954115

RESUMEN

This study employed the groundwater pollution index to assess the appropriateness of groundwater for human consumption. Additionally, the hazard index was utilized to evaluate the potential non-carcinogenic risks associated with fluoride and nitrate exposure among children, women, and men in the study region. A total of 103 samples were collected from the Aurangabad district of Bihar. The analyzed samples were assessed using several physicochemical parameters. Major cations in the groundwater are Ca2+ > Mg2+ and major anions are HCO3- > Cl- > SO42- > NO3- > F- > PO43-. Around 17% of the collected groundwater samples surpassed the allowable BIS concentration limits for Nitrate, while approximately 11% surpassed the allowed limits for fluoride concentration. Principal component analysis was utilized for its efficacy and efficiency in the analytical procedure. Four principal components were recovered that explained 69.06% of the total variance. The Hazard Quotient (HQ) of nitrate varies between 0.03-1.74, 0.02-1.47, and 0.03-1.99 for females, males, and children, respectively. The HQ of fluoride varies between 0.04-1.59, 0.04-1.34, and 0.05-1.82 for females, males, and children, respectively. The central part of the district was at high risk according to the spatial distribution maps of the total hazard index (THI). Noncarcinogenic risks due to THI are 47%, 37%, and 28% for children, females, and males, respectively. According to the human health risk assessment, children are more prone to getting affected by polluted water than adults. The groundwater pollution index (GPI) value ranges from 0.46 to 2.27 in the study area. Seventy-five percent of the samples fell under minor pollution and only one fell under high pollution. The spatial distribution of GPI in the research area shows that the central region is highly affected, which means that this water is unsuitable for drinking purposes.


Asunto(s)
Fluoruros , Agua Subterránea , Nitratos , Contaminantes Químicos del Agua , Agua Subterránea/química , Fluoruros/análisis , Humanos , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Femenino , Medición de Riesgo , Masculino , Niño , India , Sistemas de Información Geográfica , Análisis de Componente Principal , Monitoreo del Ambiente/métodos , Adulto
2.
Environ Geochem Health ; 46(8): 278, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958772

RESUMEN

Miyun Reservoir plays a vital role as a source of drinking water for Beijing, however it grapples with nitrogen contamination issues that have been poorly understood in terms of their distribution, source, and associated health risks. This study addresses this knowledge gap by employing data on nitrate nitrogen (NO3--N), chloride (Cl-), dual isotopic compositions of NO3- (δ15N-NO3- and δ18O-NO3-) data in water ecosystems, systematically exploring the distribution, source and health risk of nitrogen contaminants in Miyun reservoir watersheds. The results showed that over the past 30 years, surface water runoff has exhibited a notable decrease and periodic fluctuations due to the combined influence of climate and anthropogenic activities, while the total nitrogen (TN) concentration in aquatic ecosystems presented an annual fluctuating upward trend. The TN concentration in the wet season was predominantly elevated because a large amount of nitrogen contaminants migrated into water ecosystems through heavy rainfall or river erosion. The concentration of NO3--N, the main contaminant of the water ecosystems, showed distinct variations across different watersheds, followed as rivers over the Miyun reservoir. Moreover, NO3--N levels gradually increased from upstream to downstream in different basins. NO3--N in surface water was mainly derived from the mixture of agricultural ammonia fertilizer and sewage and manure, with a minority of samples potentially undergoing denitrification. Comparatively, the main sources of NO3--N in groundwater were soil N and sewage and manure, while the denitrification process was inactive. The carcinogenic risks caused by NO3--N in groundwater were deemed either nonexistent or minimal, while the focus should predominantly be on potential non-carcinogenic risks, particularly for infants and children. Therefore, it is crucial to perform proactive measures aimed at safeguarding water ecosystems, guided by an understanding of the distribution, sources, and associated risks of nitrogen contamination.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Nitrógeno , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , China , Nitrógeno/análisis , Abastecimiento de Agua , Nitratos/análisis , Humanos
3.
Environ Geochem Health ; 46(8): 280, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963449

RESUMEN

The chlor-alkali industry (CAI) is crucial for global chemical production; however, its operation has led to widespread heavy metal (HM) contamination at numerous sites, which has not been thoroughly investigated. This study analysed 122 soil and groundwater samples from a typical CAI site in Kaifeng, China. Our aim was to assess the ecological and health risks, identify the sources, and examine the migration characteristics of HMs at this site using Monte Carlo simulation, absolute principal component score-multiple linear regression (APCS-MLR), and the potential environmental risk index (Ei). Our findings revealed that the exceedance rates for Cd, Pb, Hg, and Ni were 71.96%, 45.79%, 49.59%, and 65.42%, respectively. Mercury (Hg) displayed the greatest coefficient of variation across all the soil layers, indicating a significant anthropogenic influence. Cd and Hg were identified as having high and extremely high potential environmental risk levels, respectively. The spatial distributions of the improved Nemerow index (INI), total ecological risk (Ri), and HM content varied considerably, with the most contaminated areas typically associated with the storage of raw and auxiliary materials. Surface aggregation and significant vertical transport were noted for HMs; As and Ni showed substantial accumulation in subsoil layers, severely contaminating the groundwater. Self-organizing maps categorized the samples into two different groups, showing strong positive correlations between Cd, Pb, and Hg. The APCS-MLR model suggested that industrial emissions were the main contributors, accounting for 60.3% of the total HM input. Elevated hazard quotient values for Hg posed significant noncarcinogenic risks, whereas acceptable levels of carcinogenic risk were observed for both adults (96.60%) and children (97.83%). This study significantly enhances historical CAI pollution data and offers valuable insights into ongoing environmental and health challenges.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Metales Pesados/análisis , China , Agua Subterránea/química , Contaminantes del Suelo/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Humanos , Industria Química
4.
Environ Health ; 23(1): 61, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961410

RESUMEN

BACKGROUND: Drinking water at U.S. Marine Corps Base (MCB) Camp Lejeune, North Carolina was contaminated with trichloroethylene and other industrial solvents from 1953 to 1985. METHODS: A cohort mortality study was conducted of Marines/Navy personnel who, between 1975 and 1985, began service and were stationed at Camp Lejeune (N = 159,128) or MCB Camp Pendleton, California (N = 168,406), and civilian workers employed at Camp Lejeune (N = 7,332) or Camp Pendleton (N = 6,677) between October 1972 and December 1985. Camp Pendleton's drinking water was not contaminated with industrial solvents. Mortality follow-up was between 1979 and 2018. Proportional hazards regression was used to calculate adjusted hazard ratios (aHRs) comparing mortality rates between Camp Lejeune and Camp Pendleton cohorts. The ratio of upper and lower 95% confidence interval (CI) limits, or CIR, was used to evaluate the precision of aHRs. The study focused on underlying causes of death with aHRs ≥ 1.20 and CIRs ≤ 3. RESULTS: Deaths among Camp Lejeune and Camp Pendleton Marines/Navy personnel totaled 19,250 and 21,134, respectively. Deaths among Camp Lejeune and Camp Pendleton civilian workers totaled 3,055 and 3,280, respectively. Compared to Camp Pendleton Marines/Navy personnel, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for cancers of the kidney (aHR = 1.21, 95% CI: 0.95, 1.54), esophagus (aHR = 1.24, 95% CI: 1.00, 1.54) and female breast (aHR = 1.20, 95% CI: 0.73, 1.98). Causes of death with aHRs ≥ 1.20 and CIR > 3, included Parkinson disease, myelodysplastic syndrome and cancers of the testes, cervix and ovary. Compared to Camp Pendleton civilian workers, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for chronic kidney disease (aHR = 1.88, 95% CI: 1.13, 3.11) and Parkinson disease (aHR = 1.21, 95% CI: 0.72, 2.04). Female breast cancer had an aHR of 1.19 (95% CI: 0.76, 1.88), and aHRs ≥ 1.20 with CIRs > 3 were observed for kidney and pharyngeal cancers, melanoma, Hodgkin lymphoma, and chronic myeloid leukemia. Quantitative bias analyses indicated that confounding due to smoking and alcohol consumption would not appreciably impact the findings. CONCLUSION: Marines/Navy personnel and civilian workers likely exposed to contaminated drinking water at Camp Lejeune had increased hazard ratios for several causes of death compared to Camp Pendleton.


Asunto(s)
Agua Potable , Personal Militar , Exposición Profesional , Humanos , Masculino , Personal Militar/estadística & datos numéricos , Adulto , Femenino , Estudios de Cohortes , North Carolina/epidemiología , Agua Potable/análisis , Exposición Profesional/efectos adversos , Persona de Mediana Edad , Adulto Joven , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/efectos adversos , Tricloroetileno/análisis , Mortalidad
5.
Arh Hig Rada Toksikol ; 75(2): 125-136, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963142

RESUMEN

Recent research has raised concern about the biocompatibility of iron oxide nanoparticles (IONPs), as they have been reported to induce oxidative stress and inflammatory responses, whilst prolonged exposure to high IONP concentrations may lead to cyto-/genotoxicity. Besides, there is concern about its environmental impact. The aim of our study was to investigate the effects of IONPs on the antioxidant defence system in freshwater fish Mozambique tilapia (Oreochromis mossambicus, Peters 1852). The fish were exposed to IONP concentration of 15 mg/L over 1, 3, 4, 15, 30, and 60 days and the findings compared to a control, unexposed group. In addition, we followed up the fish for 60 days after exposure had stopped to estimate the stability of oxidative stress induced by IONPs. Exposure affected the activity of antioxidant and marker enzymes and increased the levels of hydrogen peroxide and lipid peroxidation in the gill, liver, and brain tissues of the fish. Even after 60 days of depuration, adverse effects remained, indicating long-term nanotoxicity. Moreover, IONPs accumulated in the gill, liver, and brain tissues. Our findings underscore the potential health risks posed to non-target organisms in the environment, and it is imperative to establish appropriate guidelines for safe handling and disposal of IONPs to protect the aquatic environment.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Tilapia , Animales , Estrés Oxidativo/efectos de los fármacos , Tilapia/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Branquias/efectos de los fármacos , Branquias/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
6.
Anal Chim Acta ; 1316: 342861, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969410

RESUMEN

BACKGROUND: The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS: A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 µM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE: DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.


Asunto(s)
Cromo , Límite de Detección , Pirroles , Contaminantes Químicos del Agua , Cromo/análisis , Pirroles/química , Contaminantes Químicos del Agua/análisis , Cetonas/química , Cetonas/análisis , Agua/química
7.
J Environ Sci (China) ; 146: 283-297, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969457

RESUMEN

The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.


Asunto(s)
Biodegradación Ambiental , Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Regiones Árticas , Petróleo/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Archaea/metabolismo , Archaea/clasificación , Archaea/genética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Biodiversidad
8.
J Environ Sci (China) ; 146: 55-66, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969462

RESUMEN

The effects of cast iron pipe corrosion on water quality risk and microbial ecology in drinking water distribution systems (DWDSs) were investigated. It was found that trihalomethane (THMs) concentration and antibiotic resistance genes (ARGs) increased sharply in the old DWDSs. Under the same residual chlorine concentration conditions, the adenosine triphosphate concentration in the effluent of old DWDSs (Eff-old) was significantly higher than that in the effluent of new DWDSs. Moreover, stronger bioflocculation ability and weaker hydrophobicity coexisted in the extracellular polymeric substances of Eff-old, meanwhile, iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms, hence enhancing the formation of THMs. Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger microbial antioxidant systems response, resulting in higher ARGs abundance. Corroded cast iron pipes induced a unique interaction system of biofilms, chlorine, and corrosion products. Therefore, as the age of cast iron pipes increases, the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.


Asunto(s)
Biopelículas , Hierro , Calidad del Agua , Abastecimiento de Agua , Corrosión , Microbiología del Agua , Agua Potable/microbiología , Agua Potable/química , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Trihalometanos/análisis
9.
Water Environ Res ; 96(7): e11076, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965745

RESUMEN

Knowledge on natural background levels (NBLs) of aluminum (Al) in groundwater can accurately assess groundwater Al contamination at a regional scale. However, it has received little attention. This study used a combination of preselection and statistic methods consisting of the oxidation capacity and the boxplot iteration methods to evaluate the NBL of shallow groundwater Al in four groundwater units of the Pearl River Delta (PRD) via eliminating anthropogenic-impacted groundwaters and to discuss driving factors controlling high NBLs of Al in groundwater in this area. A total of 280 water samples were collected, and 18 physico-chemical parameters including Redox potential, dissolved oxygen, pH, total dissolved solids, HCO3 -, NH4 +, NO3 -, SO4 2-, Cl-, NO2 -, F-, K+, Na+, Ca2+, Mg2+, Fe, Mn, and Al were analyzed. Results showed that groundwater Al NBLs in groundwater units A-D were 0.11, 0.16, 0.15, and 0.08 mg/L, respectively. The used method in this study is acceptable for the assessment of groundwater Al NBLs in the PRD, because groundwater Al concentrations in various groundwater units in residual datasets were independent of land-use types, but they were opposite in the original datasets. The dissolution of Al-rich minerals in sediments/rocks was the major source for groundwater Al NBLs in the PRD, and the interaction with Al-rich river water was secondary one. The high groundwater Al NBL in groundwater unit B was mainly attributed to the acid precipitation and the organic matter mineralization inducing the release of Al in Quaternary sediments. By contrast, the high groundwater Al NBL in groundwater unit C mainly was ascribed to the release of Al complexes such as fluoroaluminate from rocks/soils into groundwater induced by acid precipitation, but it was limited by the dissolution of Mg minerals (e.g., dolomite) in aquifers. This study provides not only useful groundwater Al NBLs for the evaluation of groundwater Al contamination but also a reference for understanding the natural geochemical factors controlling groundwater Al in urbanized deltas such as the PRD. PRACTITIONER POINTS: The natural background level (NBL) of groundwater aluminum in the Pearl River Delta (PRD) was evaluated. The dissolution of aluminum-rich minerals in sediments/rocks was the major source for groundwater aluminum NBLs in the PRD. The acid precipitation and organic matter mineralization contribute to high groundwater Al NBL in the groundwater unit B. The acid precipitation contributes to high groundwater Al NBL in the groundwater unit C, while dissolution of magnesium minerals limits it.


Asunto(s)
Aluminio , Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Agua Subterránea/análisis , Aluminio/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Ríos/química , China , Urbanización
10.
Environ Geochem Health ; 46(8): 285, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967745

RESUMEN

Water scarcity is a growing concern due to rapid urbanization and population growth. This study assesses spring water quality at 20 stations in Giresun province, Türkiye, focusing on potentially toxic elements and physicochemical parameters. The Water Quality Index rated most samples as "excellent" during the rainy season and "good" during the dry season, except at stations 4 (40° 35' 12″ North/38° 26' 34″ East) and 19 (40° 44' 28″ North/38° 06' 53″ West), indicating "poor" quality. Mean macro-element concentrations (mg/L) were: Ca (34.27), Na (10.36), Mg (8.26), and K (1.48). Mean trace element values (µg/L) were: Al (1093), Zn (110.54), Fe (67.45), Mn (23.03), Cu (9.79), As (3.75), Ni (3.00), Cr (2.84), Pb (2.70), Co (1.93), and Cd (0.76). Health risk assessments showed minimal non-carcinogenic risks, while carcinogenic risk from arsenic slightly exceeded safe limits (CR = 1.75E-04). Higher arsenic concentrations during the rainy season were due to increased recharge, arsenic-laden surface runoff, and human activities. Statistical analyses (PCA, PCC, HCA) suggested that metals and physico-chemical parameters originated from lithogenic, anthropogenic, or mixed sources. Regular monitoring of spring water is recommended to mitigate potential public health risks from waterborne contaminants.


Asunto(s)
Monitoreo del Ambiente , Estaciones del Año , Contaminantes Químicos del Agua , Calidad del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Humanos , Manantiales Naturales/química , Oligoelementos/análisis , Metales Pesados/análisis
11.
Environ Monit Assess ; 196(8): 711, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976165

RESUMEN

The study investigates the pollution characteristics of 16 priority PAHs, accumulated in copepods from a major fishing harbour and its adjacent coastal waters of Veraval, west coast of India. The total PAH accumulation is in the range of 922.16-27,807.49 ng g-1 dw, with the mean concentration of 5776.59 ng g-1 dw. High concentrations of PAHs were present in the copepod samples from inside the harbour. Notably, there was no significant correlation between the lipid content of copepods and the accumulation of PAHs. The molecular diagnostic ratio method (MDR) indicates that the PAH sources are petrogenic in origin, while principal component analysis (PCA) points to petroleum, coal combustion and vehicular emission sources. Total cancerous PAHs (C-PAHs) in the study area dominate by 40% of the total PAHs identified; moreover, the bioaccumulation factor (BAF) is very high in the offshore area, which is also a fishing ground. The global relevance and magnitude of the present study in the Veraval, one of the prime seafood exporting hubs in India, should be dealt with utmost avidity as the accumulation status of PAHs in the zooplankton has never been explored in the Indian coastal waters. Moreover, the current study gives the foremost data on the bioaccumulation status of PAHs in copepods from the tropical waters of India.


Asunto(s)
Copépodos , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Copépodos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Animales , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , India , Bioacumulación , Agua de Mar/química
12.
Environ Monit Assess ; 196(8): 712, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976167

RESUMEN

Microplastic (MP) pollution has been observed in various ecosystems as a result of the rapid increase in plastic production over the past half-century. Nevertheless, the extent of MP pollution in different ecosystems, particularly in freshwater ecosystems, has not been well-studied, and there are limited investigations on this particular topic, specifically in Türkiye. Here, we quantify the occurrence and distribution of MPs in surface water samples collected from Topçu Pond (Türkiye) for the first time. Water samples were collected at five stations and filtered (30 L for each station) through stacked stainless steel sieves (5 mm, 328 µm, and 61 µm mesh size) with a diameter of 30 cm. The abundance, size, color, shape, and type of collected debris samples were analyzed after the wet peroxide oxidation process. MP particles were observed in all samples at an average abundance of 2.4 MPs/L. The most abundant MP size class and type were 0-999 µm and fiber respectively. On the other hand, prevalent colors were black and colorless in general. According to the Raman analysis results, the identified MP derivatives were polypropylene (40%), polyamide (30%), ethylene acrylic acid (20%), and polyvinylchloride (10%). Moreover, the pollution load index (PLI) index was used to determine the pollution status. PLI values were determined as 1.91 at station S1, 1.73 at station S2, 1.31 at station S3, 1 at station S4 and 1.24 at station S5. The PLI value determined for the overall pond was 1.4. The results of this research show that MP pollution is present in Topçu Pond and contributes to the expanding literature on MP pollution in pond ecosystems.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Microplásticos , Estanques , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Estanques/química , Medición de Riesgo , Turquía
13.
Environ Monit Assess ; 196(7): 679, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951273

RESUMEN

Microplastics, an emerging contaminant, are widespread in oceans around the world, and rivers are the key conveyors of these pollutants into the oceans. There exists a dearth of available data pertaining to seasonal fluctuation, spatial distribution and risk assessment of microplastics in rivers extending from upper reaches to the lower reaches. The collection of such data is of utmost importance for the purpose of formulating beneficial management strategies for riverine microplastics. In order to bridge this research gap, an investigation was made in the Periyar River in Kerala, India, which is exposed to anthropogenic stress and is at risk of microplastic pollution. A total of eighteen sites (six sites each from downstream, midstream and upstream) along the 244 km of the river were investigated across three seasons in a year. The study revealed a discernible pattern in the spatial distribution of microplastic concentrations, wherein there was a rise in abundance from the upstream to midstream and then a sudden increase of abundance along the downstream regions towards the lower reaches. The highest mean microplastic abundance of 124.95 items/L was obtained during the monsoon season followed by post-monsoon season i.e. 123.21 items/L and pre-monsoon i.e. 120.50 items/L. The predominant forms of microplastics were found to be fibres, fragments and filaments. Most prevalent polymer types acquired were polyethylene (PE) and polypropylene (PP). Pollution hazard index (PHI) and pollution load index (PLI) were also evaluated to assess the water quality of this river. The findings of this study conclude that the Periyar River is polluted with microplastics throughout its course and offer significant insights into the detection of microplastic origins in river systems and lend support to the implementation of potential measures aimed at mitigating their impact.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Ríos , Estaciones del Año , Contaminantes Químicos del Agua , India , Contaminantes Químicos del Agua/análisis , Ríos/química , Microplásticos/análisis , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos
14.
Environ Monit Assess ; 196(7): 676, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951278

RESUMEN

Cigarette butts (CBs) and Microplastics (MPs) have serious harmful effects on the environment and living organisms despite their small size. This research aims to investigate the abundance and pollution status of CBs and MPs in Tahtali Dam Basin (West Anatolia, Türkiye) which is the most important drinking and irrigation water resources. Clean Environment Index (CEI) and Cigarette Butt Pollution Index (CBPI) were used to determine pollution degree of the basin. The total number of CBs were 1.478 items, the total number of MPs were 477 items/m2 in the basin. As a result of this study, MP particles weren't found in Balaban Stream. Highest number of MP particles observed in 100-250 µm (45%) size class. The most abundant MP type and colour were, fragment (54%) and white (42%), respectively. Polyethylene terephthalate (50%) was the most abundant type of polymer according to the ATR- FTIR analysis. As a result of the CEI and CBPI, the upstream stations of the stream were classified as "clean" status, while downstream sampling points of the stream and Balaban Lake coasts were classified as "extremely dirty" status. The calculated volumes of MP particulates from mining facility, agricultural and recreational activities indicate that anthropogenic factors are the most important MP source in the Tahtali Dam Basin. This study is the first study about MP and CB pollution of the freshwater ecosystems in the region.


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Turquía , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Medición de Riesgo , Agua Potable/química , Riego Agrícola , Ríos/química
15.
Environ Sci Pollut Res Int ; 31(29): 42388-42405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874755

RESUMEN

We assessed microplastic (µP) pollution in water and sediment samples during the dry and rainy season (October/2018 and March/2019, respectively) from the Guarapiranga Reservoir in the Metropolitan Region of São Paulo, Brazil, which provides drinking water for up to 5.2 million people. The concentration of mPs varied spatially and seasonally, with the higher concentrations observed near the urbanized areas and during the dry season. Water column concentrations ranged from 150 to 3100 particles/m3 and 0.07-25.05 mm3 plastic/m3 water during the dry season, and 70-7900 particles/m3 and 0.06-4.57 mm3 plastic/m3 water during the rainy season. Sediment samples were collected only during the rainy season, with concentrations ranging from 210 to 22,999 particles/kg dry weight and 0.15-111.46 mm3/kg dry weight. The particle size distribution exhibited seasonal variation, with µPs >1 mm predominating during the dry season, constituting 60-75% of all particles. In terms of quantity, fibers accounted for the majority of microplastics, comprising 55-95% during the dry season and 70-92% during the rainy season. However, when considering particle volume, irregular particles dominated in some samples, accounting for up to 95% of the total amount. The predominant colors of microplastics were white/crystal, black, and blue, with the main compositions identified as polypropylene (PP) and polyethylene terephthalate (PET), suggesting the influence of untreated domestic sewage discharge. Additionally, some additives were detected, including the pigments Fast RED ITR and phthalocyanine blue. The management of reservoir water levels appears to influence the quantity of µPs in the water column. As the water level increases up to 90% of the reservoir capacity during the rainy season, the amount of µPs in the water decreases, despite the higher influx of particles resulting from surface runoff caused by rainy conditions. This suggests a "dilution" effect combined to the polymictic mixing hydrodynamics. Our results may contribute to the creation and improvement of monitoring programs regarding mP pollution and to the adoption of specific public policies, which are still lacking in legislation.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Estaciones del Año , Contaminantes Químicos del Agua , Brasil , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis
16.
Environ Sci Pollut Res Int ; 31(30): 42750-42765, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877194

RESUMEN

This study evaluated the presence of plastics and microplastics in macrophytes in an urbanized sector of the Amazon River. A total of 77 quadrats in 23 macrophyte banks were sampled during the dry (September 2020) and rainy (June 2021) season. Five species were identified: Paspalum repens, Pontederia rotundifolia, Pistia stratiotes, Salvinia auriculata and Limnobium laevigatum, with P. repens being dominant during the dry season (47.54%) and P. rotundifolia during the rainy season (78.96%). Most of the plastic particles accumulated in Paspalum repens (49.3%) and P. rotundifolia (32.4%), likely due to their morphological structure and volume. The dry season showed a higher accumulation of plastic particles than the rainy season. Microplastics were found in most samples, during both the dry (75.98%) and rainy seasons (74.03%). The upstream macrophyte banks retained more plastic particles compared to the downstream banks. A moderate positive correlation was observed between the presence of plastic particles and macrophyte biomass, and a weak positive correlation between the occurrence of microplastics and mesoplastics. White and blue fragments, ranging from 1 to 5 mm were the most common microplastics found in the macrophyte banks. Green fragments and green and blue fibers were identified as polypropylene, blue and red fragments as polyethylene, and white fragments as polystyrene. Therefore, the results of this study highlight the first evidence of the retention of plastic particles in macrophytes of the Amazon and highlight a significant risk due to the harmful effects that this type of plastic can cause to the fauna and flora of aquatic ecosystems.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Ríos , Brasil , Ríos/química , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Estaciones del Año
17.
Environ Sci Pollut Res Int ; 31(29): 42428-42444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877192

RESUMEN

Iron and steel slags have a long history of both disposal and beneficial use in the coastal zone. Despite the large volumes of slag deposited, comprehensive assessments of potential risks associated with metal(loid) leaching from iron and steel by-products are rare for coastal systems. This study provides a national-scale overview of the 14 known slag deposits in the coastal environment of Great Britain (those within 100 m of the mean high-water mark), comprising geochemical characterisation and leaching test data (using both low and high ionic strength waters) to assess potential leaching risks. The seaward facing length of slag deposits totalled at least 76 km, and are predominantly composed of blast furnace (iron-making) slags from the early to mid-20th Century. Some of these form tidal barriers and formal coastal defence structures, but larger deposits are associated with historical coastal disposal in many former areas of iron and steel production, notably the Cumbrian coast of England. Slag deposits are dominated by melilite phases (e.g. gehlenite), with evidence of secondary mineral formation (e.g. gypsum, calcite) indicative of weathering. Leaching tests typically show lower element (e.g. Ba, V, Cr, Fe) release under seawater leaching scenarios compared to deionised water, largely ascribable to the pH buffering provided by the former. Only Mn and Mo showed elevated leaching concentrations in seawater treatments, though at modest levels (<3 mg/L and 0.01 mg/L, respectively). No significant leaching of potentially ecotoxic elements such as Cr and V (mean leachate concentrations <0.006 mg/L for both) were apparent in seawater, which micro-X-Ray Absorption Near Edge Structure (µXANES) analysis show are both present in slags in low valence (and low toxicity) forms. Although there may be physical hazards posed by extensive erosion of deposits in high-energy coastlines, the data suggest seawater leaching of coastal iron and steel slags in the UK is likely to pose minimal environmental risk.


Asunto(s)
Monitoreo del Ambiente , Hierro , Acero , Hierro/química , Hierro/análisis , Contaminantes Químicos del Agua/análisis , Agua de Mar/química
18.
Environ Geochem Health ; 46(7): 255, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884657

RESUMEN

The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitrosaminas , Ríos , Contaminantes Químicos del Agua , Nitrosaminas/análisis , Contaminantes Químicos del Agua/análisis , China , Agua Subterránea/química , Ríos/química , Aguas Residuales/química , Residuos Industriales/análisis , Galvanoplastia , Animales , Ecosistema
19.
Environ Geochem Health ; 46(7): 227, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849675

RESUMEN

Leakage accidents of buried pipelines have become increasingly common due to the prolonged service of some pipelines which have been in use for more than 150 years. Therefore, there is an urgent need for accurate prediction of pollution scope to aid in the development of emergency remediation strategies. This study investigated the distribution of a light non-aqueous phase liquid in soils containing gas and water through numerical simulations and laboratory experiments. Firstly, a three-dimensional porous medium model was established using ANSYS FLUENT, and for the first time, the distribution of gas and groundwater in soil environments was simulated in the model. Subsequently, the distribution of the three phases of diesel, gas, and water in soil was studied with different leakage velocities and it was found that the leakage velocity played a significant role in the distribution. The areas of diesel in soils at 60 min were 0.112 m2, 0.194 m2, 0.217 m2, and 0.252 m2, with corresponding volumes of 0.028 m3, 0.070 m3, 0.086 m3, and 0.106 m3, respectively, for leakage velocities of 1.3 m/s, 3.4 m/s, 4.6 m/s, and 4.9 m/s. Calculation formulas for distribution areas and volumes were also developed to aid in future prevention and control strategies under different leakage velocities. The study also compared the distribution areas and volumes of diesel in soils with and without groundwater, and it was found that distribution scopes were larger in soils containing groundwater due to capillary force. In order to validate the accuracy of the numerical simulation, laboratory experiments were conducted to study the diffusion of oil, gas, and water under different leakage velocities. The results showed good agreement between the experiments and the simulations. The research findings are of great significance for preventing soil pollution and provide a theoretical basis for developing scientifically sound soil remediation strategies.


Asunto(s)
Agua Subterránea , Contaminantes del Suelo , Suelo , Agua Subterránea/química , Contaminantes del Suelo/análisis , Suelo/química , Simulación por Computador , Contaminantes Químicos del Agua/análisis , Modelos Teóricos , Gases , Porosidad
20.
Sci Total Environ ; 945: 173971, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876342

RESUMEN

Pesticides are widely used in agriculture where they do not only reach their targets but also distribute to other environmental compartments and negatively affect non-target organisms. To prospectively assess their environmental risk, several tools and models using pesticide persistence (DT50) and leaching potential (groundwater ubiquity score (GUS), EXPOSIT) have been developed. Here, we simultaneously quantified 18 pesticides in soil and drainage water during a conventionally grown potato culture at field scale with high temporal resolution and compared our findings with predictions of the above models. Overall dissipations of all freshly applied compounds in soil were in line with published DT50 field values and their occurrences in drainage water were generally consistent with GUS and EXPOSIT models, respectively. In contrast, soil concentrations of the legacy pesticide atrazine and one of its transformation products (atrazine-2-hydroxy) were constant during the entire sampling campaign. Moreover, during peak discharge atrazine concentrations in drainage water were diluted whereas those of freshly applied pesticides were maximal. This difference demonstrates that the applied risk assessment tools were capable of predicting environmental concentrations and dissipation of pesticides at the short and medium time scale of a few half-lives after application, but fell short of capturing long-term trace residues.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Plaguicidas , Contaminantes del Suelo , Suelo , Solanum tuberosum , Contaminantes Químicos del Agua , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Suelo/química , Agricultura/métodos , Modelos Químicos , Medición de Riesgo , Atrazina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA